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Introduction

Francis Buekenhout

Buekenhout's research group was interested in providing a unified
geometric interpretation of all finite simple groups, in the spirit of Jacques
Tits' theory of buildings.
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Introduction

@ Experimental research using Cayley and then MAGMA since the
1980's.

@ Data were collected in atlases and these atlases led to conjectures
that were proven later on theoretically.

@ A big emphasis was put on understanding the subgroup structure of
groups, something MAGMA can (finally) do very well.
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My journey with Cayley and MAGMA

o Started using Cayley in 1993 and then MAGMA in 1997 (first visit in
Sydney).
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My journey with Cayley and MAGMA

o Started using Cayley in 1993 and then MAGMA in 1997 (first visit in
Sydney).

@ 1999 : implemented coset geometries and incidence geometries in the
MAGMA kernel.

@ 2002 : new SubgroupLattice algorithm (implemented in 20047)

@ 2007 : improved Subgrouplattice algorithm using DegreeReduction —
not implemented 7

@ 2012 : s-arc-transitive graphs and locally s-arc-transitive graphs.
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My journey with Cayley and MAGMA

o Started using Cayley in 1993 and then MAGMA in 1997 (first visit in
Sydney).

@ 1999 : implemented coset geometries and incidence geometries in the
MAGMA kernel.

@ 2002 : new SubgroupLattice algorithm (implemented in 20047)

@ 2007 : improved Subgrouplattice algorithm using DegreeReduction —
not implemented 7

@ 2012 : s-arc-transitive graphs and locally s-arc-transitive graphs.
@ 2016 : (string) C-groups and C*-groups
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Incidence geometries

An incidence geometry [ is a 4-tuple (X, %, t, /) where
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Incidence geometries

An incidence geometry [ is a 4-tuple (X, %, t, /) where
e X = {elements of ' also called varieties}
e | = {types of the elements}
e t: X — | :x— t(x) which is the type of the element x.

@ x = incidence relation, that is a relation which is symmetric and
reflexive on the varieties, and such that
Vx,y € X,t(x) =t(y) and xxy = x =y
( (X, %) is a n-partite graph called the incidence graph with n=| / | )
@ every maximal clique contains n elements.

| 1| is the rank of the incidence geometry.
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Coset geometries

Theorem

(Tits, 1957) Let n be a positive integer. Let | := {1,...,n} be a finite set
and let G be a group together with a family of subgroups (Gj)ic;. Let X
be the set consists of all cosets Gig, g € G, i€ l. Lett: X — | be
defined by t(G;g) = i. Define an incidence relation x on X x X by :

Gig1 * Gjg iff Gig1 N Gjgo is non-empty in G.

Then the 4-tuple T := (X, *,t, 1) is an incidence structure having a
chamber. Moreover, the group G acts by right multiplication as an
automorphism group on I'. Finally, the group G is transitive on the flags of
rank less than 3.

v
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Abstract regular polytopes

" Created by Lucas Vieira"
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Abstract regular polytopes

"Created by Jason Hise using Maya and Macromedia Fireworks."
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Abstract regular polytopes

An abstract polytope (P, <) is a poset satisfying four extra conditions:
@ the poset has a least face and a greater face;

@ each maximal chain of the poset has same length r + 2
(r will be called the rank);

@ a diamond condition;
@ a strong connectedness condition.

An abstract polytope is regular if its group of automorphisms is transitive
on the set of maximal chains (also called flags).
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Abstract regular polytopes

Figure: A Cube
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Abstract regular polytopes

Figure: A chain on the Cube consisting of a vertex, an edge containing that
vertex and a face containing the edge
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Abstract regular polytopes and String C-groups

There is a natural one-to-one correspondence between abstract regular
polytopes and string C-groups.
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String C-groups

And the other way around ... use Jacques Tits algorithm to construct a
coset geometry and order the types.
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Abstract regular polytopes - problems

Given a family of groups (e.g. S,), can we determine

@ what is the highest rank of an abstract regular polytope that has one
of the groups of the family as full automorphism group?

@ what are the possible ranks?

© how many pairwise nonisomorphic polytopes are there?

(= T
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What framework to take?

To solve the problems mentioned in the previous slide, we can choose to
work with

@ Posets with a set of extra axioms;

o Coset geometries;

@ String C-groups.
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String C-groups

Definition

A C-group of rank r is a pair (G, S) such that G is a group and

S :={po,...,pr—1} is a generating set of involutions of G that satisfy the
following property.

W, CH{0,....r =1} (i | i€ )N p i€ty =pu | ke lnd)

This property is called the intersection property and denoted by (/P).
We call any subgroup of G generated by a subset of S a parabolic
subgroup of the C-group (G, S).
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String C-groups

Definition

A C-group (G, S) of rank r is a string C-group if its set of generating
involutions S can be ordered in such a way that S := {po,...,pr—1}
satisfies

Vij €10,....r—1}, 0(pipj) = 2if |i —j| > 1
This property is called the string property and denoted by (SP).

Definition
For a given group G, we will call (G, S) a string C-group representation
of G provided it satisfies (SP) and (IP).

v

Dimitri Leemans, ULB Geometry with MAGMA 13 February 2026 23 /65



How | decided to switch to these objects ?

@ 2002 : Michael Hartley contacts me. He has found an abstract
regular polytope of type [5,3,5] whose automorphism group is J;.

o | knew of the existence of this polytope thanks to a computer search
of 1997.

@ We decided to study that polytope and found something quite special.
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Coxeter groups

Coxeter group of type [5 3,5]

By Roice3 - Own work, CC BY-SA 3. O
https://commons.wikimedia.org/w/index.php?curid=30348631
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How | decided to switch to these objects ?

The Coxeter group of type [5,3,5] is the finitely presented group

W =< a, b,c,d|a% b? c? d?,
(a* b)® (axc)? (axd)?, (bxc), (bxd)? (cxd)®>.

Dimitri Leemans, ULB

Geometry with MAGMA

13 February 2026

26 /65



How | decided to switch to these objects ?

The Coxeter group of type [5,3,5] is the finitely presented group

W =< a, b,c,d|a% b? c? d?,
(a* b)® (axc)? (axd)?, (bxc), (bxd)? (cxd)®>.

+ (abc)® = (bed)® = 1y gives L(19) and Coxeter's 57-cell.
(Coxeter, Geo. Ded. 1982)
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How | decided to switch to these objects ?

The Coxeter group of type [5,3,5] is the finitely presented group

W =< a, b,c,d|a% b? c? d?,
(a* b)® (axc)? (axd)?, (bxc), (bxd)? (cxd)®>.

+ (abc)® = (bed)® = 1y gives L(19) and Coxeter's 57-cell.
(Coxeter, Geo. Ded. 1982)

+ (bed)® = 1y gives Lp(19) x Js.
(Hartley, L., Math. Z. 2004)
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What groups to look at?

“Small” groups
Soluble groups
Nilpotent groups
2-groups
Simple groups
Sporadic groups
Almost simple groups
Non-solvable groups
etc.
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What groups to look at?

@ Hartley decided to focus on small groups

@ | decided to focus on small almost simple groups
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Small groups

Groups of even order < 2000
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Small groups

Groups of even order < 2000

#groups : 49,910,526,325

#soluble groups : 49,910,525,301

#non-solvable groups : 1024

#abstract regular polytopes with soluble aut. group (Conder) : 4968
#abstract regular polytopes with non-solvable aut. group : 878
Ratio 0.000009% (for soluble) VS 85% (for non-solvable)
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String C-group representations of 2-groups
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String C-group representations of 2-groups

A 2-group is a finite group whose order is a power of 2.
Most groups are 2-groups.
49,910,526,325
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String C-group representations of 2-groups

A 2-group is a finite group whose order is a power of 2.
Most groups are 2-groups.

49,910,526,325 - 412,607,930
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String C-group representations of 2-groups

A 2-group is a finite group whose order is a power of 2.
Most groups are 2-groups.

49,910,526,325 - 412,607,930 = 49,497,918,395 2-groups
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String C-group representations of 2-groups

A 2-group is a finite group whose order is a power of 2.
Most groups are 2-groups.

49,910,526,325 - 412,607,930 = 49,497,918,395 2-groups
(99,17% of 2-groups among the groups of even order less than 2001)
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String C-group representations of 2-groups

2-groups are also important for abstract regular polytopes as they give the
smallest examples of a given rank n > 8.
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String C-group representations of 2-groups

Theorem (Conder, 2013)

Let F,, be the number of flags in a regular polytope of rank n. Then a
lower bound for F,, is given by F, > 2 -4"~1 for all n > 9, and this bound
is attained by a family of tight polytopes of type {4|...|4}, one for each n.
For rank n < 8, the fewest flags occur for regular n-polytopes as follows:

min(F,) | Type(s) attaining the lower bound
6 | {3}
24 {313}, {3]4} (and dual {4|3})
96 {434}

432 | {3/6/3[4} (and dual {4/3]6/3})

1728 | {4]3/6[3|4)

7776 | {36/3|6]34} (and dual {4|3|6/3]6]3})
31104 | {4]3/6/3|6|3|4}

DO NSO OO WNS
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String C-group representations of 2-groups

The Frattini subgroup ®(G), of a finite group G is the intersection of all
maximal subgroups of G.

Let G be a finite p-group for a prime p, and set U1(G) = {g” | g € G}.
Theorem (Burnside Basis Theorem)
Let G be a p-group and |G : ®(G)| = p9.

(1) G/®(G) = ZY. Moreover, if N <t G and G/N is elementary abelian,
then ®(G) < N.

(2) Every minimal generating set of G contains exactly d elements?.
(3) ®(G) = G'G1(G). In particular, if p =2, then ®(G) = U1(G).

?d is called the rank of G and denoted by d(G).
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String C-group representations of 2-groups

Corollary (Hou, Feng, L., 2019)

A given 2-group has only string C-group representations with a fixed rank,
that is, the rank of the 2-group.
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String C-group representations of PSL(2, q) groups

Linear groups and their automorphism groups

G ‘Aut(G) |Order of G Number of Polytopes
| Alt(5) = PSL(24) = PSL2.5) Sym(5) 6 15 7
Sym(5) Sym(S) 120 25 S=d4l
PSL(3.2) = PSL2.7) PILE) 168 21 0
PILET) 336 49 16
PILRY) 360 a5 o
PIL2Y) 720 81 14
PILY) 720 75 =2s4:1
PILRY) | 720 45 0
PILRY) 1440 11 2
PIL(28) 504 63 |13
PTL23) 1512 63 o
PSL(2,11) = PL2,11) PILCID) [ 660 55 [a=341
PILR,11) PILR,11; 1320 121 a2
PEL(2,13) PIL(2,13) 1092 o1 imy
TL(2,13) PTL(2,13) 2184 169 59
2,17) PTL(2,17) 2448 153 16
@.17) PILQ.17) | 4896 289 o
2.19) PILQ.19) | 3420 171 18=17+1
PGL(2,19) = PTL(2,19) PIL2.19) | 6840 361 (40
PSL(2,16) = PGL(2,16) PI'L(2,16) 4080 255 2z
PSL2,16)2 PIL(2,16) | 8160 323 [6=21s5
PIL(2,16) = PEL(2,16) PIL2.16) | 16320 323 o
[PSL(3,3) =PGL(3,3) = PEL(3,3) = PTL(3,3)| PSL(3,3): 5616 7 0
PSL(3,3):2 PSL(33)2 | 11232 351 (68 =67+1
PSL(223) = PEL(2.23) PILR23) | 6072 253 28
PGL(223) = PTL(2.23) PILQ23) | 12144 529 2 |
PSL(225) PTL(225) | 7800 325 1z
PGL(225) PIL225) | 15600 625 121
PEL(225) PILQ25) | 15600 455 [T
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String C-group representations of PSL(2, q) groups

Theorem (Schulte - L., 2007)

The maximum rank of a string C-group representation of PSL(2, q) is 4
and only happens when g = 11 or 19.

The corresponding polytopes are
o the 11-cell of Grunbaiim of type [3,5,3], and
@ the 57-cell of Coxeter of type [5,3,5].
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String C-group representations of sporadic groups

G Order of G Rank 3 | Rank 4 | Rank 5
My 7,920 0 0 0
My 95,040 23 14 0
Moo 443,510 0 0 0
My 10,200,960 0 0 0
Moy 244,823,040 490 155 2

N 175,560 148 2 0

b 604,800 137 17 0

5 50,232,960 303 2 0
HS 44,352,000 252 57 2
MeclL 898,128,000 0 0 0
He 4,030,387,200 1188 76 0
Ru | 145,926,144,000 | 21594 227 0
Suz | 448,345,497,600 | 7119 257 13
O'N | 460,815,505,920 | 6536 31 0
Cos | 495,766,656,000 | 21118 1746 44
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String C-group representations of symmetric groups
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String C-group representations of symmetric groups

E. H. Moore (1896) : (n — 1)-simplex.
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String C-group representations of symmetric groups

E. H. Moore (1896) : (n — 1)-simplex.

Theorem (Moore, 1896)

For every n > 3, there is a string C-group representation of S, in its
natural permutation representation, of rank n — 1 whose generating
involutions are the transpositions (i,i + 1) withi=1,...,n— 1.
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String C-group representations of symmetric groups

Proposition (Whiston, 2000)

The size of an independent set in S, is at most n — 1, with equality only if
the set generates the whole group S,,.
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String C-group representations of symmetric groups

Sjerve and Cherkassoff (1993) (see also Conder 1980): S, is a group

generated by three involutions, two of which commute, provided that
n> 4.
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String C-group representations of symmetric groups

Sjerve and Cherkassoff (1993) (see also Conder 1980): S, is a group

generated by three involutions, two of which commute, provided that
n> 4.

Theorem (“Moore, Sjerve, Cherkassoff, Conder")

Every group S, with n > 4 has a string C-group representation of rank
three and one of rank n — 1.
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String C-group representations of symmetric groups

G | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8
Ss 4 1 0 0 0 0
Se 2 4 1 0 0 0
S7 35 7 1 1 0 0
Ss 63 36 11 1 1 0
So 129 37 7 7 1 1

Source: http://leemans.dimitri.web.ulb.be/~dleemans/polytopes
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

For n > 5 or n = 3, Moore's generators give, up to isomorphism, the
unique string C-group representation of rank n— 1 for S,,. For n = 4, there
are, up to isomorphism and duality, two representations, namely the ones
corresponding to the hemicube and the tetrahedron.
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

For n > 7, there exists, up to isomorphism and duality, a unique string
C-group representation of rank (n — 2) for Sy.
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

Let n > 4. For every r € {3,...,n — 1}, there exists at least one string
C-group representation of rank r for S,,.
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String C-group representations of symmetric groups

Let {po, ..., pr—1} be a set of involutions of a permutation group G of
degree n. We define the permutation representation graph G as the
r-edge-labeled multigraph with n vertices and with a single i-edge {a, b}

whenever ap; = b with a # b.
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String C-group representations of symmetric groups

Generators Permutation representation | Schlafli type

(1,2),(2,3),(3,4),(4,5),(5,6),(6,7) | 0—0—0—0—0—0—0 | {3,3,33,3}
(1,2),(2,3),(3,4),(4,5)(6,7),(5,6) | 0—0—0—0—0—0—0| {3,364}
(1,2).(2,3),(3,4)(5,6).(4,5)(6,7) | O—O0—0O0—0—0—0—=0 {3.6,5}
(1,2),(2,3)(4,5)(6,7),(3,4)(5,6) | O—O—0—0—0—0—0 {6,6}

Table: The induction process used on 57
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String C-group representations of symmetric groups

Number of representations, up to duality, for S, (5 < n < 14)

G\r 3 4 5 6 7 8 /9 (1011|1213
Ss 4 1 0 0 0 0o(0]0|0]0/|O0
Se 2 4 1 0 0 o(o0j0|,0]0]|O0
S 35 7 1 1 0 o(0j0|0]0]|O
Sg 68 36 11 1 1 o(o0j0|,0]0]|O0
So 129 37 7 7 1 1|0} 0]0|O0]O
Si10 | 413 203 | 52 | 13 7 1]1}70|0|0]O0
Si1 | 1221 | 189 | 43 | 25 9 7(1]1,0]0/|O0
S1o | 3346 | 940 | 183 | 75 | 40 [ 9| 7 |1 | 1|00
Si3| 7163 | 863 | 171 | 123 | 41 |35 9 | 7 | 1 | 1| O
S1a | 23126 (3945 | 978 | 303 | 163 |54 (35| 9 | 7 | 1 | 1
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String C-group representations of symmetric groups

Number of representations, up to duality, for S, (5 < n < 14)

G\r 3 4 5 6 7 8 /9 (1011|1213
Ss 4 1 0 0 0 0o(0]0|0]0/|O0
Se 2 4 1 0 0 o(o0j0|,0]0]|O0
S 35 7 1 1 0 o(0j0|0]0]|O
Sg 68 36 11 1 1 o(o0j0|,0]0]|O0
So 129 37 7 7 1 r{ojojojoj|o0
Si10 | 413 203 | 52 | 13 7 r{1jo0j0j]o0]|o0
Si1 | 1221 | 189 | 43 | 25 9 7|11, 10|00
Sio | 3346 | 940 | 183 | 75 | 40 [ 9| 7 | 1 | 1 |0 |O
Si3| 7163 | 863 | 171 | 123 | 41 |35 9 | 7 | 1 | 1 | O
S1a | 23126 | 3945 | 978 | 303 | 163 (54|35 9 | 7 | 1 | 1
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String C-group representations of symmetric groups

Number of representations, up to duality, for S, (5 < n < 14)

G\r 3 4 5 6 7 |89 10|11 |12 13
Ss 4 1 0 0 0 0o(0]0|0]0/|O0
Se 2 4 1 0 0 o(o0j0|,0]0]|O0
S 35 7 1 1 0 o(0j0|0]0]|O
Sg 68 36 11 1 1 o(o0j0|,0]0]|O0
So 129 37 7 7 1 r{ojojojoj|o0
Si10 | 413 203 | 52 | 13 7 r{1jo0j0j]o0]|o0
Si1 | 1221 | 189 | 43 | 25 9 |71, 1]0]0/|0
Sio | 3346 | 940 | 183 | 75 | 40 (9 | 7 | 1 | 1|0 |O
Si3| 7163 | 863 | 171 | 123 | 41 |35 9 | 7 | 1 | 1 | O
S1a | 23126 | 3945 | 978 | 303 | 163 (54|35 9 | 7 | 1 | 1
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String C-group representations of symmetric groups

Theorem (Fernandes-Leemans-Mixer, 2018)
For n > 9, there exists, up to isomorphism and duality, seven string
C-group representations of rank (n — 3) for Sp,.

For n > 11, there exists, up to isomorphism and duality, nine string
C-group representations of rank (n — 4) for S,,.
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String C-group representations of symmetric groups

Theorem (Fernandes-Leemans-Mixer, 2018)

For n > 9, there exists, up to isomorphism and duality, seven string
C-group representations of rank (n — 3) for Sp,.
For n > 11, there exists, up to isomorphism and duality, nine string
C-group representations of rank (n — 4) for S,,.

Conjecture

Let r be a positive integer and n > 2r + 3. The number of pairwise
nonisomorphic string C-group representations of rank n — r is independent
on n.

v
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String C-group representations of symmetric groups

Theorem (Fernandes-Leemans-Mixer, 2018)

For n > 9, there exists, up to isomorphism and duality, seven string
C-group representations of rank (n — 3) for Sp,.
For n > 11, there exists, up to isomorphism and duality, nine string
C-group representations of rank (n — 4) for S,,.

Conjecture

Let r be a positive integer and n > 2r + 3. The number of pairwise
nonisomorphic string C-group representations of rank n — r is independent
on n.

v

The sequence, depending on r, looks like 1, 1, 7, 9, 35, 48, 135, ...
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String C-group representations of alternating groups

What about alternating groups ?
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String C-group representations of alternating groups

G | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8
As 2 0 0 0 0 0
As 0 0 0 0 0 0
A; 0 0 0 0 0 0
As 0 0 0 0 0 0
Ag 41 6 0 0 0 0

Source: http://leemans.dimitri.web.ulb.be/~dleemans/polytopes
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String C-group representations of alternating groups

G | Rank 3 | Rank 4 | Rank 5 | Rank 6 | Rank 7 | Rank 8
As 2 0 0 0 0 0
As 0 0 0 0 0 0
A7 0 0 0 0 0 0
Ag 0 0 0 0 0 0
Ag 41 6 0 0 0 0
A1 94 2 4 0 0 0
A1 64 0 0 3 0 0
A1 194 90 22 0 0 0
A1z | 1558 102 25 10 0 0
A1 | 4347 128 45 9 0 0
Ais | 5820 158 20 42 6 0

Source: http://leemans.dimitri.web.ulb.be/~dleemans/polytopes

Dimitri Leemans, ULB Geometry with MAGMA

13 February 2026
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String C-group representations of alternating groups

Theorem (Fernandes, Leemans, Mixer, 2012)

For each n ¢ {3,4,5,6,7,8,11}, there is a rank {%J string C-group
representation of the alternating group A,.

We found a striking example! Aj; has string C-group representations of
rank 3 and 6, but not 4 nor 5!
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String C-group representations of alternating groups

A conjecture arose thanks to the collected data and the struggle to
construct the above mentioned examples.

Conjecture

The highest rank of a string C-group representation of A, is {”T_lj when
n>12.
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String C-group representations of alternating groups

Strategy of the proof:
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String C-group representations of alternating groups

Strategy of the proof:
Take A, the group of even permutations of n points.
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String C-group representations of alternating groups

Strategy of the proof:

Take A, the group of even permutations of n points.

First show that a string C-group representations of A, of rank r > L"Elj,
if it exists, must have all its maximal parabolic subgroups (that is the
subgroups generated by all but one generator) intransitive.
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String C-group representations of alternating groups

Strategy of the proof:

Take A, the group of even permutations of n points.

First show that a string C-group representations of A, of rank r > L"glj,
if it exists, must have all its maximal parabolic subgroups (that is the
subgroups generated by all but one generator) intransitive.

Then use this fact and permutation representation graphs to show that it
is impossible.

Dimitri Leemans, ULB Geometry with MAGMA 13 February 2026 56 / 65



String C-group representations of alternating groups

Theorem (Cameron, Fernandes, Leemans, Mixer, 2016)

Let T be a string C-group of rank r which is isomorphic to a transitive subgroup
of S, other than S,, or A,. Then one of the following holds:

Q r<n/2
@ n=2 mod4, r=n/2+1andl is G;1S,/,. The generators are
po=(1,n/2+1)(2,n/2+2)...(n/2,n);

p1=(2,n/24+2)...(n/2,n);
pi={—=1,0(n/2+i—=1,n/241) for2 < i< n/2.

Moreover the Schlafli type is [2,3,...,3,4].

© T is transitive imprimitive and is one of the examples appearing in the next
Table.

© T is primitive. In this case, [ is obtained from the permutation representation
of degree 6 of Ss = PGLy(5) and it is the 4-simplex of Schafli type [3, 3, 3].
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String C-group representations of alternating groups

] Degree \ Number \ Structure \ Order \ Schafli type ‘

6 9 53 X 53 36 [27 37 3]
6 11 2.5 48 | [2,3,3]
6 11 23.5, 48 | [2,3,4]
8 45 | 2%:53:S5 | 576 | [3,4,4,3]

Table: Examples of transitive imprimitive string C-groups of degree n and rank

n/2+1forn<9.

Corollary

Suppose G = A, of degree n. Let (G,S) be a string C-group with
S=A{po,-.-ypr—1}. If r > n/2+ 2, all subgroups G; must be intransitive.
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String C-group representations of alternating groups

The “Aveiro” theorem:
Theorem (Cameron, Fernandes, Leemans, Mixer, 2017)

The rank of A, is3 if n="5;4 ifn=9;5ifn=10; 6 if n =11 and | “5*|
if n > 12. Moreover, if n = 3,4,6,7 or 8, the group A, is not a string
C-group.

The proof of this result takes 39 pages and uses induction in some parts.
- 8 pages to refine our result on transitive groups and get to prove that all
the maximal parabolic subgroups must be intransitive if the conjecture is
false.

- 10 pages to handle the case where we assume there exists a 2-fracture
graph.

- 21 pages to handle the case where we assume no 2-fracture graph exists.
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Back to symmetric groups

Compiling the previous results, we get the following.
Corollary

If G is a transitive group of degree n having a string C-group of rank
r > (n+3)/2, then G is necessarily the symmetric group Sp,.
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String C-groups of high rank

S, |Rkn—1 | Rkn—2|Rkn—3| Rkn—4 | Rkn—5| Rkn—6
S 1 4

Se 1 4 2

S; 1 1 7 35

Ss 1 1 11 36 63

Sy 1 1 7 7 37 129
S0 1 1 7 13 52 203
Si1 1 1 7 9 25 43
Sio 1 1 7 9 40 75
S13 1 1 7 9 35 41
Si4 1 1 7 9 35 54
Sis 1 1 7 9 35 48
Si6 1 1 7 9 35 48

Table: The number of pairwise nonisomorphic string C-groups of rank n — k for
Spwithl1 < k<6andb5<n<16.
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String C-groups of high rank

Let S(n, r) be the set of all string C-group representations of rank r for
Sp. Define a relation ~ on S(n, r) x S(n, r) by saying that for any
elements P, Q € S(n,r), P ~ Q if and only if P is isomorphic to Q or to
the dual of Q. The relation ~ is an equivalence relation.
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String C-groups of high rank

Let %(n) = S(n,n — k)/ ~. The results of Fernandes-Leemans 2011 and
Fernandes-Leemans-Mixer 2018 give the following sequence.

|X1(n)| =1forn>5
|X2(n)| =1 forn>7
|23(n)| =7 forn>9
|Z*(n)| = 9 for n > 11

In addition, relying on computational results, it was conjectured that

|Z°(n)| = 35 for n > 13,
|Z%(n)| = 48 for n > 15, and
|Z7(n)| = 135 for n > 17.
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String C-groups of high rank

The Brussels Theorem:

Theorem (Cameron-Fernandes-Leemans 2024)

For each fixed integer k > 1, there exists an integer ¢, such that, for all
n>2k+3, |X%(n)| = cs.
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String C-groups of high rank

@ This theorem and the tools used in its proof, in particular the rank and
degree extension, imply that if one knows the string C-groups of rank
(n+3)/2 for S, with n odd, one can construct from them all string
C-groups of rank (n+ 3)/2 + k for S,k for any positive integer k.

@ The classification of the string C-groups of rank r > (n+ 3)/2 for S,
is thus reduced to classifying string C-groups of rank r for S;,_3.

Dimitri Leemans, ULB Geometry with MAGMA 13 February 2026 65 / 65



	anm1: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


