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Introduction

Francis Buekenhout

Buekenhout’s research group was interested in providing a unified
geometric interpretation of all finite simple groups, in the spirit of Jacques
Tits’ theory of buildings.
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Introduction

Experimental research using Cayley and then Magma since the
1980’s.

Data were collected in atlases and these atlases led to conjectures
that were proven later on theoretically.

A big emphasis was put on understanding the subgroup structure of
groups, something Magma can (finally) do very well.
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My journey with Cayley and Magma

Started using Cayley in 1993 and then Magma in 1997 (first visit in
Sydney).

1999 : implemented coset geometries and incidence geometries in the
Magma kernel.

2002 : new SubgroupLattice algorithm (implemented in 2004?)

2007 : improved SubgroupLattice algorithm using DegreeReduction –
not implemented ?

2012 : s-arc-transitive graphs and locally s-arc-transitive graphs.

2016 : (string) C-groups and C+-groups
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Incidence geometries

An incidence geometry Γ is a 4-tuple (X , ∗, t, I ) where

X = {elements of Γ also called varieties}
I = {types of the elements}
t : X → I : x → t(x) which is the type of the element x .

∗ = incidence relation, that is a relation which is symmetric and
reflexive on the varieties, and such that
∀x , y ∈ X , t(x) = t(y) and x ∗ y ⇒ x = y

( (X , ∗) is a n-partite graph called the incidence graph with n =| I | )
every maximal clique contains n elements.

| I | is the rank of the incidence geometry.
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Coset geometries

Theorem

(Tits, 1957) Let n be a positive integer. Let I := {1, . . . , n} be a finite set
and let G be a group together with a family of subgroups (Gi )i∈I . Let X
be the set consists of all cosets Gig, g ∈ G, i ∈ I . Let t : X → I be
defined by t(Gig) = i . Define an incidence relation ∗ on X × X by :

Gig1 ∗ Gjg2 iff Gig1 ∩ Gjg2 is non-empty in G.

Then the 4-tuple Γ := (X , ∗, t, I ) is an incidence structure having a
chamber. Moreover, the group G acts by right multiplication as an
automorphism group on Γ. Finally, the group G is transitive on the flags of
rank less than 3.
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Abstract regular polytopes
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Abstract regular polytopes

”Created by Lucas Vieira”
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Abstract regular polytopes
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Abstract regular polytopes

”Created by Jason Hise using Maya and Macromedia Fireworks.”
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Abstract regular polytopes

An abstract polytope (P,≤) is a poset satisfying four extra conditions:

the poset has a least face and a greater face;

each maximal chain of the poset has same length r + 2
(r will be called the rank);

a diamond condition;

a strong connectedness condition.

An abstract polytope is regular if its group of automorphisms is transitive
on the set of maximal chains (also called flags).
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Abstract regular polytopes

Figure: A Cube
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Abstract regular polytopes

Figure: A chain on the Cube consisting of a vertex, an edge containing that
vertex and a face containing the edge
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Abstract regular polytopes and String C-groups

There is a natural one-to-one correspondence between abstract regular
polytopes and string C-groups.
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String C-groups
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String C-groups
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String C-groups
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String C-groups

And the other way around ... use Jacques Tits algorithm to construct a
coset geometry and order the types.
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Abstract regular polytopes - problems

Given a family of groups (e.g. Sn), can we determine

1 what is the highest rank of an abstract regular polytope that has one
of the groups of the family as full automorphism group?

2 what are the possible ranks?

3 how many pairwise nonisomorphic polytopes are there?

4 ...
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What framework to take?

To solve the problems mentioned in the previous slide, we can choose to
work with

Posets with a set of extra axioms;

Coset geometries;

String C-groups.
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String C-groups

Definition

A C-group of rank r is a pair (G ,S) such that G is a group and
S := {ρ0, . . . , ρr−1} is a generating set of involutions of G that satisfy the
following property.

∀I , J ⊆ {0, . . . , r − 1}, ⟨ρi | i ∈ I ⟩ ∩ ⟨ρj | j ∈ J⟩ = ⟨ρk | k ∈ I ∩ J⟩

This property is called the intersection property and denoted by (IP).
We call any subgroup of G generated by a subset of S a parabolic
subgroup of the C -group (G ,S).
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String C-groups

Definition

A C-group (G ,S) of rank r is a string C-group if its set of generating
involutions S can be ordered in such a way that S := {ρ0, . . . , ρr−1}
satisfies

∀i , j ∈ {0, . . . , r − 1}, o(ρiρj) = 2 if |i − j | > 1

This property is called the string property and denoted by (SP).

Definition

For a given group G , we will call (G , S) a string C-group representation
of G provided it satisfies (SP) and (IP).
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How I decided to switch to these objects ?

2002 : Michael Hartley contacts me. He has found an abstract
regular polytope of type [5,3,5] whose automorphism group is J1.

I knew of the existence of this polytope thanks to a computer search
of 1997.

We decided to study that polytope and found something quite special.
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Coxeter groups

Coxeter group of type [5,3,5]

By Roice3 - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=30348631
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How I decided to switch to these objects ?

The Coxeter group of type [5,3,5] is the finitely presented group

W =< a, b, c, d |a2, b2, c2, d2,
(a ∗ b)5, (a ∗ c)2, (a ∗ d)2, (b ∗ c)3, (b ∗ d)2, (c ∗ d)5 >.

+ (abc)5 = (bcd)5 = 1W gives L2(19) and Coxeter’s 57-cell.
(Coxeter, Geo. Ded. 1982)

+ (bcd)5 = 1W gives L2(19)× J1.
(Hartley, L., Math. Z. 2004)
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What groups to look at?

“Small” groups
Soluble groups
Nilpotent groups

2-groups
Simple groups
Sporadic groups

Almost simple groups
Non-solvable groups

etc.
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What groups to look at?

Hartley decided to focus on small groups

I decided to focus on small almost simple groups
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Small groups

Groups of even order ≤ 2000

#groups : 49,910,526,325
#soluble groups : 49,910,525,301
#non-solvable groups : 1024
#abstract regular polytopes with soluble aut. group (Conder) : 4968
#abstract regular polytopes with non-solvable aut. group : 878
Ratio 0.000009% (for soluble) VS 85% (for non-solvable)
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String C-group representations of 2-groups

A 2-group is a finite group whose order is a power of 2.
Most groups are 2-groups.
49,910,526,325 - 412,607,930 = 49,497,918,395 2-groups
(99,17% of 2-groups among the groups of even order less than 2001)
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String C-group representations of 2-groups

2-groups are also important for abstract regular polytopes as they give the
smallest examples of a given rank n > 8.
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String C-group representations of 2-groups

Theorem (Conder, 2013)

Let Fn be the number of flags in a regular polytope of rank n. Then a
lower bound for Fn is given by Fn ≥ 2 · 4n−1 for all n ≥ 9, and this bound
is attained by a family of tight polytopes of type {4| . . . |4}, one for each n.
For rank n ≤ 8, the fewest flags occur for regular n-polytopes as follows:

n min(Fn) Type(s) attaining the lower bound

2 6 {3}
3 24 {3|3}, {3|4} (and dual {4|3})
4 96 {4|3|4}
5 432 {3|6|3|4} (and dual {4|3|6|3})
6 1 728 {4|3|6|3|4}
7 7 776 {3|6|3|6|3|4} (and dual {4|3|6|3|6|3})
8 31 104 {4|3|6|3|6|3|4}
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String C-group representations of 2-groups

The Frattini subgroup Φ(G ), of a finite group G is the intersection of all
maximal subgroups of G .
Let G be a finite p-group for a prime p, and set ℧1(G ) = {gp | g ∈ G}.

Theorem (Burnside Basis Theorem)

Let G be a p-group and |G : Φ(G )| = pd .

(1) G/Φ(G ) ∼= Zd
p . Moreover, if N ◁ G and G/N is elementary abelian,

then Φ(G ) ≤ N.

(2) Every minimal generating set of G contains exactly d elementsa.

(3) Φ(G ) = G ′℧1(G ). In particular, if p = 2, then Φ(G ) = ℧1(G ).

ad is called the rank of G and denoted by d(G).
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String C-group representations of 2-groups

Corollary (Hou, Feng, L., 2019)

A given 2-group has only string C-group representations with a fixed rank,
that is, the rank of the 2-group.
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String C-group representations of PSL(2, q) groups
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String C-group representations of PSL(2, q) groups

Theorem (Schulte - L., 2007)

The maximum rank of a string C-group representation of PSL(2, q) is 4
and only happens when q = 11 or 19.

The corresponding polytopes are

the 11-cell of Grunbaüm of type [3,5,3], and

the 57-cell of Coxeter of type [5,3,5].
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String C-group representations of sporadic groups

G Order of G Rank 3 Rank 4 Rank 5

M11 7,920 0 0 0
M12 95,040 23 14 0
M22 443,510 0 0 0
M23 10,200,960 0 0 0
M24 244,823,040 490 155 2

J1 175,560 148 2 0
J2 604,800 137 17 0
J3 50,232,960 303 2 0

HS 44,352,000 252 57 2
McL 898,128,000 0 0 0
He 4,030,387,200 1188 76 0
Ru 145,926,144,000 21594 227 0
Suz 448,345,497,600 7119 257 13
O ′N 460,815,505,920 6536 31 0
Co3 495,766,656,000 21118 1746 44
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String C-group representations of symmetric groups

E. H. Moore (1896) : (n − 1)-simplex.

Theorem (Moore, 1896)

For every n ≥ 3, there is a string C-group representation of Sn in its
natural permutation representation, of rank n − 1 whose generating
involutions are the transpositions (i , i + 1) with i = 1, . . . , n − 1.
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String C-group representations of symmetric groups

Proposition (Whiston, 2000)

The size of an independent set in Sn is at most n − 1, with equality only if
the set generates the whole group Sn.
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String C-group representations of symmetric groups

Sjerve and Cherkassoff (1993) (see also Conder 1980): Sn is a group
generated by three involutions, two of which commute, provided that
n ≥ 4.

Theorem (“Moore, Sjerve, Cherkassoff, Conder”)

Every group Sn with n ≥ 4 has a string C-group representation of rank
three and one of rank n − 1.
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String C-group representations of symmetric groups

G Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

S5 4 1 0 0 0 0
S6 2 4 1 0 0 0
S7 35 7 1 1 0 0
S8 68 36 11 1 1 0
S9 129 37 7 7 1 1

Source: http://leemans.dimitri.web.ulb.be/∼dleemans/polytopes
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

For n ≥ 5 or n = 3, Moore’s generators give, up to isomorphism, the
unique string C-group representation of rank n− 1 for Sn. For n = 4, there
are, up to isomorphism and duality, two representations, namely the ones
corresponding to the hemicube and the tetrahedron.
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

For n ≥ 7, there exists, up to isomorphism and duality, a unique string
C-group representation of rank (n − 2) for Sn.
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String C-group representations of symmetric groups

Theorem (Fernandes, Leemans, 2011)

Let n ≥ 4. For every r ∈ {3, . . . , n − 1}, there exists at least one string
C-group representation of rank r for Sn.
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String C-group representations of symmetric groups

Let {ρ0, . . . , ρr−1} be a set of involutions of a permutation group G of
degree n. We define the permutation representation graph G as the
r -edge-labeled multigraph with n vertices and with a single i-edge {a, b}
whenever aρi = b with a ̸= b.
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String C-group representations of symmetric groups

Generators Permutation representation Schläfli type

(1,2),(2,3),(3,4),(4,5),(5,6),(6,7) �������� 1 �������� 2 �������� 3 �������� 4 �������� 5 �������� 6 �������� {3,3,3,3,3}
(1,2),(2,3),(3,4),(4,5)(6,7),(5,6) �������� 1 �������� 2 �������� 3 �������� 4 �������� 5 �������� 4 �������� {3,3,6,4}
(1,2),(2,3),(3,4)(5,6),(4,5)(6,7) �������� 1 �������� 2 �������� 3 �������� 4 �������� 3 �������� 4 �������� {3,6,5}
(1,2),(2,3)(4,5)(6,7),(3,4)(5,6) �������� 1 �������� 2 �������� 3 �������� 2 �������� 3 �������� 2 �������� {6,6}

Table: The induction process used on S7
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String C-group representations of symmetric groups

Number of representations, up to duality, for Sn (5 ≤ n ≤ 14)

G\r 3 4 5 6 7 8 9 10 11 12 13
S5 4 1 0 0 0 0 0 0 0 0 0
S6 2 4 1 0 0 0 0 0 0 0 0
S7 35 7 1 1 0 0 0 0 0 0 0
S8 68 36 11 1 1 0 0 0 0 0 0
S9 129 37 7 7 1 1 0 0 0 0 0
S10 413 203 52 13 7 1 1 0 0 0 0
S11 1221 189 43 25 9 7 1 1 0 0 0
S12 3346 940 183 75 40 9 7 1 1 0 0
S13 7163 863 171 123 41 35 9 7 1 1 0
S14 23126 3945 978 303 163 54 35 9 7 1 1
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String C-group representations of symmetric groups
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String C-group representations of symmetric groups

Theorem (Fernandes-Leemans-Mixer, 2018)

For n ≥ 9, there exists, up to isomorphism and duality, seven string
C-group representations of rank (n − 3) for Sn.
For n ≥ 11, there exists, up to isomorphism and duality, nine string
C-group representations of rank (n − 4) for Sn.

Conjecture

Let r be a positive integer and n ≥ 2r + 3. The number of pairwise
nonisomorphic string C-group representations of rank n − r is independent
on n.

The sequence, depending on r , looks like 1, 1, 7, 9, 35, 48, 135, ...
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String C-group representations of alternating groups

What about alternating groups ?
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String C-group representations of alternating groups

G Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

A5 2 0 0 0 0 0
A6 0 0 0 0 0 0
A7 0 0 0 0 0 0
A8 0 0 0 0 0 0
A9 41 6 0 0 0 0

Source: http://leemans.dimitri.web.ulb.be/∼dleemans/polytopes
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String C-group representations of alternating groups

G Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

A5 2 0 0 0 0 0
A6 0 0 0 0 0 0
A7 0 0 0 0 0 0
A8 0 0 0 0 0 0
A9 41 6 0 0 0 0
A10 94 2 4 0 0 0
A11 64 0 0 3 0 0
A12 194 90 22 0 0 0
A13 1558 102 25 10 0 0
A14 4347 128 45 9 0 0
A15 5820 158 20 42 6 0

Source: http://leemans.dimitri.web.ulb.be/∼dleemans/polytopes
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String C-group representations of alternating groups

Theorem (Fernandes, Leemans, Mixer, 2012)

For each n /∈ {3, 4, 5, 6, 7, 8, 11}, there is a rank ⌊n−1
2 ⌋ string C-group

representation of the alternating group An.

We found a striking example! A11 has string C-group representations of
rank 3 and 6, but not 4 nor 5!
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String C-group representations of alternating groups

A conjecture arose thanks to the collected data and the struggle to
construct the above mentioned examples.

Conjecture

The highest rank of a string C-group representation of An is ⌊n−1
2 ⌋ when

n ≥ 12.
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String C-group representations of alternating groups

Strategy of the proof:

Take An the group of even permutations of n points.
First show that a string C-group representations of An of rank r > ⌊n−1

2 ⌋,
if it exists, must have all its maximal parabolic subgroups (that is the
subgroups generated by all but one generator) intransitive.
Then use this fact and permutation representation graphs to show that it
is impossible.
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String C-group representations of alternating groups

Theorem (Cameron, Fernandes, Leemans, Mixer, 2016)

Let Γ be a string C-group of rank r which is isomorphic to a transitive subgroup
of Sn other than Sn or An. Then one of the following holds:

1 r ≤ n/2;

2 n ≡ 2 mod 4, r = n/2 + 1 and Γ is C2 ≀ Sn/2. The generators are

ρ0 = (1, n/2 + 1)(2, n/2 + 2) . . . (n/2, n);

ρ1 = (2, n/2 + 2) . . . (n/2, n);

ρi = (i − 1, i)(n/2 + i − 1, n/2 + i) for 2 ≤ i ≤ n/2.

Moreover the Schläfli type is [2, 3, . . . , 3, 4].

3 Γ is transitive imprimitive and is one of the examples appearing in the next
Table.

4 Γ is primitive. In this case, Γ is obtained from the permutation representation
of degree 6 of S5 ∼= PGL2(5) and it is the 4-simplex of Schäfli type [3, 3, 3].
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String C-group representations of alternating groups

Degree Number Structure Order Schäfli type

6 9 S3 × S3 36 [2, 3, 3]

6 11 23 : S3 48 [2, 3, 3]
6 11 23 : S3 48 [2, 3, 4]

8 45 24 : S3 : S3 576 [3, 4, 4, 3]

Table: Examples of transitive imprimitive string C-groups of degree n and rank
n/2 + 1 for n ≤ 9.

Corollary

Suppose G = An of degree n. Let (G , S) be a string C-group with
S = {ρ0, . . . , ρr−1}. If r ≥ n/2 + 2, all subgroups Gi must be intransitive.
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String C-group representations of alternating groups

The “Aveiro” theorem:

Theorem (Cameron, Fernandes, Leemans, Mixer, 2017)

The rank of An is 3 if n = 5; 4 if n = 9; 5 if n = 10; 6 if n = 11 and ⌊n−1
2 ⌋

if n ≥ 12. Moreover, if n = 3, 4, 6, 7 or 8, the group An is not a string
C-group.

The proof of this result takes 39 pages and uses induction in some parts.
- 8 pages to refine our result on transitive groups and get to prove that all
the maximal parabolic subgroups must be intransitive if the conjecture is
false.
- 10 pages to handle the case where we assume there exists a 2-fracture
graph.
- 21 pages to handle the case where we assume no 2-fracture graph exists.
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Back to symmetric groups

Compiling the previous results, we get the following.

Corollary

If G is a transitive group of degree n having a string C-group of rank
r ≥ (n + 3)/2, then G is necessarily the symmetric group Sn.
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String C-groups of high rank

Sn Rk n − 1 Rk n − 2 Rk n − 3 Rk n − 4 Rk n − 5 Rk n − 6
S5 1 4
S6 1 4 2
S7 1 1 7 35
S8 1 1 11 36 68
S9 1 1 7 7 37 129
S10 1 1 7 13 52 203
S11 1 1 7 9 25 43
S12 1 1 7 9 40 75
S13 1 1 7 9 35 41
S14 1 1 7 9 35 54
S15 1 1 7 9 35 48
S16 1 1 7 9 35 48

Table: The number of pairwise nonisomorphic string C-groups of rank n − k for
Sn with 1 ≤ k ≤ 6 and 5 ≤ n ≤ 16.
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String C-groups of high rank

Let S(n, r) be the set of all string C-group representations of rank r for
Sn. Define a relation ∼ on S(n, r)× S(n, r) by saying that for any
elements P,Q ∈ S(n, r), P ∼ Q if and only if P is isomorphic to Q or to
the dual of Q. The relation ∼ is an equivalence relation.
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String C-groups of high rank

Let Σκ(n) = S(n, n − κ)/ ∼. The results of Fernandes-Leemans 2011 and
Fernandes-Leemans-Mixer 2018 give the following sequence.

|Σ1(n)| = 1 for n ≥ 5
|Σ2(n)| = 1 for n ≥ 7
|Σ3(n)| = 7 for n ≥ 9
|Σ4(n)| = 9 for n ≥ 11

In addition, relying on computational results, it was conjectured that

|Σ5(n)| = 35 for n ≥ 13,
|Σ6(n)| = 48 for n ≥ 15, and
|Σ7(n)| = 135 for n ≥ 17.
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String C-groups of high rank

The Brussels Theorem:

Theorem (Cameron-Fernandes-Leemans 2024)

For each fixed integer κ ≥ 1, there exists an integer cκ such that, for all
n ≥ 2κ+ 3, |Σκ(n)| = cκ.
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String C-groups of high rank

This theorem and the tools used in its proof, in particular the rank and
degree extension, imply that if one knows the string C-groups of rank
(n + 3)/2 for Sn with n odd, one can construct from them all string
C-groups of rank (n + 3)/2 + k for Sn+k for any positive integer k .

The classification of the string C-groups of rank r ≥ (n + 3)/2 for Sn
is thus reduced to classifying string C-groups of rank r for S2r−3.
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