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Integers, Residue Rings, and Fields

Rings of integers

▶ Integers()

Residue class rings

▶ Integers(n) creates Z/nZ
▶ This is a ring, not a field in general

Fields

▶ Rationals() for Q
▶ GF(p) for Fp

Z := Integers ();

Z12 := Integers (12);

Q := Rationals ();

F5 := GF(5);



Polynomial Rings

Univariate polynomial rings

▶ R<x> := PolynomialRing(R)

Multivariate polynomial rings

▶ R<x,y> := PolynomialRing(R,2)

Note

▶ Polynomial rings are exact rings.

▶ They are the basis for most constructions.

Z := Integers ();

R<x,y> := PolynomialRing(Z,2);



Fraction Fields and Rational Function Fields

For R an integral domain.

Field of fractions

▶ F<t> := FieldOfFractions(R)

Note FieldOfFractions does not explicitly construct the
inclusion R ↪→ Frac(R).

Z := Integers ();

ZX<x> := PolynomialRing(Z);

FieldOfFractions(ZX);

// Univariate rational function field

// over Integer Ring

// Variables: $.1

F<t> := FieldOfFractions(ZX);

F!x; // t



Subrings

R := Integers ();

S,f := sub < R | 2 >;

▶ Subrings are defined by generators

▶ The output has the inclusion map



Ideals

R<x,y> := PolynomialRing(Rationals(), 2);

I := ideal < R | x^2, y^2, x*y >;

Note:

R<x> := PolynomialRing(Integers(), 1);

// ERROR: coefficient ring must be a field

I := ideal < R | x^2 - 2 >;

// Works (symbolic quotient)

Q := quo < R | x^2 - 2 >;

▶ ideal<R|...> requires the coefficient ring to be a field

▶ Over Z, general ideal machinery is unavailable



Homomorphisms via Generators

Ring homomorphisms are defined as maps or by images of
generators

P<x> := PolynomialRing(Integers ());

R := quo < P | x^2 >;

S := Integers (4);

phi := hom < R -> S | 2 >; // x |-> 2

phi(x);

Kernel(phi);

Note: Relations are not checked

// x |-> 3 does NOT respect x^2 = 0

psi := hom < R -> S | 3 >;

psi(x^2) eq psi(x)^2; // false

▶ map<R->S|x :-> f(x)> defines a function

▶ No algebraic properties are checked



Ring Predicates in MAGMA

▶ IsCommutative(R)

▶ IsUnitary(R)

▶ IsFinite(R)

▶ IsOrdered(R)

▶ IsIntegralDomain(R)

▶ R eq S R ne S

▶ IsField(R)

▶ IsLocal(R)

▶ IsDivisionRing(R)

▶ IsEuclideanRing(R)

▶ IsMagmaEuclideanRing(R)

▶ IsPID(R)

▶ IsUFD(R)

▶ HasGCD(R)

▶ IsArtinian(R)

▶ IsNoetherian(R)

Euclidean Ring Distinction in MAGMA: IsEuclideanRing(R)
tests the mathematical property, while
IsMagmaEuclideanRing(R) checks if MAGMA can actually run
Euclidean algorithms.



Euclidean Rings in MAGMA

Note: A ring may be Euclidean in theory, but not ”computably
Euclidean” in MAGMA.

R<x> := PolynomialRing(Integers ());

Q := quo < R | x^2 - 2 >;

IsEuclideanRing(Q); //true

IsMagmaEuclideanRing(Q);// false

Explanation:

▶ Q = Z[x ]/(x2 − 2) is mathematically Euclidean. Hence
IsEuclideanRing(Q) returns true.

▶ MAGMA does not implement the necessary Euclidean
operations for this quotient. Therefore
IsMagmaEuclideanRing(Q) returns false.



Algebraic Extensions: the Polynomial x2 + 5

Let f (x) = x2 + 5.

1. Quotient Z[x ]/(x2 + 5)

Z := Integers ();

R<x> := PolynomialRing(Z);

Q := quo <R | x^2 + 5>;

Type(Q); // RngUPolRes

IsDomain(Q);

IsUFD(Q); //fails

IsPrime(Q!x); // fails



Algebraic Extensions: the Polynomial x2 + 5

2. Algebraic extensions Q(
√
−5) and Z[

√
−5]

K2<a> := ext <Rationals () | x^2 + 5>;

Type(K2); // FldNum

Za:= ext <Integers () | x^2 + 2>;

Type(Za); // RngOrd

K2 eq NumberField(x^2 + 5); // false

Note: Za<a> := ext<Integers() | x2 + 5>; ERROR

Possible solution:

Zx<x> := PolynomialRing(Integers ());

Za := ext <Integers () | x^2 + 5>;

a := Za.1; // a = 1

b := Za.2 // b = sqrt(-5)

alpha := 3 + 2*b;

IsPrime(alpha);

IsIrreducible(alpha);



Prime and Irreducible elements: number fields and ring of
integers

3. Number Field Q(
√
−5) and its ring of integers

Qx<x> := PolynomialRing(Rationals ());

K<a> := NumberField(x^2 + 5);

Type(K); // FldNum

OK:= Integers(K);

Type(OK); // RngOrd

If we now consider the integers,

OK := Integers(K);

p := OK!a;

IsIrreducible(p); // fails

IsPrime(p); // fails

I := ideal <OK | a>;

IsPrime(I); // works

IsMaximal(I); // fails



Local and Series Rings

p-adic fields

▶ pAdicField(p)

Power and Laurent series

▶ PowerSeriesRing(R)

▶ LaurentSeriesRing(R)

Note

▶ These are approximate rings with finite precision.



Free and Finitely Presented Algebras

Free associative algebras

▶ FreeAlgebra(R,n)

Finitely presented algebras

▶ Quotients of free algebras

k := GF(3);

F<x,y> := FreeAlgebra(k,2);

A := quo <F | x^2, y^2, x*y>;

▶ MatrixAlgebra(R,n)

Group algebras

▶ GroupAlgebra(R,G)



Jacobson radical

JacobsonRadical works for finite-dimensional algebras over fields.

M := MatrixAlgebra(Rationals () ,2);

X := M![1,0,0,0];

Y := M![0,1,0,0];

A := sub <M | X,Y>;

Dimension(A); // 2

JacobsonRadical(A);

// Matrix Algebra [ideal of A] of degree 2

// and dimension 1 over Rational Field

It fails for finitely presented algebras (even if finite-dimensional).

F<x,y> := FreeAlgebra(Rationals (),2);

B := quo <F |x^2,y^2,x*y-y*x>;

Dimension(B); // 4

JacobsonRadical(B); // fails:

// Runtime error in ’JacobsonRadical ’:

// Bad argument types Argument types given:

//AlgFP



Additive Group of a Ring

AdditiveGroup returns the additive group as an abelian group,
along with a map to the ring.

R := Integers (12);

A, phi := AdditiveGroup(R);

phi; // map from A to R

AdditiveGroup(Integers ());

// Abelian Group isomorphic to Z

AdditiveGroup(GF (16));

// Abelian Group isomorphic to

// Z/2 + Z/2 + Z/2 + Z/2

Note: It doesn’t work for infinite fields or polynomial rings.

AdditiveGroup(Rationals ()); //fails

P:= PolynomialRing(Integers ())

AdditiveGroup(P); // fails



Units of a Ring

R := Integers (12);

U, f:= UnitGroup(R);

f; // map from U to R

U<u,v> := UnitGroup(R);

Generators(U) eq {u,v}; // true

Note: It doesn’t work for infinite fields or polynomial rings.

UnitGroup(Rationals ()); // fails

Zx:= PolynomialRing(Integers ())

UnitGroup(Zx); // fails

Qx:= PolynomialRing(Rationals ())

UnitGroup(Qx); // fails



Units in Matrix Rings

M := MatrixRing(Integers (9), 2);

A := M![1,2,3,4];

IsUnit(A); //true

Inverse(A); // fails

A^-1; // works

UnitGroup(M); // fails

Note: UnitGroup is only available for matrices over finite fields.

UnitGroup(MatrixRing(Rationals (), 2););

// Runtime error:

// Base field for algebra must be finite

UnitGroup(MatrixRing(Integers (7), 2);); //fails

M := MatrixRing(GF(7), 2);

b, G := UnitGroup(M);//b=true , G=GL(2, GF(7))

G; // prints the group and the two generators

b, G<A,B>:= UnitGroup(M); // A, B are the gens



Changing the Base Ring

▶ Magma supports coercion between polynomial rings

P<x> := PolynomialRing(Integers(), 1);

Q<y> := PolynomialRing(Rationals(), 1);

f := P!(x^2 + 2);

g := Q!f; // Change base ring to Q

▶ ChangeRing allows base extension for algebras

k := FiniteField (3);

F<x,y> := FreeAlgebra(k, 2);

I := ideal < F | x^2, y^2, x*y >;

A := quo < F | I >;

L := FiniteField (9);

AL := ChangeRing(A, L);
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