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Integers, Residue Rings, and Fields

Rings of integers

> Integers()
Residue class rings

» Integers(n) creates Z/nZ

» This is a ring, not a field in general
Fields

» Rationals() for Q

» GF(p) for FFp,

Z := Integers();

Z12 := Integers (12);
Q := Rationals();

F5 := GF(5);




Polynomial Rings

Univariate polynomial rings

» R<x> := PolynomialRing(R)
Multivariate polynomial rings

» R<x,y> := PolynomialRing(R,2)
Note

» Polynomial rings are exact rings.

» They are the basis for most constructions.

Z := Integers();
R<x,y> := PolynomialRing(Z,2);




Fraction Fields and Rational Function Fields

For R an integral domain.
Field of fractions
» F<t> := FieldOfFractions(R)

Note FieldOfFractions does not explicitly construct the
inclusion R — Frac(R).

Z := Integers();
ZX<x> := PolynomialRing(Z);

FieldOfFractions (ZX);

// Univariate rational function field
// over Integer Ring

// Variables: $.1

F<t> := FieldOfFractions (ZX);
F'x; // t




Subrings

R := Integers();
S,f := sub< R | 2 >;

» Subrings are defined by generators
» The output has the inclusion map



Ideals

R<x,y> := PolynomialRing(Rationals (), 2);
I := ideal< R | x72, y~2, x*xy >;
Note:
R<x> := PolynomialRing(Integers(), 1);
// ERROR: coefficient ring must be a field
I := ideal< R | x72 - 2 >;
// Works (symbolic quotient)
Q := quo< R | x72 - 2 >;
> ideal<R|...> requires the coefficient ring to be a field

» Over Z, general ideal machinery is unavailable



Homomorphisms via Generators

Ring homomorphisms are defined as maps or by images of
generators

P<x> := PolynomialRing(Integers());
R := quo< P | x72 >;

S := Integers(4);

phi := hom< R -> 8 | 2 >; // x |-> 2
phi(x);

Kernel (phi);

Note: Relations are not checked

// x |-> 3 does NOT respect x"2 = 0
psi := hom< R -> S | 3 >;
psi(x~2) eq psi(x)"2; // false

» map<R->S|x :-> f(x)> defines a function

» No algebraic properties are checked



Ring Predicates in MAGMA

» IsCommutative(R) » IsDivisionRing(R)

» IsUnitary(R) » IsEuclideanRing(R)

> IsFinite(R) » IsMagmaEuclideanRing(R)
» IsOrdered(R) > IsPID(R)

> IsIntegralDomain(R) > IsUFD(R)

> RegS RnesSs > HasGCD(R)

> IsField(R) > IsArtinian(R)

> IsLocal(R) » IsNoetherian(R)

Euclidean Ring Distinction in MAGMA: IsEuclideanRing(R)
tests the mathematical property, while
IsMagmaFuclideanRing(R) checks if MAGMA can actually run
Euclidean algorithms.



Euclidean Rings in MAGMA

Note: A ring may be Euclidean in theory, but not "computably
Euclidean” in MAGMA.

R<x> := PolynomialRing(Integers());
Q := quo< R | x72 - 2 >;
IsEuclideanRing(Q); //true
IsMagmaEuclideanRing(Q);// false

Explanation:
» Q = Z[x]/(x? — 2) is mathematically Euclidean. Hence
IsEuclideanRing(Q) returns true.

» MAGMA does not implement the necessary Euclidean
operations for this quotient. Therefore
IsMagmaEuclideanRing(Q) returns false.



Algebraic Extensions: the Polynomial x*> + 5

Let f(x) = x? + 5.
1. Quotient Z[x]/(x? + 5)

Z := Integers();

R<x> := PolynomialRing(Z);
Q := quo<R | x72 + 5>;
Type (Q); // RngUPolRes
IsDomain (Q);

IsUFD(Q); //fails
IsPrime(Q'x); // fails




Algebraic Extensions: the Polynomial x*> + 5

2. Algebraic extensions Q(1/—5) and Z[v/—5]

K2<a> := ext<Rationals() | x~2 + 5>;
Type(K2); // FldNum
Za:= ext<Integers() | x72 + 2>;

Type(Za); // RngOrd
K2 eq NumberField(x~2 + 5); // false

Note: Za<a> := ext<Integers() | x4+ 5>;
Possible solution:

Zx<x> := PolynomialRing(Integers ());

Za := ext<Integers() | x"2 + 5>;

a := Za.l; // a =1

b := Za.2 // b = sqrt(-5)

alpha := 3 + 2xb;

IsPrime (alpha) ;

IsIrreducible (alpha);




Prime and Irreducible elements: number fields and ring of
integers

3. Number Field Q(1/—5) and its ring of integers

Qx<x> := PolynomialRing(Rationals ());
K<a> := NumberField(x~2 + 5);
Type (K) ; // FldNum

OK:=Integers (K);
Type (0K); // RngOrd

If we now consider the integers,

0K := Integers(K);

p := OK'a;
IsIrreducible(p); // fails
IsPrime(p); //fails

I := ideal<0K | a>;
IsPrime(I); // works
IsMaximal(I); // fails




Local and Series Rings

p-adic fields
» pAdicField(p)

Power and Laurent series
» PowerSeriesRing(R)
» LaurentSeriesRing(R)

Note

P> These are approximate rings with finite precision.



Free and Finitely Presented Algebras

Free associative algebras
» FreeAlgebra(R,n)
Finitely presented algebras

» Quotients of free algebras

k := GF(3);
F<x,y> := FreelAlgebra(k,2);
A := quo<F | x72, y~2, x*y>;

> MatrixAlgebra(R,n)
Group algebras
» GroupAlgebra(R,G)



Jacobson radical

JacobsonRadical works for finite-dimensional algebras over fields.

M := MatrixAlgebra(Rationals () ,2);
X := M'[1,0,0,0];

Y := M![0,1,0,0];

A := sub<M | X,Y>;

Dimension (A); // 2

JacobsonRadical (A);

// Matrix Algebra [ideal of A] of degree 2
// and dimension 1 over Rational Field

It fails for finitely presented algebras (even if finite-dimensional).

F<x,y> := FreeAlgebra(Rationals (),2);

B := quo<F [x72,y72,x*y-y*x>;

Dimension(B); // 4

JacobsonRadical(B); // fails:

// Runtime error in ’JacobsonRadical ’:

// Bad argument types Argument types given:
//AlgFP




Additive Group of a Ring

AdditiveGroup returns the additive group as an abelian group,
along with a map to the ring.

R := Integers(12);

A, phi := AdditiveGroup(R);
phi; // map from A to R
AdditiveGroup (Integers ());
//Abelian Group isomorphic to Z
AdditiveGroup (GF (16));

// Abelian Group isomorphic to
// Z/2 + Z/2 + Z/2 + Z/2

Note: It doesn't work for infinite fields or polynomial rings.

AdditiveGroup (Rationals ()); //fails

P:=PolynomialRing (Integers ())
AdditiveGroup(P); // fails




Units of a Ring

R := Integers(12);

U, f:= UnitGroup(R);

f; // map from U to R

U<u,v> := UnitGroup(R);
Generators (U) eq {u,v}; // true

Note: It doesn't work for infinite fields or polynomial rings.

UnitGroup (Rationals()); // fails
Zx:=PolynomialRing (Integers ())
UnitGroup(Zx); // fails
Qx:=PolynomialRing (Rationals ())
UnitGroup(Qx); // fails




Units in Matrix Rings

M := MatrixRing(Integers(9), 2);
A := M![1,2,3,4];

IsUnit (A); //true

Inverse (A); // fails

A~-1; // works
UnitGroup(M); //fails

Note: UnitGroup is only available for matrices over finite fields.

UnitGroup (MatrixRing(Rationals (), 2););
// Runtime error:
// Base field for algebra must be finite

UnitGroup (MatrixRing(Integers(7), 2););//fails
M := MatrixRing(GF(7), 2);

b, G := UnitGroup(M);//b=true, G=GL(2, GF (7))

G; // prints the group and the two generators

b, G<A,B>:= UnitGroup(M); // A, B are the gens




Changing the Base Ring

> Magma supports coercion between polynomial rings

P<x> := PolynomialRing(Integers(), 1);
Q<y> := PolynomialRing(Rationals (), 1);
f := PI(x"2 + 2);

g := Q!f; // Change base ring to Q

» ChangeRing allows base extension for algebras

k := FiniteField (3);

F<x,y> := FreelAlgebra(k, 2);

I := ideal< F | x72, y~2, x*xy >;
A := quo< F | I >;

L := FiniteField (9);

AL := ChangeRing(A, L);
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