A Lazard correspondence between post-Lie rings and skew braces

Senne Trappeniers March 26, 2025

Overview

- 1. The Lazard correspondence between Lie rings and groups.
- 2. Skew braces and post-Lie rings are the same structures, just living in different worlds.
- 3. When can we effectively use the Lazard correspondence to travel between these worlds?

Lie rings

Definition

A Lie ring is a triple $(\mathfrak{g}, +, [-, -])$ (henceforth simply denoted by \mathfrak{g}) such that $(\mathfrak{g}, +)$ is an abelian group and

$$\mathfrak{g}^2 \to \mathfrak{g}: (\mathbf{x}, \mathbf{y}) \mapsto [\mathbf{x}, \mathbf{y}],$$

is a biadditive skew symmetric operation on \mathfrak{g} satisfying the Jacobi identity, i.e. for all $x, y, z \in \mathfrak{g}$:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Some Lie theory

Let ${\boldsymbol{G}}$ be a Lie group and ${\mathfrak{g}}$ its associated Lie algebra, then the exponential map

 $\mathsf{exp}:\mathfrak{g}\to G$

restricts to a diffeomorphism of a neighbourhood of $0 \in U \subseteq \mathfrak{g}$ and $1 \in V \subseteq G$. The Baker-Campbell-Hausdorff formula is the formula that locally expresses the group structure of G in terms of \mathfrak{g} , i.e. for $x, y \in U$,

$$\exp(x)\exp(y)=\exp(\mathsf{BCH}(x,y)).$$

The BCH formula

The first few terms of the Baker–Campbell–Hausdorff formula are given by

$$\mathsf{BCH}(x,y) = x + y + \frac{1}{2}[x,y] + \frac{1}{12}([x,[x,y]] + [y,[y,x]]) + \dots$$

and ignoring the precise terms appearing we find the following coefficients for the first few degrees:

degree	1	2	3	4	5	6
denominator coefficient	1	2	12	24	720	1440

Lemma

The prime factors appearing in the denominator of the coefficients of degree n in the BCH formula never exceed n.

Lazard correspondence

Definition

A filtration on a Lie ring ${\mathfrak g}$ is a descending chain of ideals

$$\mathfrak{g} = \mathfrak{g}_1 \supseteq \mathfrak{g}_2 \supseteq \dots$$

such that $[\mathfrak{g}_i,\mathfrak{g}_j] \subseteq \mathfrak{g}_{i+j}$ for all $i,j \ge 1$.

Definition

A filtered Lie ring \mathfrak{g} is Lazard if

- $\mathfrak{g}_d = 0$ for some $d \ge 1$,
- for all *i*, *n* ≥ 1 such that the prime factors of *n* are at most *i* and for all *a* ∈ g_i, there exists a unique *b* ∈ g_i such that *nb* = *a*. We write *b* = ¹/_n*a*.

Lazard correspondence

Theorem (Lazard, 1954)

Let \mathfrak{g} be a Lazard Lie ring and $x, y \in \mathfrak{g}$, then BCH(x, y) is a well defined element in \mathfrak{g} and moreover \mathfrak{g} is a group for the operation BCH. We denote the resulting group $Laz(\mathfrak{g})$.

Some observations:

- The neutral element of Laz(g) is 0.
- ▶ If $x, y \in \mathfrak{g}$ commute, then BCH(x, y) = x + y.
- As a special case of the above, BCH(x, x) = 2x for all x ∈ g and more generally powers in Laz(g) correspond to multiples in g.

Lazard correspondence

Definition

A filtration on a group **G** is a descending chain of normal subgroups

$$G = G_1 \supseteq G_2 \supseteq \dots$$

such that $[G_i, G_j] \subseteq G_{i+j}$ for all $i, j \ge 1$.

Definition

A filtered group G is Lazard if

- ► G_d = 1 for some d ≥ 1,
- ▶ for all $i, n \ge 1$ such that the prime factors of n are at most i and for all $g \in G_i$, there exists a unique $h \in G_i$ such that $h^n = g$.

Lazard correspondence

Theorem (Lazard, 1954)

For every Lazard group **G** there exists a unique Lazard Lie ring \mathfrak{g} such that $\mathbf{Laz}(\mathfrak{g}) = \mathbf{G}$ and such that $\mathfrak{g}_i = \mathbf{G}_i$ for all *i*. In particular, we obtain a correspondence between Lazard Lie rings and Lazard groups.

Some examples of Lazard Lie rings and groups

 A nilpotent Lie algebra g over a field of characteristic 0 is Lazard for the filtration coming from its lower central series, i.e.

$$\mathfrak{g}_1=\mathfrak{g},\mathfrak{g}_2=[\mathfrak{g},\mathfrak{g}],\mathfrak{g}_3=[\mathfrak{g},\mathfrak{g}_2],...$$

A nilpotent (real or complex) Lie group G is Lazard for the filtration coming from its lower central series, i.e.

$$G_1 = G, G_2 = [G,G], G_3 = [G,[G,G]], \ldots$$

- ► A Lie ring of order pⁿ for some prime p is Lazard if it is nilpotent of class < p, with the filtration coming from its lower central series.
- A group of order pⁿ for some prime p is Lazard if it is nilpotent of class < p, with the filtration coming from its lower central series.

Lazard correspondence for Lie groups

As a special case we obtain:

Moreover, the Lie algebra associated to $\textbf{Laz}(\mathfrak{g})$ is isomorphic to $\mathfrak{g}.$

<

Lazard correspondence for finite groups

Let p be a prime and k < p. Within the context of finite group theory, the Lazard correspondence is usually meant to refer to the following special case:

$$\left\{ \begin{array}{l} \text{Lie rings of order } p^n \\ \text{and nilpotency class } k \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{groups of order } p^n \text{ and} \\ \text{nilpotency class } k \end{array} \right\} \\ \mathfrak{g} \mapsto \mathsf{Laz}(\mathfrak{g})$$

Newman, O'Brien, Vaughan-Lee (2004): classification of groups of order p^6 for $p \ge 5$ through Lie rings.

Skew braces

Definition

A skew (left) brace is a triple (A, \cdot, \circ) with A a set, (A, \cdot) and (A, \circ) group structures, and for all $a, b, c \in A$,

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c),$$

with a^{-1} the inverse in (A, \cdot) . If (A, \cdot) is abelian, then A is a brace

The holomorph of a group

Let (A, \cdot) be a group. We define the holomorph of (A, \cdot) as the semi-direct product

$$Hol(A, \cdot) := (A, \cdot) \rtimes Aut(A, \cdot).$$

So explicitly,

$$(\mathbf{a},\lambda)(\mathbf{b},\rho) = (\mathbf{a}\cdot\lambda(\mathbf{b}),\lambda\rho).$$

There is a natural action \star of $Hol(A, \cdot)$ on A, the affine action, given by

$$(a, \lambda) \star b = a \cdot \lambda(b).$$

Skew braces and regular subgroups of the holomorph

Proposition (Bachiller, 2016; Guarnieri, Vendramin, 2017)

Let (\mathbf{A}, \cdot) be a group. There exists a bijective correspondence between operations \circ making $(\mathbf{A}, \cdot, \circ)$ into a skew brace and regular (=simply transitive) subgroups of Hol (\mathbf{A}, \cdot) .

A subgroup G of $Hol(A, \cdot)$ is regular if and only if every element of A appears precisely once as the first component of an element in G.

Idea of the correspondence

From (*B*) we obtain a somewhat more symmetric condition by multiplying by a^{-1} on the left

$$a^{-1} \cdot (a \circ (b \cdot c)) = a^{-1} \cdot (a \circ b) \cdot a^{-1} \cdot (a \circ c).$$

If we define $\lambda_a(b) := a^{-1} \cdot (a \circ b)$ then this can be compactly written as

$$\lambda_a(\mathbf{b} \cdot \mathbf{c}) = \lambda_a(\mathbf{b}) \cdot \lambda_a(\mathbf{c}).$$

So λ_a is an automorphism of (\mathbf{A}, \cdot) , for any $\mathbf{a} \in \mathbf{A}$. The regular subgroup of $Hol(\mathbf{A}, \cdot)$ associated to this skew brace is then

$$\mathbf{G} = \{ (\mathbf{a}, \lambda_{\mathbf{a}}) \mid \mathbf{a} \in \mathbf{A} \}.$$

Post-Lie rings

Definition

A post-Lie ring is a pair (a, \triangleright) with a Lie ring and \triangleright a bilinear operation on a satisfying for all $x, y, z \in a$:

$$x \triangleright [y, z] = [x \triangleright y, z] + [y, x \triangleright z],$$

 $[x, y] \triangleright z = x \triangleright (y \triangleright z) - (x \triangleright y) \triangleright z - y \triangleright (x \triangleright z) + (y \triangleright x) \triangleright z.$

Definition

A post-Lie ring (a, \triangleright) such that a is abelian is a pre-Lie ring. Then the first equation is trivially satisfied and the second simplifies to:

$$x \triangleright (y \triangleright z) - (x \triangleright y) \triangleright z = y \triangleright (x \triangleright z) - (y \triangleright x) \triangleright z.$$

The affine Lie ring

Let \mathfrak{a} be a Lie ring. Recall that an additive map $\delta : \mathfrak{a} \to \mathfrak{a}$ is a *derivation* if for all $a, b \in \mathfrak{a}$:

$$\delta([a,b]) = [\delta(a),b] + [a,\delta(b)].$$

The derivations of \mathfrak{a} , denoted $\mathfrak{der}(\mathfrak{a})$, form a Lie ring for the commutator bracket

$$[\delta, \rho] = \delta \rho - \rho \delta.$$

The semi-direct sum $\mathfrak{aff}(\mathfrak{a}) = \mathfrak{a} \oplus \mathfrak{der}(\mathfrak{a})$ is the Lie ring with abelian group $\mathfrak{a} \oplus \mathfrak{der}(\mathfrak{a})$ and bracket

$$[(\mathbf{x},\delta),(\mathbf{y},\rho)] = ([\mathbf{x},\mathbf{y}] + \delta(\mathbf{y}) - \rho(\mathbf{x}), [\delta,\rho]),$$

for $\mathbf{x}, \mathbf{y} \in \mathfrak{a}, \delta, \rho \in \mathfrak{der}(\mathfrak{a}).$

A characterization of post-Lie rings

Proposition (Burde, Dekimpe, Vercammen, 2012)

Let \mathfrak{a} be a Lie ring. There is a bijective correspondence between operations \triangleright such that $(\mathfrak{a}, \triangleright)$ is a post-Lie ring and sub Lie rings \mathfrak{g} of $\mathfrak{aff}(\mathfrak{a}) = \mathfrak{a} \rtimes \mathfrak{der}(\mathfrak{a})$ such that the projection map

$$\mathfrak{g} \to \mathfrak{a} : (\mathbf{X}, \delta) \to \mathbf{X},$$

is a bijection.

Sub Lie rings of $\mathfrak{aff}(\mathfrak{a})$ that satisfy the above condition are called *t*-bijective.

Idea of correspondence

Let $(\mathfrak{a}, \triangleright)$ be a post-Lie ring and let \mathcal{L}_a denote the left multiplications $b \mapsto a \triangleright b$. Then

$$\mathfrak{g} := \{(a, \mathcal{L}_a) \mid a \in \mathfrak{a}\},\$$

is its associated *t*-bijective sub-Lie ring of $\mathfrak{aff}(\mathfrak{a})$.

Skew braces and post-Lie rings

Something to remember

Skew braces and post-Lie rings are the same structures, just living in different worlds.

Interplay between post-Lie rings and skew braces

Left and strong nilpotency

Definition

A post-Lie ring $(\mathfrak{a}, \triangleright)$ is

▶ left nilpotent if there exists some *n* such that $a_1 \triangleright (a_2 \triangleright (\dots \triangleright (a_{n-1} \triangleright a_n))) = 0$ for all $a_1, \dots, a_n \in \mathfrak{a}$.

strongly nilpotent if there exists some *n* such that every
 ⊳-product of length *n* is 0.

Left and strong nilpotency

In a skew brace $(\mathbf{A}, \cdot, \circ)$ we define an additional (non-associative) operation

$$\mathbf{a} * \mathbf{b} := \mathbf{a}^{-1} \cdot (\mathbf{a} \circ \mathbf{b}) \cdot \mathbf{b}^{-1} = \lambda_{\mathbf{a}}(\mathbf{b}) \cdot \mathbf{b}^{-1}.$$

Definition (Incorrect but captures the essence)

- A skew brace $(\mathbf{A}, \cdot, \circ)$ is
 - ▶ left nilpotent if there exists some n such that $a_1 * (a_2 * (\cdots * (a_{n-1} * a_n))) = 1$ for all $a_1, ..., a_n \in A$.
 - strongly nilpotent if there exists some *n* such that every
 *-product of length *n* is 1.

From skew braces to post-Lie rings

- Auslander (1977): Construction of a pre-Lie algebra starting from a regular affine action of a Lie group on \mathbb{R}^n .
- Iyudu (2020): Construction of associated graded pre-Lie ring of strongly nilpotent brace.
- Smoktunowicz (2022): Construction of pre-Lie ring starting from strongly nilpotent brace of order p^n with n .
- Burde, Dekimpe, Deschamps (2009); Bai, Guo, Sheng, Tang (2023): differentiation of post-Lie group (=skew brace on Lie groups) to obtain post-Lie algebra.

And back

- ► Agrachev, Gamkrelidze (1981): Construction of group of flows of a complete (≈strongly nilpotent) pre-Lie algebra, which yields a brace structure.
- Smoktunowicz (2022): Construction of a brace starting from a left nilpotent pre-Lie ring of order pⁿ with n
- ► Bai, Guo, Sheng, Tang (2023): formal integration of complete (≈strongly nilpotent + nilpotent underlying Lie algebra) post-Lie algebras to obtain a skew brace.

The finite case

Theorem (Smoktunowicz, 2022)

Let p be a prime and k, n . There is an (explicit) bijective correspondence

strongly nilpotent pre-Lie		strongly nilpotent braces `
rings of class at most k	$ angle \leftrightarrow \langle$	of class at most k and
and cardinality pⁿ		cardinality p ⁿ

- How necessary is strong nilpotency?
- To mimic the geometric approach, we ideally would like to relate der(a) and Aut(a) = Aut(Laz(a)), but in general neither are nilpotent, so definitely not Lazard.

A nice Lie ring of derivations

Proposition

Let \mathfrak{a} be a filtered Lie ring, then

$$\mathfrak{der}_f(\mathfrak{a}) := \{ \delta \in \mathfrak{der}(\mathfrak{a}) \mid \delta(\mathfrak{a}_i) \subseteq \mathfrak{a}_{i+1} \text{ for all } i \geq 1 \},$$

is a filtered Lie ring for the filtration

 $\mathfrak{der}_f(\mathfrak{a})_i := \{ \delta \in \mathfrak{der}(\mathfrak{a}) \mid \delta(\mathfrak{a}_i) \subseteq \mathfrak{a}_{i+i} \text{ for all } i \geq 1 \}.$

Moreover, if \mathfrak{a} is Lazard, then so is $\mathfrak{der}_f(\mathfrak{a})$.

A nice group of automorphisms

Proposition

Let A be a filtered group, then

 $\operatorname{Aut}_{f}(A) = \{ \phi \in \operatorname{Aut}(A) \mid \phi(a)a^{-1} \in A_{i+1} \text{ for all } a \in A_{i} \text{ and } i \geq 1 \},\$

is a filtered group for the filtration

 $\operatorname{Aut}_{f}(A)_{j} = \{ \phi \in \operatorname{Aut}(A) \mid \phi(a)a^{-1} \in A_{i+j} \text{ for all } a \in A_{i} \text{ and } i \geq 1 \}.$

Moreover, if A is Lazard, then so is $Aut_f(A)$.

Behaviour under Lazard correspondence

Theorem (T., 2024)

Let ${\mathfrak a}$ be a filtered Lie ring which is Lazard, then

$$\exp : \mathfrak{der}_f(\mathfrak{a}) \to \operatorname{Aut}_f(\operatorname{Laz}(\mathfrak{a})) : \delta \mapsto \exp(\delta),$$

is a bijection which yields an isomorphism of filtered groups

$$Laz(\mathfrak{der}_f(\mathfrak{a})) \cong Aut_f(Laz(\mathfrak{a})).$$

Interplay between post-Lie rings and skew braces

Filtered affine Lie ring

Lemma

Let ${\mathfrak a}$ be a filtered Lie ring. The semidirect sum

 $\mathfrak{aff}_f(\mathfrak{a}) := \mathfrak{a} \oplus \mathfrak{der}_f(\mathfrak{a}),$

is filtered with respect to the filtration

 $\mathfrak{aff}_f(\mathfrak{a})_i = \mathfrak{a}_i \oplus \mathfrak{der}_f(\mathfrak{a})_i.$

Moreover, if \mathfrak{a} is Lazard, then so is $\mathfrak{aff}_f(\mathfrak{a})$.

Interplay between post-Lie rings and skew braces

Filtered holomorph

Lemma

Let A be a filtered group. The semidirect product

 $\operatorname{Hol}_{f}(A) := A \rtimes \operatorname{Aut}_{f}(A),$

is filtered with respect to the filtration

 $\operatorname{Hol}_{f}(A)_{i} := A_{i} \rtimes \operatorname{Aut}_{f}(A)_{i}$

Moreover, if A is Lazard, then so is $Hol_f(A)$.

Behaviour under Lazard correspondence

Theorem (T, 2024)

Let \mathfrak{a} be a filtered Lie ring which is Lazard, then the exists an isomorphism of filtered groups

 $\gamma : \operatorname{Laz}(\mathfrak{aff}_f(\mathfrak{a})) \cong \operatorname{Hol}_f(\operatorname{Laz}(\mathfrak{a})),$

The map γ yields a bijective correspondence between t-bijective Lazard sub-Lie rings of $\mathfrak{aff}_f(\mathfrak{a})$ and regular Lazard subgroups of $Hol_f(Laz(\mathfrak{a}))$.

Lazard post-Lie rings and skew braces

Definition

A post-Lie ring $(\mathfrak{a}, \triangleright)$ on a Lazard Lie ring \mathfrak{a} is Lazard if its *t*-bijective sub Lie ring of $\mathfrak{aff}(\mathfrak{a})$ is a Lazard sub Lie ring of $\mathfrak{aff}_f(\mathfrak{a})$. We define Lazard skew braces in a similar way.

Theorem (T., 2024)

There exists a bijective correspondence between Lazard post-Lie rings and Lazard skew braces.

L-nilpotency

Let $(\mathbf{A}, \cdot, \circ)$ be a skew brace and define $L^1(\mathbf{A}) = \mathbf{A}$ and

$$L^{n+1}(\mathsf{A}) = \langle \mathsf{a} * \mathsf{b}, [\mathsf{a}, \mathsf{b}] \mid \mathsf{a} \in \mathsf{A}, \mathsf{b} \in L^n(\mathsf{A})
angle.$$

Proposition

A skew brace $(\mathbf{A}, \cdot, \circ)$ with $|\mathbf{A}| = p^n$ is Lazard with respect to some filtration on \mathfrak{a} if and only if $L^p(\mathbf{A}) = 1$.

Definition

If there exists some k such that $L^{k+1}(A) = \{1\}$, then A is *L*-nilpotent. If k is minimal, then A is *L*-nilpotent of class k.

A Lazard correspondence for post-Lie rings and skew braces

Theorem (T., 2024)

Let p be a prime, $n \geq 1$ and $1 \leq k < p$, then there exists a correspondence

$$\left\{\begin{array}{l} \mathsf{post-Lie\ rings\ of\ order\ } p^n\\ \mathsf{and\ } L\text{-nilpotency\ class}\\$$

which restricts to

L-nilpotent post-Lie rings
$$\left\{ \begin{array}{c} \text{L-nilpotent post-Lie rings} \\ \text{of order } p^k \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \text{skew braces of order } p^k \end{array} \right\}.$$

Thank you!