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Quantum Yang-Baxter equation

Let V be a vector space over a field F. Let R : V ⊗ V → V ⊗ V be
a F-linear map and Rij denotes the map V ⊗ V ⊗ V → V ⊗ V ⊗ V
that acts as R on the (i , j)-th tensor factors and as the identity on
the remaining third factor. Then R is called a solution to the
quantum Yang-Baxter equation (QYBE) if it satisfies the equation

R12 R13 R23 = R23 R13 R12.

The QYBE first appeared explicitly in the work of Yang [1967] and
Baxter [1972]. Nevertheless, the equation had been lurking in
several earlier works, known as the star-triangle relation or the
triangle equation.

The linear map T : V ⊗ V → V ⊗ V given by T (v ⊗ w) = w ⊗ v is
trivially a solution to the QYBE.

We can see that a linear map R : V ⊗ V → V ⊗ V is a solution to
the QYBE if and only if the map S = T R satisfies the Yang-Baxter
equation (YBE)

S12 S23 S12 = S23 S12 S23.

Since T is invertible, it follows that solutions to the QYBE are in
bijection with solutions to the YBE.



Set-theoretical solutions to YBE

Let X be a set and r : X × X → X × X a map satisfying the braid
relation

r12 r23 r12 = r23 r12 r23,

where rij : X × X × X → X × X × X acts as r on the (i , j)-th
factors and as the identity on the remaining third factor. Then the
pair (X , r) is called a set-theoretical solution to the YBE.

If X is a basis for a vector space V , then a set theoretic solution
(X , r) induces a solution to the YBE. In 1992, Vladimir Drinfeld
proposed the program to classify all set-theoretical solutions to the
YBE.

In what follows, we will focus on a specific class of solutions that are
intimately related to knots and links in the Euclidean 3-space.



Racks and quandles

Racks and quandles are algebraic structures with a binary operation
satisfying axioms modelled on the three Reidemeister moves of
planar diagrams of knots and links in the 3-space.

More precisely, a quandle is a non-empty set X with a binary
operation (x , y) 7→ x ∗ y satisfying the following axioms:

1 Idempotency: x ∗ x = x for all x ∈ X .
2 Invertibility: For any x , y ∈ X , there exists a unique z ∈ X such that

x = z ∗ y .
3 Self-Distributivity: (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x , y , z ∈ X .

A rack is a non-empty set X with a binary operation that satisfy the
invertibility and the self-distributivity axiom.

The invertibility and the self-distributivity axioms are equivalent to
the map Sy : X → X , given by Sy (x) = x ∗ y , being an
automorphism of X for each y ∈ X .

Racks and quandles give bijective non-degenerate set-theoretical
solutions to the YBE. In fact, if (X , ∗) is a rack, then the map
r : X × X → X × X given by r(x , y) = (y , x ∗ y) is such a solution
to the YBE.



Knots and links

A knot K is a smooth/piecewise linear embedding of a circle S1 into
R3.

Two knots K1 and K2 are said to be equivalent if K1 can be
transformed into K2 via an ambient isotopy.

More precisely, there exists a continuous mapping
H : R3 × [0, 1]→ R3 such that:

(i) for each t ∈ [0, 1], the map x 7→ H(x , t) is a homeomorphism of R3

onto itself

(ii) H(x , 0) = x for all x ∈ R3

(iii) H(K1, 1) = K2.

Links and their equivalence is defined analogously.

Roughly speaking, two knots/links are equivalent if we can turn one
into the other simply by wiggling, and not by cutting and gluing.



Examples of knots and links



Knot/link diagrams and Reidemeister moves

Fortunately, there is an easier way to study knots/links, simply as
4-valent graphs.
If K is a knot/link in R3, then its projection P on the xy -plane is
called a regular projection if the preimage of every point in P
consists of either one or two points of K .
If P is a regular projection of a knot/link K , then we define the
corresponding knot/link diagram D(K ) by redrawing P with a
broken arc at each crossing (place with two preimages in K ) to
incorporate the over/under crossing information.
Reidemeister proposed the following moves on knot/link diagrams:



Reidemeister’s Theorem

Theorem [Reidemeister, 1926]

Two knots/links are equivalent if and only if all of their link diagrams can
be deformed into each other by a finite sequence of the three
Reidemeister moves.



Quandle axioms vs Reidemeister moves

For each crossing of an oriented knot/link diagram, we set

The three quandle axioms are equivalent to the three Reidemeister
moves of knot/link diagrams.



Fundamental quandles of knots and links

If K is an oriented knot/link, then its fundamental quandle is
defined as

Q(K ) :=
〈
Arcs in D(K ) | R

〉
,

where the set of relations R consists of expressions x ∗ y = z
whenever the arc y passes over the double point separating x and z .

If L is a trivial n-component link, then Q(L) is the free quandle on n
generators.

Theorem [Matveev/Joyce, 1982]

Let K ′ and K be two oriented knots. Then K ′ is equivalent to either K or
−K∗ if and only if their fundamental quandles are isomorphic.



Constructions of quandles

Besides knot theory, quandles arise in various other settings.

If G is a group, then the binary operation x ∗ y = yxy−1 turns G
into a quandle Conj(G ), called the conjugation quandle of G .

If G is a group and ϕ ∈ Aut(G ) an automorphism of G , then the
binary operation a ∗ b = ϕ(ab−1)b gives a quandle structure on G .

If G is abelian and ϕ is the inversion map, then the preceding
quandle is called the core quandle and denoted by Core(G ). In
particular, if G is cyclic of order n, then it is the dihedral quandle Rn.

Let k be any commutative ring and X a free k-module equipped
with an antisymmetric bilinear form 〈−,−〉 : X × X → k. Then X
can be turned into a quandle when equipped with the binary
operation x ∗ y = x + 〈x , y〉y .

If L is a nilpotent Lie algebra of class 3, then it can be turned into a
quandle with the binary operation x ∗ y = x + [x , y ].

Let X be an algebraic variety, A a connected commutative algebraic
group and f : X × X → A a regular map with f (x , x) = 0 for all x .
Then the set X × A has a quandle variety structure with quandle
operation given by (x , a) ∗ (y , b) = (x , a + f (x , y)).



Quandle rings and algebras

Let (X , ∗) be a quandle and K an associative ring with unity 1. Let
ex be a unique symbol corresponding to each x ∈ X . Let K[X ] be
the set of all formal expressions of the form

∑
x∈X αxex , where

αx ∈ K such that all but finitely many αx = 0.

The set K[X ] has a free K-module structure with basis
{ex | x ∈ X} and admits a product given by(∑

x∈X

αxex
)(∑

y∈X

βyey
)

=
∑

x,y∈X

αxβyex∗y ,

where x , y ∈ X and αx , βy ∈ K. This turns K[X ] into a ring (rather
a K-algebra) called the quandle ring/algebra of X with coefficients
in K. The construction attempts to bring ring and representation
theoretic techniques to the subject.

Even though the coefficient ring K is associative, the quandle ring
K[X ] is non-associative when X is a non-trivial quandle. The
quandle X can be identified as a subset of K[X ] via the natural map
x 7→ 1ex = ex .



Augmentation map

Analogous to group rings, we define the augmentation map

ε : K[X ]→ K

by setting

ε
(∑
x∈X

αxex
)

=
∑
x∈X

αx .

Clearly, ε is a surjective ring homomorphism, and ∆K(X ) := ker(ε)
is a two-sided ideal of K[X ], called the augmentation ideal of K[X ].

Recall that, a quandle X is called trivial if x ∗ y = x for all x , y ∈ X .
The next result characterises trivial quandles in terms of their
augmentation ideals.

Theorem [With Bardakov-Passi, 2019]

Let X be a quandle and K an associative ring with unity. Then the
quandle X is trivial if and only if ∆2

K(X ) = {0}.



Idempotents in quandle rings

Units in group rings play a fundamental role in the structure theory
of group rings.

In contrast, it turns out that idempotents are the most natural
objects in quandle rings since each quandle element is, by definition,
an idempotent of the quandle ring.

In general, the computation of idempotents is an important problem
in ring theory. It is well-known that integral group rings do not have
non-trivial idempotents (Passman). In contrary, we shall see that
integral quandle rings of many non-trivial quandles possess
non-trivial idempotents.

Let X be a quandle and K an integral domain with unity. A
non-zero element u ∈ K[X ] is called an idempotent if u2 = u. Let

I
(
K[X ]

)
=
{
u ∈ K[X ] | u2 = u

}
.

denote the set of all idempotents of K[X ]. It is clear that the basis
elements {ex | x ∈ X} are idempotents of K[X ], and we refer them
as trivial idempotents.

A non-trivial idempotent is an element of K[X ] that is not of the
form ex for any x ∈ X .



Non-trivial idempotents in quandle rings

If X is a finite quandle having a subquandle Y with more than one
element such that |Y | is invertible in K. Then K[X ] has a
non-trivial idempotent.

In fact, a direct check shows that the element u = 1
|Y |
∑

y∈Y ey is a

non-trivial idempotent of K[X ].

If u ∈ K[X ] is an idempotent, then ε(u) = 0, 1.

Proposition

If T is a trivial quandle, then I(K[T]) = ex0 + ∆K(T), where x0 ∈ T is a
fixed element.



Quandle coverings

We exploit the idea of coverings [Eisermann, 2014] to determine
idempotents for large families of quandles.

A quandle homomorphism p : X → Y is called a quandle covering if
it is surjective and Sx = Sx′ whenever p(x) = p(x ′) for any
x , x ′ ∈ X .

Clearly, an isomorphism of quandles is a quandle covering, called a
trivial covering.

Some basic examples are:

A surjective group homomorphism p : G → H yields a quandle
covering Conj(G)→ Conj(H) if and only if ker(p) is a central
subgroup of G .
A surjective group homomorphism p : G → H yields a quandle
covering Core(G)→ Core(H) if and only if ker(p) is a central
subgroup of G of exponent two.
Let X be a quandle and F a non-empty set viewed as a trivial
quandle. Consider X × F with the product quandle structure
(x , s) ∗ (y , t) = (x ∗ y , s). Then the projection p : X × F → X given
by (x , s)→ x is a quandle covering.



Idempotents and quandle coverings

Let p : X → Y be a quandle covering, and F(Y ) the set of all finite
subsets of Y . For each y ∈ Y , let F(p−1(y)) be the set of all finite
subsets of p−1(y), and denote a typical element of this set by Iy .

Given elements x , y in a quandle X of finite type, we set

[ex ]y := ex + ex∗y + ex∗y∗y + · · ·+ ex ∗y ∗ y ∗ · · · ∗ y︸ ︷︷ ︸
(|Sy |−1) times

,

the sum of the basis elements in the Sy -orbit of ex .

Theorem [With Elhamdadi-Nunez-Swain, 2023]

Let X be a quandle of finite type and p : X → Y a non-trivial quandle covering.
If K[Y ] has only trivial idempotents, then the set of idempotents of K[X ] is

I
(
K [X ]

)
=

{∑
y∈J

( ∑
x∈Iy ,

∑
αx=0

αx [ex ]x0

)
+
( ∑

x′∈Iy0 ,
∑
αx′=1

αx′ ex′
) ∣∣

J ∈ F(Y ), Iy ∈ F(p−1(y)), Iy0 ∈ F(p−1(y0)),

x0 ∈ Iy0 , y0 ∈ Y , αx , αx′ ∈ K

}
.



Idea of the proof



Augmentation value of idempotents

Let p : X → Y be a non-trivial quandle covering such that K[Y ] has
only trivial idempotents. Then every idempotent of K[X ] has
augmentation value 1. On the other hand, we can check that the
idempotents of the mod 2 and the complex quandle ring of the
dihedral quandle R3 can have augmentation value 0 and 1 both.
A computer-assisted computations for quandles of order less than six
suggests the following conjecture.

Conjecture

Any non-zero idempotent of the integral quandle ring of a quandle has
augmentation value 1.

A direct check shows that integral quandle ring of R3 and R5 has
only trivial idempotents. A computer check for quandles of order
less than seven suggests the following conjecture.

Conjecture

The integral quandle ring of a semi-latin quandle has only trivial
idempotents. In particular, the integral quandle ring of a finite latin
quandle has only trivial idempotents.



Idempotents and free products

Let Xi = 〈Si | Ri 〉 be a collection of n ≥ 2 quandles given in terms
of presentations. Then their free product X1 ? X2 ? · · · ? Xn is the
quandle defined by the presentation

X1 ? X2 ? · · · ? Xn = 〈S1 t S2 t · · · t Sn | R1 t R2 t · · · t Rn〉.

For example, the free quandle FQn of rank n can be seen as

FQn = 〈x1〉 ? 〈x2〉 ? · · · ? 〈xn〉,

the free product of n copies of trivial one element quandles 〈xi 〉.

Theorem [With Elhamdadi-Nunez-Swain, 2023]

Let FQn be the free quandle of rank n ≥ 1. Then Z[FQn] has only trivial
idempotents. The same assertion holds for the free quandle of countably
infinite rank.

The key idea is to use a length function on the left-normalised
expressions of elements of free products of quandles.



An application to knots

Let L be a link in R3, Q(L) its fundamental quandle and X a
quandle. Then the number of quandle homomorphisms
|Hom(Q(L),X )| is an invariant of L, called the quandle coloring
invariant.

A link invariant which determines the quandle coloring invariant is
called an enhancement. Further, an enhancement is called proper if
there are examples in which the enhancement distinguishes links
which have the same quandle coloring invariant.

Let X and Y be quandles and Homalg

(
K[X ],K[Y ]

)
denotes the set

of K-algebra homomorphisms from K[X ] to K[Y ].

Theorem

If L is a link and X a quandle, then the pair(
|Hom

(
Q(L),X )|, |Homalg

(
K[Q(L)],K[X ]

)
|
)

is a proper enhancement of the quandle coloring invariant
|Hom(Q(L),X )|.



An application to knots

Consider the braid diagrams of links L1 and L2.

Then |Hom(Q(L1),R6)| = 12 = |Hom(Q(L2),R6)|, but
|Homalg

(
Z[Q(L1)],Z[R6]

)
| 6= |Homalg

(
Z[Q(L2)],Z[R6]

)
|.
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