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joint work

This talk is based on the following work with Kai Wang:

@ Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.



Plan

» |, Algebraic versions
> I, Infinity versions (or called homotopic versions)



1.1, Quantum Yang-Baxter equations and classical Yang-Baxter
equations

Definition
Let V be alinear space. AmatrixR: V® V — V ® Vs called a solution to quantum
Yang-Baxter equation (or R-matrix), that is, if R satisfies the following:

R12R13R23 = Ro3Ri3R12, NV VRV,

where the subscripts indicate which tensor factors are being utilized, for instance
Ri2 = R®idy and Ry3 = idy ®R.



1.1, Quantum Yang-Baxter equations and classical Yang-Baxter
equations

Definition (Belavin-Drinfel'd 1982)

Letgbealiealgebraandr=3";a; ® b; € g ® g. ris called a solution of classical
Yang-Baxter equation (CYBE) in g if CYBE(r) = 0, that is,

[r2, r13] + [M2, 23] + [r13, 23] = 0in U(g),

where U(g) is the universal enveloping algebra of g and
= a®beln=) alabin=> 10ab.
i i i
ris said to be skew-symmetric if
r=> (a®b —b®a)
i

We also denote rp1 = 37, b @ a;.

@ A.A. Belavin and V.G. Drinfel'd, Solutions of the classical Yang - Baxter equation for
simple Lie algebras, Functional Analysis and Its Applications. 16 (1982), 159-180.



1.1, The applications of classical Yang-Baxter equations

CYBE on matrix emerges from so called quasi-classical solutions to the quantum
Yang-Baxter equation, in which R-matrix admits an asymptotic expansion in terms of an
expansion parameter

Rh:I+hr+O(h2>,

where r € End(V) ® End(V) is a solution of CYBE.



1.2, Associative Yang-Baxter equations

Definition (Aguiar 2000)

Let Abeanalgebraandr = 3";a; ® bj € A® A. ris called a solution of associative
Yang-Baxter equation (AYBE) in A if AYBE(r) = 0, that is,

Mg M3 —r-M2+n3 ri3=0NARARA.



1.2, Associative Yang-Baxter equations

Definition (Aguiar 2000)

Let Abeanalgebraandr = 3";a; ® bj € A® A. ris called a solution of associative
Yang-Baxter equation (AYBE) in A if AYBE(r) = 0, that is,

Mg M3 —r-M2+n3 ri3=0NARARA.

Denote AYBE'(r) := —0(23)AYBE(r)o(_2;). When r is skew-symmetric (r = —r,) , then
AYBE'(r) posses a cyclic formula:

AYBE'(r) = r1p - a3 + 31 - 2 + a3 - I3,
and the AYBE implies the CYBE:
CYBE(r) = AYBE(r) + AYBE'(r).

@ M. Aguiar, Infinitesimal Hopf algebras, Contemp. Math. 267 (2000) 1-29.



1.2, AYBE on matrix algebras

Let V be a linear space. We have a isomorphism between matrices and double brackets:

End(V) ® End(V) = End(V®V)



1.2, AYBE on matrix algebras

Let V be a linear space. We have a isomorphism between matrices and double brackets:

R

End(V) ® End(V) = End(V®V)
r=> aeb — {--}



1.2, AYBE on matrix algebras

Let V be a linear space. We have a isomorphism between matrices and double brackets:
End(V) ® End(V) = End(V®V)
r=> aeb — {--}
i
Then the skew-symmetry for r is isomorphic to the double bracket satisfying:
Ha,b}} = —oaz{{b,a}}, vVa,b e V;
and the cyclic formula AYBE'(r) is isomorphic to the following Jacobi identity:
H= A= W+ oz l— = — B0 + ofug - = —Hhiops,

where {{—, =} (X1 ® X2 ® X3) := {{X1, X2 }} ® X3.



1.3, Double Lie algebras

Definition (Schedler 2009)

A double Lie algebra is a linear space equipped with a double bracket
{—-}}:VeV-oVeV

satisfying the following identities for all a,b,c € V
(i) Skew-symmetry:

{{a,b}} = —oa) {{b, a}}:
(i) Jacobi identity:

== PP +oam{— - B Piog, (123) aH{—H- }}}}LU(?Z%) =0

where {—, =} (x1 ® X2 ® X3) := {{X1,X2}} ® X3.



1.4, Double Poisson algebras

Definition (Van den Bergh 2008)

A double Poisson algebra is an associative algebra (A, -) equipped with a double Lie
algebra structure {{—, —}} satisfying the Leibniz rule: for alla,b,c € A

Ha,b-c}} = {{a,b}} -c+b-{a,c}}, (1

where

{{a,b}} - ¢ = fa, b3 @ ({a,b3 - ¢),
b-fa.ch = (b- fa.cH) © {{a,chl2.

@ M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008),
no. 11, 5711-5769.



1.4, Double Poisson algebras

Definition (Van den Bergh 2008)

A double Poisson algebra is an associative algebra (A, -) equipped with a double Lie
algebra structure {{—, —}} satisfying the Leibniz rule: for alla,b,c € A

fa,b-cly ={{a,b}}-c+b-{a,cl},

where

{{a,p}} - c = fa,bpM @ (Ha, b3 - ¢),
b-{a,cl = (b-{a,c}) ® {a,cp.

Michel Van Den Bergh
Vrije Universiteit Brussel
Mathematics

Mathematics & Data Science

1998 WlLlwbLIbb0L 2023
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V.1, Double Poisson algebras

Example (Van den Bergh 2008)

Put A = k|t]. Up to automorphisms of A, the only double Poisson brackets on A are given

by
) =te1-19t

and
.t =2t—txt?



V.1, Double Poisson algebras

Example (Van den Bergh 2008)
Put A = k|t]. Up to automorphisms of A, the only double Poisson brackets on A are given
by

{tth=te1-1t

and
.t =2t—txt?

Proposition
Let (V,{{—, —}}) be a double Lie algebra. Then S(V) is a Poisson algebra.



V.1, Double Poisson algebras

Example (Van den Bergh 2008)
Put A = k|t]. Up to automorphisms of A, the only double Poisson brackets on A are given

by
) =te1-19t

and
.t =2t—txt?

Proposition
Let (V,{{—, —}}) be a double Lie algebra. Then S(V) is a Poisson algebra.
The above proposition suggests that the dual space of a double Lie algebra can be
considered as a formal Poisson manifold.
M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008), no. 11,
5711-5769.



1.5, Rota-Baxter algebras

Definition
Let (A, -) be an algebra and M an A-module. A linear operator T : M — A is called a
relative Rota-Baxter operator on M if it satisfies the following relation: a,b € M,

T(a)-T(b)=T(a-T(b)+ T(a)-b). ()

In this case, the triple (A, M, T) is called a relative Rota-Baxter algebra. In particular, if
we take M = A, (A, -, T) is called a Rota-Baxter algebra.



1.5, Rota-Baxter algebras

Definition
Let (A, -) be an algebra and M an A-module. A linear operator T : M — A is called a
relative Rota-Baxter operator on M if it satisfies the following relation: a,b € M,

T(a)-T(b)=T(a-T(b)+ T(a)-b). ()

In this case, the triple (A, M, T) is called a relative Rota-Baxter algebra. In particular, if
we take M = A, (A, -, T) is called a Rota-Baxter algebra.

Example
Let f(x) € C(R) be a continuous function. Define integral as the Rota—Baxter operator

T(F)(x) = /0 “f(t)dt.

By the formula for integration by parts, we have

/0 “f(t)dt /0 “ g(t)dt = /0 “ft) /O " g(v)dvalt + /0 “9(0) /O fvydvat,

that is, Rota-Baxter operator.



1.5, Rota-Baxter algebras

Theorem (Aguiar 2000)

Let Abeanalgebraandr = 3";a; ® b; € A® A s a solution of AYBE". Then the operator
T:A — Agiven by

T(x) =) aixb;

is a Rota-Baxter operator.

@ M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000) 263-277.



1.6, Rota-Baxter algebras on on matrix algebras

Let V be finite-dimensional. We define a nature nondegenerate bilinear form by trace:
< f,g>=tr(fog), Vf,g € End(V).
Thus we have End(V) =2 End(V)", which induces the following isomorphisms:
End(V ® V) = End(V) ® End(V) = End(V) ® End(V)" 2 End(End(V)).
In this way, any double bracket
{--}B:VveoVv-oVeV
can be uniquely determined by a linear operator

T : End(V) — End(V).



1.6, Rota-Baxter algebras on on matrix algebras

Conversely, each linear operator T on End(V) corresponds the double bracket {{—, —}},

which can be expressed as follow:
{a, b}y =D TYV(e)(a) @ei(b) =D €(a) @ T(e)(b), abeV,
i=1 i=1

where {ey, ..., ey} is a basis of End(V), {€,. .., e} is the corresponding dual basis
with repsect to the trace form, and TV is the adjoint operator of T with respect to the
trace form.



1.6, Rota-Baxter algebras on on matrix algebras

Theorem
The following data are equivalent:

(i) Adouble Lie algebra structure {{—, —}} on V.

(i) Alinear operator T : End(V) — End(V) constitute a Rota-Baxter operator on
(End(V), o), with T cyclic, thatis TV = —T.

(iii) A skew-symmetric solution r € End(V) ® End(V) of the associative Yang-Baxter
equation.

@ M.E. Goncharov and P.S. Kolesnikov, Simple finite-dimensional double algebras, J.
Algebra 500 (2018), 425-438.



.7, Cyclic Rota-Baxter algebras

Definition
Let A be a finite dimensional algebra. We call that A is a symmetric algebra if there is a
nondegenerate symmetric bilinear form

<—,—>AxA—=k

satisfying
< a,bc >=< ab,c >=<ca,b > Va,b,c € A.

Definition (Q.-Wang 2025)

Let (A,-, < —,— >) be a symmetric algebra and T be a Rota-Baxter operator on A. We
say that T is a cyclic Rota-Baxter operator if T* = —T, where T* is the following
compositions:

v —1
T AL A I A 2
In this case, (A, -, T) is called a cyclic Rota-Baxter algebra.

@ Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.



1.1, A-algebras and A,.-bimodules

Definition
Let A = ®pczAn be a graded vector space equipped a family of maps
{mn : A®" — A},5q, with |mn| = n — 2 satisfying the Stasheff identity: foralln > 1,

S ) m o (19 om @ id®k) = 0. @
,'1’557;1

Then (A, {mp}s>1) is called an A -algebra (homotopy associative algebra).

19
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i+j+k=n,
1,k>0,i>1
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For small n, the Axs-algebra has the following:
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1.1, A-algebras and A,.-bimodules

Definition
Let A = ®pczAn be a graded vector space equipped a family of maps
{mn : A®" — A},5q, with |mn| = n — 2 satisfying the Stasheff identity: foralln > 1,

S ) m o (19 om @ id®k) = 0. @
,'1’557;1

Then (A, {mp}s>1) is called an A -algebra (homotopy associative algebra).
For small n, the Axs-algebra has the following:
(i) Whenn =1, my o my = 0, which implies (A, m) is a differential complex;
(i) whenn =2,
myomy =myo (M ®id+id ®@mq).
Thus, mq is a derivation with respect to my;
(i) whenn =3

mzo(id ®m2—m2®id) =m om3+m30(m1 ®id®id +id M @ id+id®id ®m1) s

thatis, (A, my,my) is a differential graded associative algebra up to homotopy.

19



1.1, A-algebras and A.-bimodule

Definition
Let (A, {mn}y>1) be an Ax-algebra. An A, -bimodule over A is a graded space

M = @ M, equipped with a family of homogeneous maps
nez
{mMp,q : AP @ M ® A®9 — M}, q>0 With [mp q| = p + q — 1 satisfying: forall p,q > 0,

Z (_1)i+(r+571)k+1mi+1,k+1 ° (id@i ®Mrs ® id®k)

i+r=p,s+k=q
ir,s,k=0

= Z (—1)Hj(p*i*jHJrq)mp,jH,q ° (id®i om; @ id®P— 1 @ idy ® id®q)
1<Sisp
0<i<p—j
ST (FNPHEHE T Dm, o (id®” ®idy ®id® @m; @ id®q—’—f).

1<SUsq
0<i<q—j



1.2, Cyclic operators and pre-Calabi-Yau structures

Now, we mainly work with the locally finite graded space, i.e., each component A; of
space A = ®jczA; is finite dimensional.

Definition

Let d be an integer. Let A be a graded space endowed with a graded symmetric bilinear
form ~ : A®2 — k of degree d. An operator m, : A®" — A is called d-cyclic if it satisfies

¥ (Mn (1, .- -, an) ,aq) = (—1)"*120 (S0 5 (my (ag, ..., 8n0_1) ,an) ,

for all homogeneous ag, . . .,an € A.

21



1.2, Cyclic operators and pre-Calabi-Yau structures

Now, we mainly work with the locally finite graded space, i.e., each component A; of
space A = ®jczA; is finite dimensional.

Definition
Let d be an integer. Let A be a graded space endowed with a graded symmetric bilinear
form ~ : A®2 — k of degree d. An operator m, : A®" — A is called d-cyclic if it satisfies

¥ (Mn (1, .- -, an) ,aq) = (—1)"*120 (S0 5 (my (ag, ..., 8n0_1) ,an) ,

for all homogeneous ag, . . .,an € A.
Letd € Z. Set 9yA = A @ s—9AV. There is a natural bilinear form, for all homogeneous
a,bcAandf,gc AV
CA : 8dA®8dA—>k
by
Ca(s ™%, a) = (=)l ¢y (@, s79F) = f(a),
and
CA(avb) = CA(Sidt Sidg) =0.

21



1.2, Cyclic operators and pre-Calabi-Yau structures

Definition

Let (A, {mn}n>1) be an Axs-algebra with a non-degenerate bilinear form ~ of degree d. If
each operator mp is d-cyclic with respect to the bilinear form ~, we say that (A, {mn}n>1)
is a d-cyclic A..-algebra. -

22



1.2, Cyclic operators and pre-Calabi-Yau structures

Definition
Let (A, {mn}n>1) be an Axs-algebra with a non-degenerate bilinear form ~ of degree d. If
each operator my is d-cyclic with respect to the bilinear form -, we say that (A, {mn}n>1)

is a d-cyclic A -algebra.

Example
Any symmetric algebra is a O-cyclic Asc-algebra.

22



1.2, Cyclic operators and pre-Calabi-Yau structures

Definition ( Kontsevich-Takeda-Vlassopoulos 2018)
A d-pre-Calabi-Yau structure on a graded space A = ®pczAn is:

> a(d — 1)-cyclic A structure on 8y4_4A w.r.t. the natural bilinear form (a,

» and such that A is an Asc-subalgebra of 84_1A.
A O-pre-Calabi-Yau algebra will be simply called a pre-Calabi-Yau algebra.



1.2, Cyclic operators and pre-Calabi-Yau structures

Definition ( Kontsevich-Takeda-Vlassopoulos 2018)

A d-pre-Calabi-Yau structure on a graded space A = ®pczAn is:
> a(d — 1)-cyclic A structure on 8y4_4A w.r.t. the natural bilinear form (a,
» and such that A is an Asc-subalgebra of 84_1A.

A O-pre-Calabi-Yau algebra will be simply called a pre-Calabi-Yau algebra.

Example ( Kontsevich-Takeda-Vlassopoulos 2018)

Let M be a compact oriented manifold of dimension d with compact boundary &M then
the cohomology H* (M) of M has the structure of a pre-Calabi-Yau algebra of dimension d.

@ M. Kontsevich, A. Takeda and Y. Vlassopoulos, Pre-Calabi-Yau algebras and topological
quantum field theories, European Journal of Mathematics 11, 15(2025).



Motivations

Theorem (lyudu-Kontsevich-Viassopoulos 2021)

The pre-Calabi-Yau structures of type B, whose terms of order higher than three are trivial,
are in one-to-one correspondence with the double Poisson brackets.

24
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Motivations

Theorem (lyudu-Kontsevich-Viassopoulos 2021)

The pre-Calabi-Yau structures of type B, whose terms of order higher than three are trivial,
are in one-to-one correspondence with the double Poisson brackets.

Theorem (Fernandez-Herscovich 2021)

The good manageable special pre-Calabi-Yau structures are in one-to-one correspondence
with the homotopy double Poisson algebras.

Theorem (Leray-Vallette 2023)

The pre-Calabi-Yau structures are equivalent to the homotopy double Poisson gebras.

Problem
What is the relation between homotopy Rota-Baxter algebras and pre-Calabi-Yau algebras?

24



1.3, Homotopy (relative) Rota-Baxter algebras

Definition (Das-Misha 2022, Wang-Zhou 2024)

Let (A, {m,—},-21) be an Aoo-a/gebra and (M, {m;’s},‘z-]y-]gsg,’) an Aso-bimodule over A. A
homotopy relative Rota-Baxter operator {T;}i>1 on (A, M) is a family of operators

T : M® — A i > 1satisfying:

6
> cUme(heen)=Y ¥
R+ +le=n, 1<jgp n+---+p=n,
[PI =1 Mooy p =1

(=1)"Tr 0 (id®" @M 1, 0T ® - @T,QdeT,,® - @T,)® id®k).

The triple (A, M, {T;}i>1) is called a homotopy relative Rota-Baxter algebra.

()



1.3, Homotopy (relative) Rota-Baxter algebras

Definition (Das-Misha 2022, Wang-Zhou 2024)

Let (A, {m,—},-21) be an Aoo-a/gebra and (M, {m;’s},‘z-]y-]gsg,’) an Aso-bimodule over A. A
homotopy relative Rota-Baxter operator {T;}i>1 on (A, M) is a family of operators
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(=1)"Tr 0 (id®" @M 1, 0T ® - @T,QdeT,,® - @T,)® id®k).

The triple (A, M, {T;}i>1) is called a homotopy relative Rota-Baxter algebra.
Moreover,
> If Too = (=1)58)T), for all ¢ € Sp, we call it skew-symmetric homotopy relative
Rota-Baxter algebra.



1.3, Homotopy (relative) Rota-Baxter algebras

Definition (Das-Misha 2022, Wang-Zhou 2024)

Let (A, {m,—},»21) be an Aoo-a/gebra and (M, {m;’s},‘z-]y-]gsg,') an Aso-bimodule over A. A
homotopy relative Rota-Baxter operator {T;}i>1 on (A, M) is a family of operators

T : M® — A i > 1satisfying:

> mee(Te0T) =3 > (5)

e tH=n, 1<<p it Hp=n,
[PI =1 Mooy p =1

(=1)"Tr 0 (id®" @M 1, 0T ® - @T,QdeT,,® - @T,)® id®k).

The triple (A, M, {T;}i>1) is called a homotopy relative Rota-Baxter algebra.
Moreover,
> If Too = (=1)58)T), for all ¢ € Sp, we call it skew-symmetric homotopy relative
Rota-Baxter algebra.
> IfM = A we call (A, {T;}i>1) homotopy Rota-Baxter algebra.



1.3, Homotopy (relative) Rota-Baxter algebras

In this paper, we mainly work with relative homotopy Rota-Baxter algebras on dual space

over dg algebras:
Take A to be a dg algebra and M = AV . In this case, the Rota-Baxter equation takes the

following explicit form:

daoTo+ > (-)"mo (T 1)

i+j=n
= Y ()" Tao (d® @dav @id®)
s+k+1=n
+ Y (R, (id®s am’ o (T) @ id) ® id®k>
s+k+j+1=n

+ >0 (=)SHENEEIT o (id®s @m” o (id ®T)) ® id®k) :
s+k+j+1=n



I1.4, Cyclic homotopy Rota-Baxter algebras and cyclic comple-
tion

Definition (Q.-Wang 2025)

Let A be a cyclic Ass-algebra with respect to a nondegenerate bilinear form~v : AQ A — k.

A homotopy Rota-Baxter operator {Tn}n>1 0n A is said to be cyclic if each operator
Tp : A®" — Alis cyclic. Then (A, {Th}n>1) is called a cyclic homotopy Rota-Baxter

algebra.

27



I1.4, Cyclic homotopy Rota-Baxter algebras and cyclic comple-
tion

Definition (Q.-Wang 2025)

Let A be a cyclic Ass-algebra with respect to a nondegenerate bilinear form~v : AQ A — k.
A homotopy Rota-Baxter operator {Tn}n>1 0n A is said to be cyclic if each operator

Tp : A®" — Alis cyclic. Then (A, {Th}n>1) is called a cyclic homotopy Rota-Baxter
algebra.

Moreover, if each operator Tp is cyclic and skew-symmetric, we call {Tn}n>1 an ultracyclic
homotopy Rota-Baxter operator and (A, {Tn},>1) an ultracyclic homotopy Rota-Baxter

algebra.

@ Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.

27



I1.4, Cyclic homotopy Rota-Baxter algebras and cyclic comple-
tion

We give a method to construct the cyclic homotopy Rota-Baxter algebras from
homotopy Rota-Baxter algebras, called the cyclic completion construction for
homotopy Rota-Baxter algebras.

Proposition (Q.-Wang 2025)
Let (A, {Tn}n>1) be a homotopy Rota-Baxter algebra. Define a family of operators {?,, Yo
on &pA as follows: for homogeneous elements (a1, f1), ..., (an,fn) € oA =A DAY,

Tn : (90A)®" = GpA
((a1,f1), ..., (an,n)) = ©)

n
(Tn(auu.,an),Z(—nonf,-orn(aj+1,..4,an,—,a1,..‘,a,«1)> :
j=1

Then (9oA, {?,, }n>1) is a cyclic homotopy Rota-Baxter algebra. Moreover, if {Tn}p>1 is
skew-symmetric, then {?,, }n>1is an ultracyclic homotopy Rota-Baxter operator on 9pA.



1.5, Cyclic homotopy relative Rota-Baxter algebras

Definition (Q.-Wang 2025)
Let A be an Ao -algebra. The operator {Tp : (AV)®" — A}, is called a cyclic homotopy
relative Rota-Baxter operators, if we can define the operators

Tt (80A)2" — (AV)®" 17y A <y oA, ¥n > 1.

such that (8gA, {Tn }n>1) is a cyclic homotopy Rota-Baxter algebra.

29



1.6, Left compatible pair (A, B) and B-derivative

Definition (Q.-Wang 2025)
A left compatible pair (A, B) consists of the following data:
(i) A pair of dg algebras (A, da, -) and (B,dg, *) .
(i) A dg left B-module structure on the complex (A, d,) and a left dg A-module structure

on the complex (B, dg). To distinguish between them, the left action of A on Bis
denoted by t>, while the left action of B on A is denoted by ».

(i) A compatibility condition ensuring that for all a € A, by, b, € B, the following identity
holds:
(by»a)>by = by * (a>by).



1.6, Left compatible pair (A, B) and B-derivative

Example

(1) Let A be adg algebra. Then (A, A) is a left compatible pair.

(2) Let(B,-) be a finite dimensional dg algebra. The graded space End(B) is a dg algebra
with multiplication being composition and B is a left dg End(B)-module in the
canonical way. Given an element b € B, one has a map I, € End(B), which takes
X € Bto bx. Then we have a left action of B on End(B) given as

b>f:=l,of,
which makes End(B) into a left dg B-module. Moreover, we have: for all b1, by € B,

f € End(B),
(I, © F)(b2) = by - (f(b2)).
Thus, (End(B), B) is a left compatible pair.



1.6, Left compatible pair (A, B) and B-derivative

Definition (Q.-Wang 2025)
Let (A, B) be a left compatible pair. An operator Tp : (AV)®" — A s called

(i) an n-derivation on left compatible pair (A, B), if for all by, by € B, and
fi---,fp e AV:

To(f ® - @fp)>(by b)) =Th(i ® - @ fh 4 b))>by + (Th(f Q- - ® fa) > by) * by;

(i) an (n,1)-derivation on left compatible pair (A, B), if for all by, b, € B, f; € BV, and
f27"' 7fn EAV:

To(k(brx by @)@ o @ - @ fa) = (=)™ (by > (Ta(k(br @ )@ F2 @ - ® 1)) )
+Ta(k(b1 @by > ) @H©® - @f);
(iii) an (n,I)-derivation on left compatible pair (A, B) with 1 < | < n, if for all by, by € B,
f/ € BVI andf17"' 7fl—'|)fl+'|7"' 7fn EAV
Th(h® Qfi-1Qkb1*b@f) @Fl1 Q-+ @ fy)
=Th(h @ - Qfi_1 b1 QKb @) RF 1 ® - Q)
+Th(h® - Qfi_1@kbi1®b2» i) Rfi1® - ®f),

where k : B BY — AV as k(b ® f)(a) = (=1)PIIfI+1aDf(a>b), forany b € B, f € BY
anda € A.



1.6, Left compatible pair (A, B) and B-derivative

Definition
Let (A, B) be a left compatible pair. A family of relative operators {Tp : (AV)®" — A};>1
is called

(i) a B-derivative if each Ty is an n-derivation.

(i) a strong B-derivative if each Ty is an n-derivation and (n, I)-derivation for each
1<I1<n

Proposition

Let (A, B) be a left compatible pair with B being locally finite dimensional. Then a cyclic
B-derivative operator {Ty : (AV)®" — A}, is a strong B-derivative operator.



1.1, Homotopy relative Rota-Baxter algebras and A, algebras

Lemma (Q.-Wang 2025)
Let (A, B) be a left compatible pair and (A, A, {Th}n>1) a strong B-derivative homotopy
relative Rota-Baxter algebra. Define a family of operations {mn}p>1 on &_1B as

(i) m =—ds_i8
(ii) the operation my is constrained to coincide with the associative product on B,
(i) foralln >1,b; € B,f; € BY,
Manst(b1, s~ Fi, b2, .., o, bpia) = (=) Ty (k(b1 ® 1), - . ., #6(bn @ f)) B> by,
(iii) foralln >1,b; € B,fi € B,
Mans1(s ™ fo, b1, s 1, o b, s ) = (1)1 s T o<iTy (15(b1 ® 1), . .., K(bn ® Fa))
(iv) mp vanishes in all other cases.
Then (0_1B, {mn}n>1) is an Axc-algebra.
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1.1, Homotopy relative Rota-Baxter algebras and A, algebras

Lemma (Q.-Wang 2025)

Let (A, B) be a left compatible pair and (A, A, {Th}n>1) a strong B-derivative homotopy
relative Rota-Baxter algebra. Define a family of operations {mn}p>1 on &_1B as

(i) m =—ds_i8
(ii) the operation my is constrained to coincide with the associative product on B,
(i) foralln >1,b; € B,f; € BY,
Manst(b1, s~ Fi, b2, .., o, bpia) = (=) Ty (k(b1 ® 1), - . ., #6(bn @ f)) B> by,
(iii) foralln >1,b; € B,fi € B,
Mans1(s ™ fo, b1, s 1, o b, s ) = (1)1 s T o<iTy (15(b1 ® 1), . .., K(bn ® Fa))
(iv) mp vanishes in all other cases.
Then (0_1B, {mn}n>1) is an Axc-algebra.

Remark
In particular, if (A,AY,{Tn}n>1) is @ homotopy relative Rota-Baxter algebra and B is a left
dg A-module, then (0_1B, {mn}n>1) is an Ac-algebra with trivial m,.
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1.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Theorem (Q.-Wang 2025)
Let (A,AY, {Tn}n>1) be @ homotopy relative Rota-Baxter algebra and B a left dg
A-module.
> [f the operator {Tn}n>1is a cyclic, then (B, {mn}n>1) is a good pre-Calabi-Yau
algebra with trivial my,



1.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Theorem (Q.-Wang 2025)
Let (A,AY, {Tn}n>1) be @ homotopy relative Rota-Baxter algebra and B a left dg
A-module.
> [f the operator {Tn}n>1is a cyclic, then (B, {mn}n>1) is a good pre-Calabi-Yau
algebra with trivial my,
» moreover, if (A, B) is a left compatible pair and {T;}i>1 is also B-derivative, then B is a
good manageable pre-Calabi-Yau algebra;



1.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Theorem (Q.-Wang 2025)
Let (A,AY, {Tn}n>1) be @ homotopy relative Rota-Baxter algebra and B a left dg
A-module.
> [f the operator {Tn}n>1is a cyclic, then (B, {mn}n>1) is a good pre-Calabi-Yau
algebra with trivial my,
» moreover, if (A, B) is a left compatible pair and {T;}i>1 is also B-derivative, then B is a
good manageable pre-Calabi-Yau algebra;
> furthermore, if the {Tn}n>1 IS also ultracyclic, then B is a good manageable special
pre-Calabi-Yau algebra.



1.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Corollary

In special case where B is finite dimensional, the above constructions, when restricted to End(B), give
rise to the following three bijections:

3 differentials d on B and cyclic relative homotopy
T Rota-Baxter operators on End(B)Y

good pre-Calabi-Yau algebras
{Mn}n>10n B with trivialm, |

5 differentials d on B and ultracyclic relative
2 homotopy Rota-Baxter operators on End(B)Y

N good special pre-Calabi-Yau algebras
{mn}n>10n B with trivial m, )

35 dg algebra structures (d, -) on B and ultracyclic B-derivative
8- relative homotopy Rota-Baxter operators on End(B)Y

N good manageable special pre-Calabi-Yau
algebras {mp}n>10nB :
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V.1, Homotopy double Poisson algebras

Definition (Schedler 2009)
» A DL.-algebra (homotopy double Lie algebra) is a graded space V = @pez V"

endowed with maps {{—, ..., —Fng1 : VT — v@+1 foralln > 0, where
{—, ..., —}}ny1 has degree n — 1, satisfying that:
(i) Double skew-symmetry:
o{{— o = Pano " =sen(@){{—. .., ~Pan, forall o € Spi;
(i) Double Jacobi -
STEWED ST sgn(o)e ({—- = H— - B B) o =0
i+j=n o€Cpyq

> A DP.-algebra (homotopy double Poisson algebra) is a graded algebra A, equipped
with a DL fa/gebra structure A satisfying the double Leibniz-rule: forn > 0, and
ap,...an,ay a7, €A
{ar,- - an, ;4374 }}n+‘l = {{ar,...,an, &) 1 Hni1an s

+(=1) (=134, a%)g 1{{31, ...,an, a;{+1 Bt
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V.1, Homotopy double Poisson algebras

Theorem (Q.-Wang 2025)

Let (V,{{{— ..., —Hn}n>1) be a homotopy double Lie algebra. Denote a family of
{In}p>4 on the graded symmetric space S(V), which satisfies: for all
u],...,u}q,...,uq,...,uﬂn cv

1
(U] uf, @@ U] uf ) i=(n = )1 > (G R (TANNTS T
1<q1<ky,...,1<qn <kn

—
n .

1 1. 0 1
{ugys---»ug, Bn -u1~-~uq1~~~uk1~~-uq-~~uqn U

Then (S(V), {In }n>1) is a homotopy Possion algebra. Thus VV can be considered as a
derived Poisson manifold.



V.2, Yang-Baxter-infinity equations

Definition (Schedler 2009)

Let A be a unitary graded associative algebra. A solution of associative
Yang-Baxter-infinity equation is a family of elements {r, € A®"} o>1 With each

[ra| = n — 2, satisfying: forn > 1,

Z (—1)uti Z Sgn(a_)r’ff(ﬂyff(Z)m.,a(i)r]g(i),a(i+1),a(i+2),...,a(n) —o.
i+j=n+1 o€Cp

Theorem (Schedler 2009)

Let V be a graded space. There is a bijection between the set of homotopy double Lie
algebra structures on V and the set of skew-symmetric solutions of the associative
Yang-Baxter-infinity equation on End(V).

@ T. Schedler, Poisson algebras and Yang-Baxter equations, Advances in quantum computation,
Contemp. Math., Contemp. Math., Amer. Math. Soc., Providence, RI, 482 (2009), 91-106.
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V.3, Homotopy double Lie algebras and pre-Calabi-Yau struc-
tures

Theorem (Fernandez-Herscovich 2021)
Let A = ®npezA" be a graded space. For a good manageable special pre-Calabi-Yau

structure {mn}n>1 0n A, one can define a family of maps
{{{= - = Pn - ABN = ABM} o by
(@ @) ({ar,..anBn) = 7 "G (Man1 (0,5 o, 30,87, 81) 571 .

Then the map determines a bijection

good manageable special pre-Calabi-Yau homotopy double Poisson algebra
structures {mn}p>10n A structures {{{—, ..., =Pn}tn>10n A
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V.4, Homotopy Rota-Baxter algebras and homotopy double
Poisson algebras

Theorem (Q.-Wang 2025)

Let (A,AY,{T;}i>1) be a finite dimensional ultracyclic relative homotopy Rota-Baxter

algebra and B a dg left A-module. We define a family of maps {{{—, ..., —}}n}n>1 as:
{-P1=dg:B—Bandforalln>1,

{{_7"'7_}}n+1 =y’ (idA®”)7 (7)
where

id®" T, ®n+1
W": End(A®") 2 ASN @ (AY) 31 8T AN O End(B) ST End(B5MY).

Then {{{—, ..., =}n}n>1 defines a homotopy double Lie algebra structure on B.
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V.4, Homotopy Rota-Baxter algebras and homotopy double
Poisson algebras

Theorem (Q.-Wang 2025)

Let (A,AY,{T;}i>1) be a finite dimensional ultracyclic relative homotopy Rota-Baxter

algebra and B a dg left A-module. We define a family of maps {{{—, ..., —}}n}n>1 as:
{-P1=dg:B—Bandforalln>1,

{{_7"'7_}}n+1 =y’ (idA®”)7 (7)
where

id®" T, ®n+1
W": End(A®") 2 ASN @ (AY) 31 8T AN O End(B) ST End(B5MY).

Then {{{—, ..., =}n}n>1 defines a homotopy double Lie algebra structure on B.
Moreover, if (A, B) is a left compatible pair and {T;}i>1 is B-derivative, then
{{{—,..., —}n}n>1 defines a homotopy double Poisson algebra structure on B.
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V, Conclusions

Algebra

Module

Cyclic homotopy Rota-Baxter algebras

Good pre-Calabi-Yau without product

Ultracyclic homotopy Rota-Baxter algebras

Homotopy double Lie algebras/ AYBEs

Ultracyclic homotopy Rota-Baxter algebras
+
{Ti}i>1 is B-derivative

Good manageable special pre-Calabi-Yau
/
Homotopy double Poisson algebras
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Thank you!
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