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joint work

This talk is based on the following work with Kai Wang:

Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.
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Plan

▶ I, Algebraic versions
▶ II, Infinity versions (or called homotopic versions)
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I.1, Quantum Yang-Baxter equations and classical Yang-Baxter
equations

Definition
Let V be a linear space. A matrix R : V ⊗ V → V ⊗ V is called a solution to quantum
Yang-Baxter equation (or R-matrix), that is, if R satisfies the following:

R12R13R23 = R23R13R12, in V ⊗ V ⊗ V,

where the subscripts indicate which tensor factors are being utilized, for instance
R12 = R⊗ idV and R23 = idV ⊗R.
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I.1, Quantum Yang-Baxter equations and classical Yang-Baxter
equations

Definition (Belavin-Drinfel’d 1982)
Let g be a Lie algebra and r =

∑
i ai ⊗ bi ∈ g⊗ g. r is called a solution of classical

Yang-Baxter equation (CYBE) in g if CYBE(r) = 0, that is,

[r12, r13] + [r12, r23] + [r13, r23] = 0 in U(g),

where U(g) is the universal enveloping algebra of g and

r12 =
∑

i

ai ⊗ bi ⊗ 1; r13 =
∑

i

ai ⊗ 1 ⊗ bi; r23 =
∑

i

1 ⊗ ai ⊗ bi.

r is said to be skew-symmetric if

r =
∑

i

(ai ⊗ bi − bi ⊗ ai)

We also denote r21 =
∑

i bi ⊗ ai.

A.A. Belavin and V.G. Drinfel’d, Solutions of the classical Yang - Baxter equation for
simple Lie algebras, Functional Analysis and Its Applications. 16 (1982), 159–180.
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I.1, The applications of classical Yang-Baxter equations

CYBE on matrix emerges from so called quasi-classical solutions to the quantum
Yang-Baxter equation, in which R-matrix admits an asymptotic expansion in terms of an
expansion parameter ℏ

Rℏ = I+ ℏr +O
(
ℏ2

)
,

where r ∈ End(V)⊗ End(V) is a solution of CYBE.
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I.2, Associative Yang-Baxter equations

Definition (Aguiar 2000)
Let A be an algebra and r =

∑
i ai ⊗ bi ∈ A⊗ A. r is called a solution of associative

Yang-Baxter equation (AYBE) in A if AYBE(r) = 0, that is,

r12 · r13 − r23 · r12 + r13 · r23 = 0 in A⊗ A⊗ A.

Denote AYBE′(r) := −σ(23)AYBE(r)σ
−1
(23). When r is skew-symmetric (r = −r21) , then

AYBE′(r) posses a cyclic formula:

AYBE′(r) = r12 · r23 + r31 · r12 + r23 · r31,

and the AYBE implies the CYBE:

CYBE(r) = AYBE(r) + AYBE′(r).

M. Aguiar, Infinitesimal Hopf algebras, Contemp. Math. 267 (2000) 1-29.
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I.2, AYBE on matrix algebras

Let V be a linear space. We have a isomorphism between matrices and double brackets:

End(V)⊗ End(V) ∼= End(V ⊗ V)

r =
∑

i

ai ⊗ bi → {{−,−}}.

Then the skew-symmetry for r is isomorphic to the double bracket satisfying:

{{a, b}} = −σ(12){{b, a}}, ∀a, b ∈ V;

and the cyclic formula AYBE′(r) is isomorphic to the following Jacobi identity:

{{−, {{−,−}}}}L + σ(123){{−, {{−,−}}}}Lσ−1
(123) + σ2

(123){{−, {{−,−}}}}Lσ−2
(123),

where {{−,−}}L(x1 ⊗ x2 ⊗ x3) := {{x1, x2}} ⊗ x3.
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I.3, Double Lie algebras

Definition (Schedler 2009)
A double Lie algebra is a linear space equipped with a double bracket

{{−,−}} : V ⊗ V → V ⊗ V

satisfying the following identities for all a, b, c ∈ V
(i) Skew-symmetry:

{{a, b}} = −σ(12){{b, a}};

(ii) Jacobi identity:

{{−, {{−,−}}}}L+σ(123){{−, {{−,−}}}}Lσ−1
(123)+σ2

(123){{−, {{−,−}}}}Lσ−2
(123) = 0,

where {{−,−}}L(x1 ⊗ x2 ⊗ x3) := {{x1, x2}} ⊗ x3.
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I.4, Double Poisson algebras

Definition (Van den Bergh 2008)
A double Poisson algebra is an associative algebra (A, ·) equipped with a double Lie
algebra structure {{−,−}} satisfying the Leibniz rule: for all a, b, c ∈ A

{{a, b · c}} = {{a, b}} · c+ b · {{a, c}}, (1)

where
{{a, b}} · c = {{a, b}}[1] ⊗ ({{a, b}}[2] · c),

b · {{a, c}} = (b · {{a, c}}[1])⊗ {{a, c}}[2].

M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008),
no. 11, 5711–5769.
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IV.1, Double Poisson algebras

Example (Van den Bergh 2008)
Put A = k[t]. Up to automorphisms of A, the only double Poisson brackets on A are given
by

{{t, t}} = t ⊗ 1 − 1 ⊗ t

and
{{t, t}} = t2 ⊗ t − t ⊗ t2.

Proposition
Let (V, {{−,−}}) be a double Lie algebra. Then S(V) is a Poisson algebra.
The above proposition suggests that the dual space of a double Lie algebra can be
considered as a formal Poisson manifold.

M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008), no. 11,
5711–5769.
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I.5, Rota-Baxter algebras

Definition
Let (A, ·) be an algebra and M an A-module. A linear operator T : M → A is called a
relative Rota-Baxter operator on M if it satisfies the following relation: a, b ∈ M,

T(a) · T(b) = T
(
a · T(b) + T(a) · b

)
. (3)

In this case, the triple (A,M, T) is called a relative Rota-Baxter algebra. In particular, if
we take M = A, (A, ·, T) is called a Rota-Baxter algebra.

Example
Let f(x) ∈ C(R) be a continuous function. Define integral as the Rota–Baxter operator

T(f)(x) =
∫ x

0
f(t)dt.

By the formula for integration by parts, we have∫ x

0
f(t)dt

∫ x

0
g(t)dt =

∫ x

0
f(t)

∫ t

0
g(v)dvdt +

∫ x

0
g(t)

∫ t

0
f(v)dvdt,

that is, Rota-Baxter operator.
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I.5, Rota-Baxter algebras

Theorem (Aguiar 2000)
Let A be an algebra and r =

∑
i ai ⊗ bi ∈ A⊗ A is a solution of AYBE’. Then the operator

T : A → A given by
T(x) =

∑
aixbi

is a Rota-Baxter operator.

M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000) 263-277.
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I.6, Rota-Baxter algebras on on matrix algebras

Let V be finite-dimensional. We define a nature nondegenerate bilinear form by trace:

< f, g >:= tr(f ◦ g), ∀f, g ∈ End(V).

Thus we have End(V) ∼= End(V)∨, which induces the following isomorphisms:

End(V ⊗ V) ∼= End(V)⊗ End(V) ∼= End(V)⊗ End(V)∨ ∼= End(End(V)).

In this way, any double bracket

{{−,−}} : V ⊗ V → V ⊗ V

can be uniquely determined by a linear operator

T : End(V) → End(V).
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I.6, Rota-Baxter algebras on on matrix algebras

Conversely, each linear operator T on End(V) corresponds the double bracket {{−,−}},
which can be expressed as follow:

{{a, b}} =
N∑
i=1

T∨(ei)(a)⊗ ei(b) =
N∑
i=1

ei(a)⊗ T(ei)(b), a, b ∈ V,

where {e1, . . . , eN} is a basis of End(V), {e1, . . . , eN} is the corresponding dual basis
with repsect to the trace form, and T∨ is the adjoint operator of T with respect to the
trace form.
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I.6, Rota-Baxter algebras on on matrix algebras

Theorem
The following data are equivalent:
(i) A double Lie algebra structure {{−,−}} on V.
(ii) A linear operator T : End(V) → End(V) constitute a Rota-Baxter operator on

(End(V), ◦), with T cyclic, that is T∨ = −T.
(iii) A skew-symmetric solution r ∈ End(V)⊗ End(V) of the associative Yang-Baxter

equation.

M.E. Goncharov and P.S. Kolesnikov, Simple finite-dimensional double algebras, J.
Algebra 500 (2018), 425–438.
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I.7, Cyclic Rota-Baxter algebras

Definition
Let A be a finite dimensional algebra. We call that A is a symmetric algebra if there is a
nondegenerate symmetric bilinear form

< −,− >: A× A → k

satisfying
< a, bc >=< ab, c >=< ca, b > ∀a, b, c ∈ A.

Definition (Q.-Wang 2025)
Let (A, ·, < −,− >) be a symmetric algebra and T be a Rota-Baxter operator on A. We
say that T is a cyclic Rota-Baxter operator if T∗ = −T, where T∗ is the following
compositions:

T∗ : A ρ−→ A∨ T∨−−→ A∨ ρ−1
−−→ A.

In this case, (A, ·, T) is called a cyclic Rota-Baxter algebra.

Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.
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II.1, A∞-algebras and A∞-bimodules

Definition
Let A = ⊕n∈ZAn be a graded vector space equipped a family of maps
{mn : A⊗n → A}n≥1 , with |mn| = n− 2 satisfying the Stasheff identity: for all n ≥ 1,∑

i+j+k=n,
i,k⩾0,j⩾1

(−1)i+jkmi+1+k ◦
(
id⊗i ⊗mj ⊗ id⊗k

)
= 0. (4)

Then (A, {mn}n≥1) is called an A∞-algebra (homotopy associative algebra).

For small n, the A∞-algebra has the following:
(i) When n = 1, m1 ◦m1 = 0, which implies (A,m1) is a differential complex;
(ii) when n = 2,

m1 ◦m2 = m2 ◦ (m1 ⊗ id+ id⊗m1) .

Thus, m1 is a derivation with respect to m2 ;
(iii) when n = 3

m2◦(id⊗m2−m2⊗id) = m1◦m3+m3◦(m1 ⊗ id⊗ id+ id⊗m1 ⊗ id+ id⊗ id⊗m1) ,

that is, (A,m1,m2) is a differential graded associative algebra up to homotopy.
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II.1, A∞-algebras and A∞-bimodule

Definition
Let (A, {mn}n≥1) be an A∞-algebra. An A∞-bimodule over A is a graded space
M =

⊕
n∈Z

Mn equipped with a family of homogeneous maps

{mp,q : A⊗p ⊗M⊗ A⊗q → M}p,q≥0 with |mp,q| = p+ q− 1 satisfying: for all p, q ⩾ 0,∑
i+r=p,s+k=q

i,r,s,k⩾0

(−1)i+(r+s−1)k+1mi+1,k+1 ◦
(
id⊗i ⊗mr,s ⊗ id⊗k

)

=
∑

1⩽j⩽p
0⩽i⩽p−j

(−1)i+j(p−i−j+1+q)mp−j+1,q ◦
(
id⊗i ⊗mj ⊗ id⊗p−i−j ⊗ idM ⊗ id⊗q

)

+
∑

1⩽j⩽q
0⩽i⩽q−j

(−1)p+i+1+j(q−i−j)mp,q−j+1 ◦
(
id⊗p ⊗ idM ⊗ id⊗i ⊗mj ⊗ id⊗q−i−j

)
.
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II.2, Cyclic operators and pre-Calabi-Yau structures

Now, we mainly work with the locally finite graded space, i.e., each component Ai of
space A = ⊕i∈ZAi is finite dimensional.

Definition
Let d be an integer. Let A be a graded space endowed with a graded symmetric bilinear
form γ : A⊗2 → k of degree d. An operator mn : A⊗n → A is called d-cyclic if it satisfies

γ (mn (a1, . . . , an) , a0) = (−1)n+|a0|(
∑n

i=1|ai|)γ (mn (a0, . . . , an−1) , an) ,

for all homogeneous a0, . . . , an ∈ A.

Let d ∈ Z. Set ∂dA = A⊕ s−dA∨. There is a natural bilinear form, for all homogeneous
a, b ∈ A and f, g ∈ A∨

ζA : ∂dA⊗ ∂dA → k

by
ζA(s−df, a) = (−1)|a||s

−df|ζA(a, s−df) = f(a),

and
ζA(a, b) = ζA(s−df, s−dg) = 0.
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II.2, Cyclic operators and pre-Calabi-Yau structures

Definition
Let (A, {mn}n⩾1) be an A∞-algebra with a non-degenerate bilinear form γ of degree d. If
each operator mn is d-cyclic with respect to the bilinear form γ , we say that (A, {mn}n≥1)
is a d-cyclic A∞-algebra.

Example
Any symmetric algebra is a 0-cyclic A∞-algebra.
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II.2, Cyclic operators and pre-Calabi-Yau structures

Definition ( Kontsevich-Takeda-Vlassopoulos 2018)
A d-pre-Calabi-Yau structure on a graded space A = ⊕n∈ZAn is:
▶ a (d − 1)-cyclic A∞ structure on ∂d−1A w.r.t. the natural bilinear form ζA ,
▶ and such that A is an A∞-subalgebra of ∂d−1A.

A 0-pre-Calabi-Yau algebra will be simply called a pre-Calabi-Yau algebra.
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Motivations

Theorem (Iyudu-Kontsevich-Vlassopoulos 2021)
The pre-Calabi-Yau structures of type B, whose terms of order higher than three are trivial,
are in one-to-one correspondence with the double Poisson brackets.

Theorem (Fernández-Herscovich 2021)
The good manageable special pre-Calabi-Yau structures are in one-to-one correspondence
with the homotopy double Poisson algebras.

Theorem (Leray-Vallette 2023)
The pre-Calabi-Yau structures are equivalent to the homotopy double Poisson gebras.

Problem
What is the relation between homotopy Rota-Baxter algebras and pre-Calabi-Yau algebras?
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II.3, Homotopy (relative) Rota-Baxter algebras

Definition (Das-Misha 2022, Wang-Zhou 2024)
Let (A, {mi}i≥1) be an A∞-algebra and (M, {m′

i,s}i≥1,1≤s≤i) an A∞-bimodule over A. A
homotopy relative Rota-Baxter operator {Ti}i≥1 on (A,M) is a family of operators
Ti : M⊗i → A, i ≥ 1 satisfying:∑

l1+···+lk=n,
l1,...,lk⩾1

(−1)δmk ◦
(
Tl1 ⊗ · · · ⊗ Tlk

)
=

∑
1⩽j⩽p

∑
r1+···+rp=n,
r1,...,rp⩾1

(5)

(−1)ηTr1 ◦
(
id⊗i ⊗m′

j−1,p−j ◦ (Tr2 ⊗ · · · ⊗ Trj ⊗ id⊗Trj+1 ⊗ · · · ⊗ Trp )⊗ id⊗k
)
.

The triple (A,M, {Ti}i≥1) is called a homotopy relative Rota-Baxter algebra.

Moreover,
▶ If Tnσ = (−1)sgn(σ)Tn , for all σ ∈ Sn , we call it skew-symmetric homotopy relative

Rota-Baxter algebra.
▶ If M = A, we call (A, {Ti}i≥1) homotopy Rota-Baxter algebra.
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II.3, Homotopy (relative) Rota-Baxter algebras

In this paper, we mainly work with relative homotopy Rota-Baxter algebras on dual space
over dg algebras:
Take A to be a dg algebra and M = A∨. In this case, the Rota-Baxter equation takes the
following explicit form:

dA ◦ Tn +
∑
i+j=n

(−1)1+im ◦
(
Ti ⊗ Tj

)
=

∑
s+k+1=n

(−1)n−1Tn ◦
(
id⊗s ⊗dA∨ ⊗ id⊗k

)
+

∑
s+k+j+1=n

(−1)s+(j−1)(i−s)Ti ◦
(
id⊗s ⊗m′l ◦ (Tj ⊗ id)⊗ id⊗k

)
+

∑
s+k+j+1=n

(−1)s+(j−1)(i−s+1)Ti ◦
(
id⊗s ⊗m′r ◦ (id⊗Tj)⊗ id⊗k

)
.
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II.4, Cyclic homotopy Rota-Baxter algebras and cyclic comple-
tion

Definition (Q.-Wang 2025)
Let A be a cyclic A∞-algebra with respect to a nondegenerate bilinear form γ : A⊗ A → k.
A homotopy Rota-Baxter operator {Tn}n⩾1 on A is said to be cyclic if each operator
Tn : A⊗n → A is cyclic. Then (A, {Tn}n⩾1) is called a cyclic homotopy Rota-Baxter
algebra.

Moreover, if each operator Tn is cyclic and skew-symmetric, we call {Tn}n⩾1 an ultracyclic
homotopy Rota-Baxter operator and (A, {Tn}n⩾1) an ultracyclic homotopy Rota-Baxter
algebra.

Y. Qin and K. Wang, From Cyclic Rota-Baxter algebras to Pre-Calabi-Yau algebras
and double Poisson algebras, in preparation.
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II.4, Cyclic homotopy Rota-Baxter algebras and cyclic comple-
tion

We give a method to construct the cyclic homotopy Rota-Baxter algebras from
homotopy Rota-Baxter algebras, called the cyclic completion construction for
homotopy Rota-Baxter algebras.

Proposition (Q.-Wang 2025)
Let (A, {Tn}n≥1) be a homotopy Rota-Baxter algebra. Define a family of operators {T̂n}n≥1
on ∂0A as follows: for homogeneous elements (a1, f1), . . . , (an, fn) ∈ ∂0A = A⊕ A∨ ,

T̂n : (∂0A)⊗n → ∂0A

((a1, f1), . . . , (an, fn)) 7→ (6)Tn(a1, . . . , an),
n∑

j=1

(−1)σn fj ◦ Tn(aj+1, . . . , an,−, a1, . . . , aj−1)

 .

Then (∂0A, {T̂n}n⩾1) is a cyclic homotopy Rota-Baxter algebra. Moreover, if {Tn}n≥1 is
skew-symmetric, then {T̂n}n≥1 is an ultracyclic homotopy Rota-Baxter operator on ∂0A.
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II.5, Cyclic homotopy relative Rota-Baxter algebras

Definition (Q.-Wang 2025)
Let A be an A∞-algebra. The operator {Tn : (A∨)⊗n → A}n⩾1 is called a cyclic homotopy
relative Rota-Baxter operators, if we can define the operators

Tn : (∂0A)⊗n ↠ (A∨)⊗n Tn−→ A ↪→ ∂0A, ∀n ≥ 1.

such that (∂0A, {Tn}n⩾1) is a cyclic homotopy Rota-Baxter algebra.



30

II.6, Left compatible pair (A,B) and B-derivative

Definition (Q.-Wang 2025)
A left compatible pair (A,B) consists of the following data:
(i) A pair of dg algebras (A, dA, ·) and (B, dB, ∗) .
(ii) A dg left B-module structure on the complex (A, dA) and a left dg A-module structure

on the complex (B, dB). To distinguish between them, the left action of A on B is
denoted by ▷, while the left action of B on A is denoted by ▶.

(iii) A compatibility condition ensuring that for all a ∈ A, b1, b2 ∈ B, the following identity
holds:

(b1▶a)▷b2 = b1 ∗ (a▷b2).
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II.6, Left compatible pair (A,B) and B-derivative

Example
(1) Let A be a dg algebra. Then (A,A) is a left compatible pair.
(2) Let (B, ·) be a finite dimensional dg algebra. The graded space End(B) is a dg algebra

with multiplication being composition and B is a left dg End(B)-module in the
canonical way. Given an element b ∈ B, one has a map lb ∈ End(B), which takes
x ∈ B to bx. Then we have a left action of B on End(B) given as

b ▷ f := lb ◦ f,

which makes End(B) into a left dg B-module. Moreover, we have: for all b1, b2 ∈ B,
f ∈ End(B),

(lb1 ◦ f)(b2) = b1 · (f(b2)).

Thus, (End(B),B) is a left compatible pair.
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II.6, Left compatible pair (A,B) and B-derivative

Definition (Q.-Wang 2025)
Let (A,B) be a left compatible pair. An operator Tn : (A∨)⊗n → A is called
(i) an n-derivation on left compatible pair (A,B), if for all b1, b2 ∈ B, and

f1 · · · , fn ∈ A∨ :
Tn(f1 ⊗ · · · ⊗ fn)▷(b1 ∗ b2) = Tn(f1 ⊗ · · · ⊗ fn ◀ b1)▷b2 + (Tn(f1 ⊗ · · · ⊗ fn) ▷ b1) ∗ b2;

(ii) an (n, 1)-derivation on left compatible pair (A,B), if for all b1, b2 ∈ B, f1 ∈ B∨ , and
f2, · · · , fn ∈ A∨ :

Tn
(
κ(b1 ∗ b2 ⊗ f1) ⊗ f2 ⊗ · · · ⊗ fn

)
= (−1)|Tn||b1|

(
b1 ▶

(
Tn

(
κ(b2 ⊗ f1) ⊗ f2 ⊗ · · · ⊗ fn

)))
+ Tn

(
κ
(
b1 ⊗ b2 ▶ f1

)
⊗ f2 ⊗ · · · ⊗ fn

)
;

(iii) an (n, l)-derivation on left compatible pair (A,B) with 1 < l ≤ n, if for all b1, b2 ∈ B,
fl ∈ B∨ , and f1, · · · , fl−1, fl+1, · · · , fn ∈ A∨ :

Tn
(
f1 ⊗ · · · ⊗ fl−1 ⊗ κ(b1 ∗ b2 ⊗ fl) ⊗ fl+1 ⊗ · · · ⊗ fn

)
= Tn(f1 ⊗ · · · ⊗ fl−1 ◀ b1 ⊗ κ(b2 ⊗ fl) ⊗ fl+1 ⊗ · · · ⊗ fn)
+ Tn(f1 ⊗ · · · ⊗ fl−1 ⊗ κ(b1 ⊗ b2 ▶ fl) ⊗ fl+1 ⊗ · · · ⊗ fn),

where κ : B⊗ B∨ → A∨ as κ(b⊗ f)(a) = (−1)|b|(|f|+|a|)f(a▷b), for any b ∈ B, f ∈ B∨

and a ∈ A.
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II.6, Left compatible pair (A,B) and B-derivative

Definition
Let (A,B) be a left compatible pair. A family of relative operators {Tn : (A∨)⊗n → A}n≥1
is called
(i) a B-derivative if each Tn is an n-derivation.
(ii) a strong B-derivative if each Tn is an n-derivation and (n, l)-derivation for each

1 ≤ l ≤ n.

Proposition
Let (A,B) be a left compatible pair with B being locally finite dimensional. Then a cyclic
B-derivative operator {Tn : (A∨)⊗n → A}n≥1 is a strong B-derivative operator.
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III.1, Homotopy relative Rota-Baxter algebras and A∞ algebras

Lemma (Q.-Wang 2025)
Let (A,B) be a left compatible pair and (A,A∨, {Tn}n≥1) a strong B-derivative homotopy
relative Rota-Baxter algebra. Define a family of operations {mn}n⩾1 on ∂−1B as
(i) m1 = −d∂−1B ,

(ii) the operation m2 is constrained to coincide with the associative product on B,
(ii) for all n ⩾ 1, bi ∈ B, fi ∈ B∨ ,

m2n+1(b1, s
−1f1, b2, . . . , s

−1fn, bn+1) = (−1)αnTn (κ(b1 ⊗ f1), . . . , κ(bn ⊗ fn)) ▷ bn+1,

(iii) for all n ⩾ 1, bi ∈ B, fi ∈ B∨ ,

m2n+1(s
−1f0, b1, s

−1f1, . . . , bn, s−1fn) = (−1)βns−1f0◁Tn (κ(b1 ⊗ f1), . . . , κ(bn ⊗ fn)) ,

(iv) mn vanishes in all other cases.
Then (∂−1B, {mn}n⩾1) is an A∞-algebra.

Remark
In particular, if (A,A∨, {Tn}n≥1) is a homotopy relative Rota-Baxter algebra and B is a left
dg A-module, then (∂−1B, {mn}n⩾1) is an A∞-algebra with trivial m2.
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III.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Theorem (Q.-Wang 2025)
Let (A,A∨, {Tn}n≥1) be a homotopy relative Rota-Baxter algebra and B a left dg
A-module.
▶ If the operator {Tn}n≥1 is a cyclic, then (B, {mn}n≥1) is a good pre-Calabi-Yau

algebra with trivial m2 ;

▶ moreover, if (A,B) is a left compatible pair and {Ti}i≥1 is also B-derivative, then B is a
good manageable pre-Calabi-Yau algebra;

▶ furthermore, if the {Tn}n≥1 is also ultracyclic, then B is a good manageable special
pre-Calabi-Yau algebra.
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III.2, Cyclic homotopy relative Rota-Baxter algebras and pre-
Calabi-Yau structures

Corollary
In special case where B is finite dimensional, the above constructions, when restricted to End(B), give
rise to the following three bijections:

F1 :

{
differentials d on B and cyclic relative homotopy

Rota-Baxter operators on End(B)∨
}

→
{

good pre-Calabi-Yau algebras
{mn}n⩾1 on B with trivial m2

}
,

F2 :

{
differentials d on B and ultracyclic relative

homotopy Rota-Baxter operators on End(B)∨
}

→
{

good special pre-Calabi-Yau algebras
{mn}n⩾1 on B with trivial m2

}
,

F3 :

{
dg algebra structures (d, ·) on B and ultracyclic B-derivative

relative homotopy Rota-Baxter operators on End(B)∨
}

→
{

good manageable special pre-Calabi-Yau
algebras {mn}n⩾1 on B

}
.
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IV.1, Homotopy double Poisson algebras

Definition (Schedler 2009)
▶ A DL∞-algebra (homotopy double Lie algebra) is a graded space V = ⊕n∈ZVn

endowed with maps {{−, . . . ,−}}n+1 : V⊗n+1 → V⊗n+1 , for all n ≥ 0, where
{{−, . . . ,−}}n+1 has degree n− 1, satisfying that:

(i) Double skew-symmetry:

σ{{−, . . . ,−}}n+1σ
−1 = sgn(σ){{−, . . . ,−}}n+1 , for all σ ∈ Sn+1;

(ii) Double Jacobi∞ :∑
i+j=n

(−1)j(i+1)
∑

σ∈Cn+1

sgn(σ)σ
(
{{−, . . . ,−, {{−, . . . ,−}}i+1}}L,j+1

)
σ−1 = 0.

▶ A DP∞-algebra (homotopy double Poisson algebra) is a graded algebra A, equipped
with a DL∞-algebra structure A satisfying the double Leibniz∞-rule: for n ≥ 0, and
a1, . . . an, a′n+1, a

′′
n+1 ∈ A,

{{a1, . . . , an, a′n+1a
′′
n+1}}n+1 = {{a1, . . . , an, a′n+1}}n+1a′′n+1

+(−1)a
′
n+1(n−1+

∑n
k=1 ak)a′n+1{{a1, . . . , an, a′′n+1}}n+1.
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IV.1, Homotopy double Poisson algebras

Theorem (Q.-Wang 2025)
Let (V, {{{−, . . . ,−}}n}n≥1) be a homotopy double Lie algebra. Denote a family of
{ln}n≥1 on the graded symmetric space S(V), which satisfies: for all
u1
1, . . . , u

1
k1
, . . . , un

1 , . . . , u
n
kn

∈ V

ln(u1
1 · · · u

1
k1

⊗ · · · ⊗ un
1 · · · u

n
kn ) :=(n− 1)!

∑
1≤q1≤k1,...,1≤qn≤kn

(−1)θn{{u1
q1 , . . . , u

n
qn}}

[1]
n · · ·

{{u1
q1 , . . . , u

n
qn}}

[n]
n · u1

1 · · · û1
q1 · · · u

1
k1
· · · un

1 · · · ûn
qn · · · u

n
kn .

Then
(
S(V), {ln}n≥1

)
is a homotopy Possion algebra. Thus V∨ can be considered as a

derived Poisson manifold.



39

IV.2, Yang-Baxter-infinity equations

Definition (Schedler 2009)
Let A be a unitary graded associative algebra. A solution of associative
Yang-Baxter-infinity equation is a family of elements

{
rn ∈ A⊗n}

n≥1 with each
|rn| = n− 2, satisfying: for n ≥ 1,∑

i+j=n+1

(−1)(j+1)i
∑
σ∈Cn

sgn(σ)rσ(1),σ(2),...,σ(i)
i rσ(i),σ(i+1),σ(i+2),...,σ(n)

j = 0.

Theorem (Schedler 2009)
Let V be a graded space. There is a bijection between the set of homotopy double Lie
algebra structures on V and the set of skew-symmetric solutions of the associative
Yang-Baxter-infinity equation on End(V).

T. Schedler, Poisson algebras and Yang-Baxter equations, Advances in quantum computation,
Contemp. Math., Contemp. Math., Amer. Math. Soc., Providence, RI, 482 (2009), 91-106.
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IV.3, Homotopy double Lie algebras and pre-Calabi-Yau struc-
tures

Theorem (Fernández-Herscovich 2021)
Let A = ⊕n∈ZAn be a graded space. For a good manageable special pre-Calabi-Yau
structure {mn}n≥1 on A, one can define a family of maps
{{{−, . . . ,−}}n : A⊗n → A⊗n}n≥1 by

(f1 ⊗ · · · ⊗ fn) ({{a1, . . . , an}}n) = sa1,...,anf1,...,fn
ζA

(
m2n−1

(
an, s−1fn, . . . , a2, s−1f2, a1

)
, s−1f1

)
.

Then the map determines a bijection{
good manageable special pre-Calabi-Yau

structures {mn}n≥1 on A

}
→

{
homotopy double Poisson algebra
structures {{{−, . . . ,−}}n}n≥1on A

}
.
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IV.4, Homotopy Rota-Baxter algebras and homotopy double
Poisson algebras

Theorem (Q.-Wang 2025)
Let (A,A∨, {Ti}i≥1) be a finite dimensional ultracyclic relative homotopy Rota-Baxter
algebra and B a dg left A-module. We define a family of maps {{{−, . . . ,−}}n}n≥1 as:
{{−}}1 = dB : B → B and for all n ≥ 1,

{{−, . . . ,−}}n+1 = Ψn (idA⊗n ) , (7)

where

Ψn : End(A⊗n) ∼= A⊗n ⊗ (A∨)⊗n id⊗n ⊗Tn−→ A⊗n+1 Φ⊗n+1
−→ End(B)⊗n+1 → End(B⊗n+1).

Then {{{−, . . . ,−}}n}n≥1 defines a homotopy double Lie algebra structure on B.

Moreover, if (A,B) is a left compatible pair and {Ti}i≥1 is B-derivative, then
{{{−, . . . ,−}}n}n≥1 defines a homotopy double Poisson algebra structure on B.
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V, Conclusions

Algebra Module

Cyclic homotopy Rota-Baxter algebras Good pre-Calabi-Yau without product
Ultracyclic homotopy Rota-Baxter algebras Homotopy double Lie algebras/ AYBE∞
Ultracyclic homotopy Rota-Baxter algebras Good manageable special pre-Calabi-Yau

+ /
{Ti}i≥1 is B-derivative Homotopy double Poisson algebras
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Thank you!


