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The Yang-Baxter Equation and Cycle Sets

YANG-BAXTER EQUATION

Yang-Baxter Equation [Yan67, Bax72]
A solution to the Yang-Baxter equation (YBE) is a pair (V,R), where V is a vector space and
R : V ⊗ V → V ⊗ V is a map such that in V ⊗ V ⊗ V ,

R1R2R1 = R2R1R2, (the original Yang-Baxter Equation)

where R1 = R⊗ id and R2 = id ⊗R.
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The Yang-Baxter Equation and Cycle Sets

SET-THEORETIC YANG-BAXTER EQUATION

Set-Theoretic Yang-Baxter Equation (YBE) [Dri92]
A set-theoretic solution to the YBE is a pair (X, r), where X is a non-empty set and
r : X2 → X2 is a map such that in X3,

r1r2r1 = r2r1r2, (the Yang-Baxter Equation)

where ri acts as r on components i and i+ 1 and as the identity on the other component.

▶ These solutions are a subset of the solutions to the original Yang-Baxter equation.
▶ Two set-theoretic solutions (X, r) and (X, s) are isomorphic if there exists a bijection
f : X → X such that (f × f)r = s(f × f).

▶ A set-theoretic solution is called involutive if r2 = idX×X .
▶ A set-theoretic solution (X, r) with r(x, y) = (σx(y), τy(x)) is called non-degenerate if

the maps σx and τx are bijective for all x ∈ X.
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The Yang-Baxter Equation and Cycle Sets

SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ The pair (X, r) with X the ring of integers modulo n ∈ N and r(x, y) = (y + 1, x− 1) is
a non-degenerate, involutive solution.

▶ Given f : X → X : x 7→ n− x, the solution (X, s) with s(x, y) = (y − 1, x+ 1) is
isomorphic to (X, r).

∀x, y, z ∈ X :

r1r2r1(x, y, z) r2r1r2(x, y, z)
= r1r2(y + 1, x− 1, z) = r2r1(x, z + 1, y − 1)
= r1(y + 1, z + 1, x− 2) = r2(z + 2, x− 1, y − 1)
= (z + 2, y, x− 2) = (z + 2, y, x− 2)
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a non-degenerate, involutive solution.

▶ Given f : X → X : x 7→ n− x, the solution (X, s) with s(x, y) = (y − 1, x+ 1) is
isomorphic to (X, r).

(x, y) (n− x, n− y)
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The Yang-Baxter Equation and Cycle Sets

CYCLE SETS

Cycle Sets
A cycle set (X, ·) is a pair consisting of a non-empty set X and a binary operation · on X that
fulfills the following relations:

1. the map ϕx : X → X : y 7→ x · y is bijective for all x ∈ X and
2. for all x, y, z ∈ X:

(x · y) · (x · z) = (y · x) · (y · z). (the cycloid equation)

▶ Two cycle sets (X, ·) and (X,×) are called isomorphic when there exists a bijection
f : X → X such that f(x · y) = f(x) × f(y).

▶ A cycle set (X, ·) is called non-degenerate if the map T : X → X : x 7→ x · x is bijective.
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The Yang-Baxter Equation and Cycle Sets

CYCLE SETS
RELATION TO SET-THEORETIC YBE

▶ Given:
▶ the set In of finite, non-degenerate,

involutive solutions to the YBE,
▶ the set Cn of finite, non-degenerate cycle

sets,
▶ the map F : In → Cn, (X, r) 7→ (X, ·)

where:
▶ r(x, y) = (σx(y), τy(x)),
▶ x · y = τ−1

x (y),
▶ the map G : Cn → In, (X, ·) 7→ (X, r)

where:
▶ r(x, y) = ((y ⋄ x) · y, y ⋄ x),
▶ x ⋄ y = ϕ−1

x (y).

(X, r) (X, ·)
F

G
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Constraint Programming Approach

ENUMERATING SOLUTIONS
CONSTRAINT PROGRAMMING APPROACH

▶ Based on [AMV22].
▶ Model cycle set definition as a constraint

problem (CP).
▶ Add additional constraints to ensure that

solutions are constructed up to
isomorphism

▶ Enumerate all solutions using a constraint
solver.

CP

Solver

Solutions
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Constraint Programming Approach

ENUMERATING UP TO ISOMORPHISM
INTERMEZZO

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 11/42



Constraint Programming Approach

ENUMERATING UP TO ISOMORPHISM
INTERMEZZO

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 11/42



Constraint Programming Approach

ENUMERATING UP TO ISOMORPHISM
INTERMEZZO

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

<
<

2

1

3<
<

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 11/42



Constraint Programming Approach

ENUMERATING UP TO ISOMORPHISM
INTERMEZZO

2

1

3

2

1

3

2

1

3

<
<2

1

3

2

1

3

2

1

3

2

1

3

<

2

1

3<

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 11/42



Constraint Programming Approach

CONSTRAINT PROGRAMMING

Constraint Satisfaction Problem (CSP)
A CSP is a triple ⟨X,D,C⟩, where:
▶ X = {x1, x2, . . . , xn} is a set of variables,
▶ D = {D1, D2, . . . , Dn} is a set of domains for these variables (i.e.,
x1 ∈ D1, x2 ∈ D2, . . . , xn ∈ Dn)

▶ and C = {C1, . . . , Cm} is a set of constraints.

▶ Example: 4-Queens problem
▶ X = {Qi | i ∈ {1, 2, 3, 4}}
▶ D = {Di = {1, 2, 3, 4} | i ∈ {1, 2, 3, 4}}
▶ C = {Qi ̸= Qj ∧ |Qi −Qj | ≠ |i− j| | i, j ∈ {1, 2, 3, 4}}

▶ When enumerating:
C = C ∪ constraints excluding previously found solutions

4 0L0Z
3 Z0ZQ
2 QZ0Z
1 Z0L0

1 2 3 4
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Constraint Programming Approach

MODELLING CYCLE SET AS CP

▶ A cycle set (X, ·) consists of a non-empty
set X and a binary operation · on X s.t.:

1. for all x ∈ X, the map
ϕx : X → X : y 7→ x · y is bijective,

2. for all x, y, z ∈ X,
(x · y) · (x · z) = (y · x) · (y · z),

3. the map T : X → X : x 7→ x · x is
bijective. (non-degenerate)

▶ Each finite cycle set (X, ·) can also be
represented by a matrix C where
▶ C ∈ X |X|×|X|, and
▶ Cx,y = x · y for all x, y ∈ X.
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represented by a matrix C where

1. for all x ∈ X, Cx,y ̸= Cx,z for all
y, z ∈ X with y ̸= z,

2. for all x, y, z ∈ X,
CCx,y,Cx,z = CCy,x,Cy,z ,

3. for all x ∈ X, Cx,x ̸= Cy,y for all y ∈ X
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Constraint Programming Approach

MODELLING CYCLE SET AS CP
ISOMORPHISMS

▶ Isomorphisms between cycle sets are well-defined,
▶ but what do they correspond to in the context of our CP model?

▶ The cycle sets (X, ·), (X,×) are
isomorphic if there exists a bijection
f : X → X s.t. f(x · y) = f(x) × f(y) for
all x, y ∈ X.

▶ The cycle set matrices C,C ′ ∈ X |X|×|X|

are isomorphic if there exists a bijection
π : X → X s.t. C′

x,y = π(C)x,y for all
x, y ∈ X, where
π(C)x,y = π−1(Cπ(x),π(y)).
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Constraint Programming Approach

CYCLE SETS
LEXICOGRAPHIC ORDER AND PERMUTATIONS

▶ Given the cycle set ({1, 2, 3, 4}, ·), its associated matrix C and an isomorphism π = (12);
▶ we determine π(C) = π−1(Cπ(i),π(j)).

C =


2 3 4 1
4 1 2 3
2 3 4 1
4 1 2 3


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▶ Given the cycle set ({1, 2, 3, 4}, ·), its associated matrix C and an isomorphism π = (12);
▶ we determine π(C) = π−1(Cπ(i),π(j)).

C =


2 3 4 1
4 1 2 3
2 3 4 1
4 1 2 3

 π(C) = π−1(Cπ(i),π(j)) =


2 4 1 3
3 1 4 2
3 1 4 2
2 4 1 3


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Constraint Programming Approach

CYCLE SETS
LEXICOGRAPHIC ORDER AND PERMUTATIONS

▶ Given the cycle set ({1, 2, 3, 4}, ·), its associated matrix C and an isomorphism π = (12);
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Constraint Programming Approach

CYCLE SETS (UP TO ISOMORPHISM)

▶ A lexicographically minimal, finite, non-degenerate cycle set (X, ·) can be represented by
a matrix C ∈ X |X|×|X| where
▶ for all x ∈ X, Cx,y ̸= Cx,z for all y, z ∈ X with y ̸= z
▶ for all x, y, z ∈ X, CCx,y,Cx,z

= CCy,x,Cy,z

▶ for all x ∈ X, Cx,x ̸= Cy,y for all y ∈ X with y ̸= x
▶ for all π ∈ Sn, C ⪯ π(C)

▶ the symmetry breaking constraints
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Constraint Programming Approach

PARTITIONING THE PROBLEM

Lemma [AMV22]
Let (X, ·) be a cycle set of size n ∈ N.
Let T : X → X,T (x) 7→ x · x and T1 ∈ Sn.
If T and T1 are conjugates, then there exists a cycle set structure × on X such that (X, ·) and
(X,×) are isomorphic and T1(x) = x× x for all x ∈ X.
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Constraint Programming Approach

PARTITIONING THE PROBLEM

▶ As done by [AMV22]
▶ Model cycle set constraints.
▶ Partition the problem by fixing diagonals.

▶ This decreases the search space per problem from
(n2)n to (n2 − n)(n−1).

▶ This allows to parallelize the search.
▶ Add static symmetry breaking constraints.

▶ Complete symmetry breaking is unrealistic because
of its encoding size...

▶ Enumerate all solutions.
▶ Perform final isomorphism check.

Model1

Solver1

Sols.1

Iso. Ch.1

Model2

Solver2

Sols.2

Iso. Ch.2

. . .

Modelm

Solverm

Sols.m

Iso. Ch.m
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SAT-based Approach

1. The Yang-Baxter Equation and Cycle Sets

2. Constraint Programming Approach

3. SAT-based Approach

4. Partially Defined Cycle Sets

5. Minimality Check

6. Results and Conclusion
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

▶ Example: 2-colouring of a triangle graph
▶ Variables: V = {N1, N2, N3}
▶ Domains: D = {Di = {■,■} | i ∈ {1, 2, 3}}
▶ Constraints: C = {N1 ̸= N2, N2 ̸= N3, N3 ̸= N1}

N1

N2 N3
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

E

E E E E

E
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

{■,■}

{■,■} {■,■}

{■} {■} {■} {■}

{} {}
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

▶ Example: a Boolean satisfaction (SAT) problem
▶ Variables: V = {a, b, c, d, r, s, w, x, y, z}
▶ Domains: D = {Di = {0, 1} | i ∈ V }
▶ Constraints: C = {(r) ∧ (¬r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)}
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

(r) ∧ (¬r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

Current assignment α = {

r = 1, s = 1, a = 1

}
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SAT-based Approach

INTERMEZZO: (SAT) SOLVING

(r) ∧ (¬r ∨ s) ∧ (¬w ∨ a) ∧ (¬x ∨ b) ∧ (¬y ∨ ¬z ∨ c) ∧ (¬b ∨ ¬c ∨ d)

Current assignment α = {r = 1, s = 1, a = 1}

▶ Check if the partial solution can be extended to a solution that is lexicographically minimal
▶ If this is certainly not the case: force the solver to backtrack!

▶ for example by adding a falsified clause: (¬a)
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SAT-based Approach

SAT MODULO SYMMETRIES [KS21]

▶ Main goal:
▶ Enumerate satisfying assignments of CNF up to isomorphism
▶ First used to enumerate graphs with certain interesting properties

▶ Core idea:
1. Model the mathematical problem at hand using propositional logic
2. Force a SAT solver to generate only non-isomorphic solutions during the search
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SAT-based Approach

SAT MODULO SYMMETRIES [KS21]

▶ How:
1. Obtain a partial interpretation from the SAT solver.
2. Check whether the assignment can be extended to

a complete assignment that is lexicographically
minimal.

3. If not, force the solver to abort the current branch
of the search tree by learning a new clause.

▶ This procedure needs to take into account:
▶ the (encoding of) the mathematical problem,

▶ i.e., the (encoding of) the cycle set definition.
▶ and the structure of the set of isomorphisms.

▶ i.e., all permutations that fix the diagonal.

CNF Model

SAT Solver MinCheck

Solutions
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Partially Defined Cycle Sets

1. The Yang-Baxter Equation and Cycle Sets

2. Constraint Programming Approach

3. SAT-based Approach

4. Partially Defined Cycle Sets

5. Minimality Check

6. Results and Conclusion
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Partially Defined Cycle Sets

SAT MODULO SYMMETRIES [KS21]
FOR CYCLE SETS

▶ Given a formula ψ over variables Σ (modelling the cycle set definition),
▶ With a complete, satisfying assignment α of Σ, we associate a cycle set Cα where for all

cells (i, j) ∈ X ×X it holds that:
▶ Ci,j = k iff vi,j,k ∈ α.

▶ We now want to introduce symmetry breaking constraints during the solving phase.
▶ But, during the solving phase, the full cycle set might not be known yet.
▶ Hence, we introduce partial cycle sets.
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Partially Defined Cycle Sets

PARTIAL CYCLE SETS

Partial Cycle Set
A partial cycle set of size n is a matrix P ∈ (2X)n×n with X = {1, . . . , n}, where each cell
c ∈ X ×X of P represents a non-empty domain Pc ⊆ X of values that are still possible.

▶ With a partial assignment α of Σ, we associate a partial cycle set Pα where for all cells
(x, y) ∈ X ×X it holds that:
▶ Px,y = {x ∈ X | ¬ci,j,x ̸∈ α}.

▶ In other words, Pα consist of the values that can still be true according to α.
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Partially Defined Cycle Sets

PARTIAL CYCLE SETS
EXAMPLE

1 2 3
1 {2} {1} {3}
2 {2, 3} {1} {2, 3}
3 {1, 2} {1, 2} {3}

P ∈ (2X)n×n

1 2 3
1 2 1 3
2 2 1 3
3 1 2 3

1 2 3
1 2 1 3
2 3 1 2
3 2 1 3

. . .

C2 ∈ X (P)

C1 ∈ X (P)
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Partially Defined Cycle Sets

PARTIAL CYCLE SETS
LEXICOGRAPHIC MINIMALITY [KS21]

▶ A partial cycle set P is ⪯-minimal if it can be extended to a ⪯-minimal cycle set.
▶ If for all extended cycle sets C ∈ X (P) there exists an isomorphism π s.t. π(C) ≺ C:

▶ P can not be ⪯-minimal.
▶ But: hard to decide this...

▶ If there exists an isomorphism π s.t. π(C) ≺ C for all extended cycle sets C ∈ X (P):
▶ P can not be ⪯-minimal.
▶ We call π a witness of non-minimality of P!
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Partially Defined Cycle Sets

FINDING WITNESSES

▶ In order to find these witnesses, we need:
1. A way to apply permutations to partial

cycle sets.
2. An order ◁ over partial cycle sets,

▶ s.t. if P ◁ P′ then C ≺ C′ for all
extensions C ∈ X (P) and
C′ ∈ X (P′).

▶ If we can find a permutation π for which
π(P) ◁ P, we have that π(C) ≺ C for all
extensions C ∈ X (P).

▶ In other words, we can decide that π is a
witness of non-minimality.
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Partially Defined Cycle Sets

PARTIAL CYCLE SET
APPLYING A PERMUTATION

▶ Given a partial cycle set P ∈ (2X)n×n and a permutation π : X → X:

π(Pi,j) = {π−1(x) | x ∈ Pπ(i),π(j)}.

▶ For example, given P and π = (12) :

P =


1 2 4 3
1 2 3 4
1 {2, 4} 3 {2, 4}
1 {2, 3} {2, 3} 4

 Pπ(i),(j) =


2 1 3 4
2 1 4 3

{2, 4} 1 3 {2, 4}
{2, 3} 1 {2, 3} 4


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P =
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 ▷? π(P) =
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{1, 4} 2 3 {1, 4}
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Partially Defined Cycle Sets

PARTIAL CYCLE SET
APPLYING A PERMUTATION

▶ Given a partial cycle set P ∈ (2X)n×n and a permutation π : X → X:

π(Pi,j) = {π−1(x) | x ∈ Pπ(i),π(j)}.

▶ For example, given P and π = (12) :

P =


1 {3, 4} 2 {3, 4}
1 2 3 4
1 {2, 4} 3 {2, 4}
1 {2, 3} {2, 3} 4

 ▷? π(P) =


1 2 3 4

{3, 4} 2 1 {3, 4}
{1, 4} 2 3 {1, 4}
{1, 3} 2 {1, 3} 4


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Partially Defined Cycle Sets

PARTIAL CYCLE SET
ORDERING PARTIAL CYCLE SETS

P ◁ P′

Given two partial cycle sets P and P′ we say that P ◁ P′ iff:
▶ there is a cell c s.t. max Pc < min P′

c and
▶ for all cells c′ < c: max Pc′ ≤ min P′

c′ .

P ⊴ P′

Given two partial cycle sets P and P′ we say that P ⊴ P′ iff:
▶ either P ◁ P′, or for all cells c: max Pc ≤ min P′

c.

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 29/42



Partially Defined Cycle Sets

PARTIAL CYCLE SET
ORDERING PARTIAL CYCLE SETS

P ◁ P′

Given two partial cycle sets P and P′ we say that P ◁ P′ iff:
▶ there is a cell c s.t. max Pc < min P′

c and
▶ for all cells c′ < c: max Pc′ ≤ min P′

c′ .

P ⊴ P′

Given two partial cycle sets P and P′ we say that P ⊴ P′ iff:
▶ either P ◁ P′, or for all cells c: max Pc ≤ min P′

c.

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 29/42



Partially Defined Cycle Sets

PARTIAL CYCLE SET
ORDERING PARTIAL CYCLE SETS

▶ Using this order we have that:
▶ If P ◁ P′, then for all extended cycle sets C ∈ X (P) and C′ ∈ X (P′), it holds that C ≺ C′.
▶ If π(P) ◁ P, π is a witness of non-minimality.
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Minimality Check

1. The Yang-Baxter Equation and Cycle Sets

2. Constraint Programming Approach

3. SAT-based Approach

4. Partially Defined Cycle Sets

5. Minimality Check

6. Results and Conclusion
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Minimality Check

MINIMALITY CHECK
OVERVIEW

▶ Goal: decide whether ∃π ∈ ⟨Π⟩, such that π(P) ◁ P, given
▶ a matrix P representing a partial cycle set, and
▶ where the group ⟨Π⟩ represents the isomorphisms of the problem.

▶ Considering each π one-by-one is not a feasible option...
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Minimality Check

MINIMALITY CHECK
BACKTRACKING APPROACH [KS21]

▶ Represent all possible isomorphism of the problem.
▶ i.e. π(1) = [1, 2, 3, 4], π(2) = [1, 2, 3, 4], . . .

▶ Make decision
▶ i.e. π(1) = [2]

▶ Propagate:
▶ i.e. π(2) = [1, 3, 4]

▶ Ensure that the partial permutation π can be
extended to an isomorphism of the problem.

▶ Given the partial cycle set P, ensure that
π(P) ◁ P.

▶ Repeat until:
▶ A witness is found.
▶ All possibilities have failed.

▶ Issue!
▶ Sometimes there is no

information to propagate
▶ Worst case complexity of n!...

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 32/42



Minimality Check

MINIMALITY CHECK
BACKTRACKING APPROACH [KS21]

▶ Represent all possible isomorphism of the problem.
▶ i.e. π(1) = [1, 2, 3, 4], π(2) = [1, 2, 3, 4], . . .

▶ Make decision
▶ i.e. π(1) = [2]

▶ Propagate:
▶ i.e. π(2) = [1, 3, 4]

▶ Ensure that the partial permutation π can be
extended to an isomorphism of the problem.

▶ Given the partial cycle set P, ensure that
π(P) ◁ P.

▶ Repeat until:
▶ A witness is found.
▶ All possibilities have failed.

▶ Issue!
▶ Sometimes there is no

information to propagate
▶ Worst case complexity of n!...

D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 32/42



Minimality Check

MINIMALITY CHECK
ISOMORPHISMS AND FIXED DIAGONALS

▶ Ensure that the partial permutation π can be extended to an isomorphism of the problem
▶ The group of isomorphisms ⟨Π⟩ is given by:

▶ If no diagonal is fixed, ⟨Π⟩ = Sn
▶ If a diagonal T is fixed, ⟨Π⟩ = CSn(T )

▶ i.e., the isomorphisms are permutations that fix the diagonal
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Minimality Check

MINIMALITY CHECK
INCREMENTAL, SAT-BASED APPROACH

▶ Minimality check = combinatorial search problem
▶ i.e. given the current (partial) cycle set, does there exist a witness?

▶ We chose to:
▶ Express the problem in CNF.
▶ Use an incremental SAT-solver to verify whether the CNF is satisfiable given the current

assumptions.
▶ If so, we have found a witness of non-minimality for the current cycle set!
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Minimality Check

INCREMENTAL, SAT-BASED MINIMALITY CHECK
OVERVIEW

Incr. SAT Solver
(Cycle Set Enumeration)

MinCheck

Breaking ClausesAssignment

SAT/UNSATAssumptions

Incr. SAT Solver
(MinCheck)
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Minimality Check

MINIMALITY CHECK
CONSTRUCTING A CLAUSE

▶ π is a witness of non-minimality!
▶ There exists cell c = (i, j) such that:

▶ for all cells c′ < c: π(P)c′ ⊴ Pc′ and,
▶ π(P)c ◁ Pc.

▶ So: how do we exclude the current
solution (and its extensions?)

▶ We add a clause expressing that (at least)
one of these conditions is different:
▶ max π(P)c becomes larger than or equal

to min Pc,
▶ or for at least one of the cells c′ < c;

max π(P)c′ becomes strictly larger than
min Pc′ ,

▶ or the solver needs to backtrack.
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Results and Conclusion

IMPLEMENTATION

▶ We use CaDiCaL [BFFH20] with the IPASIR-UP API [FNP+23];
▶ to keep track of the current assignment,
▶ to add clauses if a useful permutation is found,
▶ and to find witnesses.

▶ The implementation and database are available on GitLab.
▶ Experiments were performed on a machine with

▶ an AMD(R) Genoa-X CPU,
▶ running Rocky Linux 8.9,
▶ with Linux kernel 4.18.0.
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COMPARING RESULTS
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Results and Conclusion

COMPARING RESULTS

AMV22 Backtracking Approach Incr. SAT Approach
Size # Sols Iso Check (s.) Total (s.) MinCheck (s.) Total (s.) Speedup MinCheck (s.) Total (s.) Speedup
2 2 0.0 2.8 0.0 0.0 0.0 0.0
3 5 0.0 2.7 0.0 0.0 0.0 0.0
4 23 0.0 5.2 0.0 0.0 0.0 0.0
5 88 0.0 9.5 0.0 0.0 0.0 0.0
6 595 0.2 32.2 0.1 0.2 161.0 0.3 0.7 46.0
7 3 456 1.1 89.8 0.7 1.8 49.9 1.9 4.4 20.4
8 34 530 43.1 419.3 19.3 32.6 12.9 24.6 49.7 8.4
9 321 931 2 542.3 7 797.7 621.6 760.5 10.2 185.6 421.2 18.51
10 4 895 272 237 307.1 720 883.0 41 594.1 44 792.5 16.1 2 706.3 6796.8 108.1
11 77 182 093 50 767.2 226 395.6

Table: Comparing the runtimes of the implementation of AMV22 and our approaches building on SAT
Modulo Symmetries.
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Results and Conclusion

FUTURE WORK

▶ Refining incremental approach
▶ Certifying the results

▶ We obtain the same results as [AMV22],
but that only means that we are either
both correct or both wrong.

▶ However, how do we verify this?

▶ Enumerating related structures
▶ Racks,

▶ used to enumerate skew cycle sets.
▶ Skew Cycle Sets,

▶ correspond to non-degenerate
set-theoretic solutions.

▶ Biquandles,
▶ applications in knot theory.

▶ Generelizing the approach?
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Results and Conclusion

CONCLUSION

▶ We have reproduced the results from [AMV22] with a significant speedup
▶ We have expanded these results to include size 11
▶ We did this by extending the SMS-framework [KS21] to reason about (partially

constructed) cycle sets
▶ The current technique can be adapted to enumerate related mathematical structures
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Extra Slides

YANG-BAXTER EQUATION
DEFINITION

Yang-Baxter Equation [Yan67, Bax72]
A solution to the Yang-Baxter equation (YBE) is a pair (V,R), where V is a vector space and
R : V ⊗ V → V ⊗ V is a map such that in (V ⊗ V ⊗ V ),

R1R2R1 = R2R1R2,

where Ri acts as R on components i and i+ 1, and as the identity on the other component.
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YANG-BAXTER EQUATION
DEFINITION

R1

R2

R1

V ⊗ V ⊗ V

R1R2R1

=

=

R2

R1

R2

V ⊗ V ⊗ V

R2R1R2

Figure: A visual representation of the Yang-Baxter equation.
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YANG-BAXTER EQUATION
DEFINITION

Set-Theoretic Yang-Baxter Equation (YBE) [Dri92]
A set-theoretic solution to the YBE is a pair (X, r), where X is a non-empty set and
r : X2 → X2 is a map such that in X3,

r1r2r1 = r2r1r2, (the Yang-Baxter Equation)

where ri acts as r on components i and i+ 1 and as the identity on the other component.

▶ These solutions are a subset of the solutions to the original Yang-Baxter equation.
▶ Given a set-theoretic solution (X, r), we can construct a solution to the original YBE

through linearisation.
▶ A set-theoretic solution is called involutive if r2 = idX×X .
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Extra Slides

SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ (X, r) with
▶ X = Z/nZ
▶ r(x, y) = (y + 1, x− 1)

▶ Finite:
▶ the set X is finite

▶ Involutive
▶ Non-degenerate
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SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ (X, r) with
▶ X = Z/nZ
▶ r(x, y) = (y + 1, x− 1)

▶ Finite
▶ Involutive:

▶ r2(x, y) = (x, y)
▶ r(r(x, y)) = r(y + 1, x− 1) =

((x− 1) + 1, (y + 1) − 1) = (x, y)
▶ Non-degenerate
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SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ (X, r) with
▶ X = Z/nZ
▶ r(x, y) = (y + 1, x− 1)

▶ Finite
▶ Involutive
▶ Non-degenerate:

▶ Given r(x, y) = (σx(y), τy(x)), the maps
σx, τx are bijective for all x ∈ X

▶ σ(y) = y + 1 and τ(x) = x− 1 are
bijective
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SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ (X, r) with
▶ X = Z/nZ
▶ r(x, y) = (y + 1, x− 1)

▶ Finite
▶ Involutive
▶ Non-degenerate

▶ (X, s) with
▶ X = Z/nZ
▶ s(x, y) = (y − 1, x+ 1)

▶ Finite
▶ Involutive:

▶ s(s(x, y)) = s(y − 1, x+ 1) =
((x+ 1) − 1, (y − 1) + 1) = (x, y)

▶ Non-degenerate
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SET-THEORETIC YANG-BAXTER EQUATION
EXAMPLE

▶ (X, r) with
▶ X = Z/nZ
▶ r(x, y) = (y + 1, x− 1)

▶ (X, s) with
▶ X = Z/nZ
▶ s(x, y) = (y − 1, x+ 1)

▶ The solutions (X, r) and (X, s) are
isomorphic
▶ i.e. there exists a bijection f : X → X

such that (f × f)r = s(f × f)
▶ The isomorphism is defined by
f : X → X,x 7→ n− x

(x, y) (n− x, n− y)

(y + 1, x− 1) (n− y − 1, n− x+ 1)

(f × f)

(f × f)

r s
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CNF MODEL

▶ for each i, j, x ∈ X, the Boolean variable
vi,j,x is true iff Ci,j = x

▶ Ensure that each matrix entry is assigned
exactly one value;
▶ for each i, j ∈ X:

exactlyOne([vi,j,k | k ∈ X])
▶ Rows contain unique values;

▶ for each i, k ∈ X:
exactlyOne([vi,j,k | j ∈ X])

▶ The diagonal contains unique values;
▶ exactlyOne([vi,i,k | i ∈ X])

▶ for all i, j, k, b ∈ X with i < j, the
Boolean variable yi,j,k,b is true iff
CCi,j ,Ci,k

= CCk,i,Ck,j
= b

▶ for all i, j, k, x, y, b ∈ X where i < j:
▶ ¬vi,j,x ∨ ¬vi,k,y ∨ ¬vx,y,b ∨ yi,j,k,b

▶ ¬vj,i,x ∨ ¬vj,k,y ∨ ¬vx,y,b ∨ yi,j,k,b

▶ for all i, j, k ∈ X where i < j:
▶ exactlyOne([yi,j,k,b | b ∈ X])
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MINIMALITY CHECK
ISOMORPHISMS AND FIXED DIAGONALS

▶ Ensure that the partial permutation π can
be extended to an isomorphism of the
problem

▶ The group of isomorphisms ⟨Π⟩ is given
by:
▶ If no diagonal is fixed, ⟨Π⟩ = Sn
▶ If a diagonal T is fixed, ⟨Π⟩ = CSn(T )

▶ i.e., the isomorphisms are
permutations that fix the diagonal

▶ We want to enumerate cycle sets of size
10 (i.e. X = {1, 2, . . . , 10}) with fixed
diagonal T = [2, 3, 1, 5, 6, 4, 8, 7, 10, 9]

▶ To determine ⟨Π⟩ we rewrite T as a
permutation:
▶ T = (123)(456)(78)(9a) where a = 10
▶ Note that (123) = (231) = (321)

▶ For a permutation to fix T , it needs to:
▶ map cycles to cycles of the same length,

▶ i.e. π(1) ∈ {1, 2, 3, 4, 5, 6}
▶ while maintaining the order between the

elements of the cycle
▶ i.e. if π(1) = 5, it should follow that

π(2) = 6 and π(3) = 4
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MINIMALITY CHECK
ISOMORPHISMS AND FIXED DIAGONALS

▶ Ensure that the partial permutation π can
be extended to an isomorphism of the
problem

▶ The group of isomorphisms ⟨Π⟩ is given
by:
▶ If no diagonal is fixed, ⟨Π⟩ = Sn
▶ If a diagonal T is fixed, ⟨Π⟩ = CSn(T )

▶ i.e., the isomorphisms are
permutations that fix the diagonal

▶ We want to enumerate cycle sets of size
10 (i.e. X = {1, 2, . . . , 10}) with fixed
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EXAMPLE
SEARCH TREE

[{1,2},{3,4,5},{6}]

[{1},{2},{3,4,5},{6}]

[{1},{2},{3},{4},{5},{6}] [{1},{2},{4},{5},{3},{6}] [{1},{2},{5},{3},{4},{6}]

[{2},{1},{3,4,5},{6}]

[{2},{1},{3},{4},{5},{6}]

π(1) = 1

π(3) = 3 π(3) = 4 π(3) = 5

π(1) = 2

π(3) = 3
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MINIMALITY CHECK
CONSTRUCTING A CLAUSE, EXAMPLE∨

x≥min Pc

vπ(c),x ∨
∨

x≤max π(P)c

vc,x∨

∨
c′<c

 ∨
x>min Pc′

vπ(c′),x ∨
∨

x<max π(P)c′

vc′,x



v2,5,6 ∨ v1,5,5 ∨ v1,5,4 ∨ v1,5,3 ∨ v1,5,2 ∨ v1,5,1∨
v2,2,3 ∨ v2,2,4 ∨ v2,2,5 ∨ v2,2,6 ∨ v1,1,1∨
v2,1,2 ∨ v2,1,3 ∨ v2,1,4 ∨ v2,1,5 ∨ v2,1,6∨
v2,3,4 ∨ v2,3,5 ∨ v2,3,6 ∨ v1,3,2 ∨ v1,3,1∨
v2,4,5 ∨ v2,4,6 ∨ v1,4,3 ∨ v1,4,2 ∨ v1,4,1

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 1 3 4 5 6
2 1 3 4 6 5
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6


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FUTURE WORK
THE ENUMERATION OF RELATED STRUCTURES

▶ We have now enumerated finite, involutive, non-degenerate set-theoretic solutions to the
YBE

▶ What about related structures?
▶ Only minimal adjustments are needed to enumerate:

▶ Racks,
▶ used to enumerate skew cycle sets

▶ Skew Cycle Sets,
▶ correspond to finite, non-degenerate set-theoretic solutions

▶ Biquandles,
▶ finite, non-degenerate, involutive, set-theoretic solutions

▶ ...
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FUTURE WORK
CERTIFYING THE RESULS

▶ How do we know whether these results are
correct?
▶ We obtain the same results as [AMV22],

but that only means that we are either
both correct or both wrong.

▶ Many SAT Solvers are verifiable
▶ They produce a solution and a

machine-verifiable proof for this solution
▶ This proof is then verified together with

the CNF formula
▶ This is also the case for CaDiCaL, even

with the SMS framework [KSS22]
▶ However: only verified if each clause is

added with a good reason

▶ So, how do we know whether the added
breaking clauses were correct?
▶ VeriPB can verify static symmetry

breaking [BGMN22]
▶ CaDiCaL comes with VeriPB

▶ How do we verify whether we have
enumerated exactly one solution per
isomorphism class?
▶ Non-trivial, we need information about

the problem. . .
▶ The symmetries of the CNF might not

be equivalent to the isomorphisms of the
problem...
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MINIMALITY CHECK
ORDERED PARTITIONS

▶ An ordered partition (X1, X2, . . . , Xr) represents all permutations s.t.:
▶ π−1(x1) < π−1(x2) for all x1 ∈ Xi, x2 ∈ Xj with i < j.

0 1 2

[{1 , 2}, {0}]

π1 : 0 7→ 1, 1 7→ 2, 2 7→ 0

0 1 2

[{1 , 2}, {0}]

π2 : 0 7→ 2, 1 7→ 1, 2 7→ 0
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MINIMALITY CHECK
ITERATIVE REFINEMENT OF ORDERED PARTITION

▶ Start with ordered partition based on the isomorphisms of the problem.
▶ Make decision (i.e. split partition into a singleton and the rest).
▶ Propagate:

▶ Ensure that the partial permutation π can be extended to an isomorphism of the problem.
▶ Given the partial cycle set P, ensure that π(P) ⊴ P.

▶ Repeat until:
▶ A witness or refining subset is found.
▶ All possibilities have failed.
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MINIMALITY CHECK
EXAMPLE

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 {5, 6} {3, 5, 6} {3, 5, 6}

{2, 3, 4, 6} {2, 3, 4, 6} {1, 2, 3, 4, 6} 5 {1, 2, 3, 4, 6} {1, 2, 3, 4, 6}
{4, 5, 6} {1, 2, 4, 5, 6} {1, 2, 4, 5, 6} {1, 2, 4, 5, 6} 3 {1, 2, 4, 5, 6}
{3, 4, 5} {2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5} 6


▶ Diagonal T = (12)(345)(6) is fixed.

▶ If a diagonal T is fixed, ⟨Π⟩ = CSn
(T ).

▶ Initial permutation: π = [{1, 2}, {3, 4, 5}, {6}].
▶ Does there exist an extension of π that can be used to exclude or refine P?
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6


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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{1}, {2}, {3, 4, 5}, {6}]

Decide 1 7→ 1

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 1 ∗ ∗ ∗ ∗
2 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{1}, {2}, {3, 4, 5}, {6}]

[{1}, {2}, {4}, {5, 3}, {6}]

Decide 1 7→ 1

Decide 3 7→ 4

Propagate

P =


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2 1 3 4 5 6
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

2 1 3 ∗ ∗ ∗
2 1 3 ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{1}, {2}, {3, 4, 5}, {6}]

[{1}, {2}, {4}, {5, 3}, {6}]
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∗ ∗ ∗ ∗ ∗ 6
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∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{1}, {2}, {3, 4, 5}, {6}]

. . .

Decide 1 7→ 1

Decide and propagate

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 ∗ ∗ ∗ ∗ ∗
∗ 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{2}, {1}, {3, 4, 5}, {6}]

Decide 1 7→ 2

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 1 ∗ ∗ ∗ ∗
2 1 ∗ ∗ ∗ ∗
∗ ∗ 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6


D. Van Caudenberg et al. (KUL, VUB) SAT-Based Enumeration of Solutions to the YBE March 19, 2025 57/42



Extra Slides

MINIMALITY CHECK
EXAMPLE

[{1, 2}, {3, 4, 5}, {6}]

[{2}, {1}, {3, 4, 5}, {6}]

[{2}, {1}, {3}, {4}, {5}, {6}]

Decide 1 7→ 2

Decide 3 7→ 3 and propagate

Propagate

P =



2 1 3 4 6 5
2 1 3 4 5 6
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6



π(P) =



2 1 3 4 5 6
2 1 3 4 6 5
1 2 4 ∗ ∗ ∗
∗ ∗ ∗ 5 ∗ ∗
∗ ∗ ∗ ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ 6
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