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Local finiteness conditions
A group G is periodic (or torsion) if every g P G has a finite order.

Every finite group
Unions of finite groups, e.g. S8 “

Ť8
n“1 Sn finitely supported

permutations on N

An associative algebra A over a field F is algebraic if every a P A satisfies
some non-zero polynomial over F .

Finite-dimensional algebras, e.g. F rx s{ ⟨ppxq⟩ , MnpF q, . . .

K{F an algebraic field extension

Finitary matrices:

¨

˚

˚

˚

˚

˝

˚ ¨ ¨ ¨ 0
... . . .
0 0 ¨ ¨ ¨
... . . .

˛

‹

‹

‹

‹

‚

All of these examples are locally finite.
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Local finiteness: Burnside and Kurosh
Affirmative for many important classes

Burnside: Abelian groups ù solvable groups; linear groups (Schur)

Kurosh: Commutative algebras, polynomial identities (Kaplansky)

An algebra A is nil if every a P A is nilpotent (an “ 0, n “ npaq).
Example: strictly upper triangular matrices

A nil ù A˝ “ t1 ` a | a P Au is a group
charpF q “ p ą 0 ùñ @a P A, p1 ` aqpk

“ 1 ` apk
“ 1 pk " 1q

A “ F ⟨x1, . . . , xd⟩
dimF A “ 8

ùñ ⟨1 ` x1, . . . , 1 ` xd⟩ is infinite

”Kurosh ` Frobenius “ Burnside”
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First counterexamples

Golod-Shafarevich (1964): There exists a finitely generated,
infinite-dimensional nil algebra over any field

ùñ Negative solutions to
Burnside and Kurosh

Hilbert Class Field Tower Problem: Given a number field K , is there a
finite extension L{K such that OL is a PID? (No: Shafarevich)
Serre’s conjecture: Arithmetic lattices in SL2pCq do not have the
congruence subgroup property (True: Lubotzky)

Novikov-Adian, Olshanskii: There exists a finitely generated infinite group
G in which every g P G , gk “ 1 for a uniform k! ‘Burnside groups’

Golod-Shafarevich algebras and groups, Burnside groups are huge. Are
there small counterexamples?
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Growth of groups and algebras
G “ ⟨S⟩ finitely generated group. The growth of G :

γGpnq “ #
`

S Y S´1˘ďn
“ #BCaypG,Sqpnq

Polynomial growth Intermediate growth Exponential growth
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Growth of groups and algebras
A - algebra generated by x1, . . . , xd . The growth of A:

γApnq “ dimF SpantMonomials in x1, . . . , xd of length ď nu

For graded algebras A “
À8

n“0 An, measures dimF
Àn

i“0 Ai

Polynomial growth. Commutative algebras, e.g. A “ F rx1, . . . , xd s:
there are 1 ` d ` ¨ ¨ ¨ `

`n`d´1
d´1

˘

„ nd monomials of length ď n.

Exponential growth. Free algebras: F ⟨x , y⟩ (typical element:
yx2 ` xyx ´ x5): there are 1 ` 2 ` ¨ ¨ ¨ ` 2n monomials of length ď n.
Golod-Shafarevich algebras

Intermediate growth. E.g. nlog n, exppnαq for α ă 1
L - Lie algebra of linear growth, e.g. polynomial vector fields on S1

then γUpLqpnq „ ppnq „ expp
?

nq.
For group algebras F rGs, the growth coincides with the growth of G
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Growth of algebras in real life
Geometric representation theory: Gel’fand-Kirillov conjecture
Upgq „bir AnpCpx1, . . . , xsqq “parameter space” for representations of
algebraic groups

Commutative algebra: A - commutative algebra, γApnq „ nd where
d “ KdimpAq. Starting point for noncommutative projective geometry

Arithmetic statistics: Asymptotics of
#tK{Fqptq with GalpK{Fqptqq – Gu (with discÑ 8) controlled by the
GK-dimension of a certain noncommutative graded ring
(Ellenberg-Tran-Westerland). Structure ring for a solution of the YBE!

Symbolic dynamics: Infinite word, e.g.
0110100110010110 ¨ ¨ ¨

generates a symbolic dynamical system (‘subshifts’). Complexity:
cw pnq “ |tLength-n subwords of wu|

Complexity of words ú
Growth of monomial algebras

& convolution algebras
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Symbolic dynamics and noncommutative algebras

Fundamental Problem (e.g. Cassaigne, Ferenczi ‘90s)
Which functions occur as complexity functions of infinite words?

Theorem (G.–Moreira–Zelmanov, ‘24)
Precisely constant functions, or increasing submultiplicative functions, up
to asymptotic equivalence.

An analogous problem: ‘What are the growth functions of algebras?’
(Bell-Zelmanov, ‘21).
All algebras are ‘PBW deformations’ of monomial algebras. Use them to
‘pad’ algebraic algebras and construct counterexamples to the Kurosh
Problem of arbitrary growth rates.
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Local finiteness vs. Free substructures
We discussed local finiteness in small structures (restricted growth)
Local finiteness in large objects. Largest possible: contain free structures

Question

Nil algebras can contain free subalgebras after field extensions!
(Smoktunowicz, ‘09)

Finitely generated groups are geometric objects via Cayley graphs ù

measure torsion by a sequence of probability measures tµnu8
n“1

Uniform: µn “ UpBG,Spnqq uniform on the n-ball of the Cayley graph
Random walks: µn “ ν‹n for a non-degenerate distribution ν
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Probabilistic identities in groups

Meta-Conjecture (Antoĺın–Martino–Ventura, ‘15)
If a group law holds with positive probability, then the group virtually
satisfies it.

Theorem (Gustaffson, ‘73)
If G is a finite group in which Prprx , y s “ 1q ą 5{8 then G is abelian.

(Exercise for your next Group Theory students: this is sharp.)

Theorem (Tointon, ‘20)
If limnÑ8 Prµnprx , y s “ 1q ą 5{8 then G is abelian.
If the limit is just positive, G is virtually abelian.

Another exercise for your students: if @x P G , x2 “ 1 then G is abelian.

Theorem (Amir-Blachar-Gerasimova-Kozma, ‘23)
If limnÑ8 Prµnpx2 “ 1q ą 0 then G is virtually abelian.
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Probabilistic identities in groups

Theorem (Amir–Blachar–Gerasimova-Kozma, ‘23)
There exists a group which is metabelian rrw , x s, ry , zss “ 1 with
probability 1 ´ ε, yet contains a free subgroup.

Question (Amir–Blachar–Gerasimova-Kozma, ‘23)
1 If a group satisfies a law with probability 1, does it satisfy a law?
2 Does the limit probability always exist?
3 Is the limit probability sensitive to the generating set / random walk?
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Probabilistically Burnside groups

Theorem (Goffer–G., ‘23; Free subgroups)

There exists a finitely generated group G such that PrµnpxN “ 1q
nÑ8
ÝÝÝÑ 1

for every non-degenerate random walk and uniform measures; but F2 ãÑ G.

Theorem (Goffer–G.–Olshanskii, ‘24; Oscillating torsion probabilities)
There exists a group G “ ⟨S⟩ such that every real number in r0, 1s is a
partial limit of tPrµnpxN “ 1qu8

n“1.

Be’eri Greenfeld (U Washington) Local smallness and global largeness December 2024 21 / 22



Probabilistically Burnside groups

Theorem (Goffer–G., ‘23; Free subgroups)

There exists a finitely generated group G such that PrµnpxN “ 1q
nÑ8
ÝÝÝÑ 1

for every non-degenerate random walk and uniform measures; but F2 ãÑ G.

Theorem (Goffer–G.–Olshanskii, ‘24; Oscillating torsion probabilities)
There exists a group G “ ⟨S⟩ such that every real number in r0, 1s is a
partial limit of tPrµnpxN “ 1qu8

n“1.
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There exists a finitely generated group G such that:

lim
nÑ8

Pr
x„µn

pxN “ 1q “ 1, lim
nÑ8

Pr
x„µ1

n
pxN “ 1q “ 0

for different generating sets.
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n“1.

Theorem (Goffer–G.–Olshanskii, ‘24; Sensitivity to generating sets)
There exists a finitely generated group G such that:

lim
nÑ8

Pr
x„µn

pxN1 “ 1q “ 1, lim
nÑ8

Pr
x„µ1

n
pxN2 “ 1q “ 1

for co-prime numbers N1, N2 and for different generating sets.
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Thank you!
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