The Other Yang-Baxter Equation FROM SETS TO QUIVERS AND BACK AGAIN

DAVIDE FERRI Università di Torino & Vrije Universiteit Brussel

November 21, 2024

A quiver over Λ is the datum of a set Q (arrows), a set Λ (vertices), and two maps $\mathfrak{s}, \mathfrak{t}: Q \to \Lambda$ (source and target).

For such a 4-tuple $E \stackrel{s}{\rightrightarrows} V$ we propose the term quiver, and not graph, since there are already too many notions attached to the latter word.

"

-P. Gabriel, 1972.

A quiver over Λ is the datum of a set Q (arrows), a set Λ (vertices), and two maps $\mathfrak{s}, \mathfrak{t}: Q \to \Lambda$ (source and target).

For such a 4-tuple $E \stackrel{s}{\rightrightarrows} V$ we propose the term quiver, and not graph, since there are already too many notions attached to the latter word.

"

—P. Gabriel, 1972.

Let Q, R be quivers, over Λ and M respectively. A *weak morphism* of quivers $f: Q \to R$ is a pair $f = (f^1, f^0)$, where $f^1: Q \to R$ and $f^0: \Lambda \to M$ are maps, such that the following diagram commutes:

When Q and R have same set of vertices Λ , we say that a morphism over Λ is a weak morphism $f = (f^1, f^0)$ with $f^0 = \mathrm{id}_{\Lambda}$.

The category $\operatorname{\mathsf{Quiv}}_{\Lambda}$ of quivers over Λ , with morphisms over Λ , is monoidal: the monoidal product $Q \otimes R$ is given by

$$\{(x,y)\in Q\times R\mid \mathfrak{t}_Q(x)=\mathfrak{s}_R(y)\},\$$

$$\mathfrak{s}_{Q\otimes R}(x,y) := \mathfrak{s}_Q(x), \quad \mathfrak{t}_{Q\otimes R}(x,y) := \mathfrak{t}_R(y).$$

The monoidal unit $\mathbb{1}_{\Lambda}$ is the loop bundle with one loop on each object.

Let Q, R be quivers, over Λ and M respectively. A *weak morphism* of quivers $f: Q \to R$ is a pair $f = (f^1, f^0)$, where $f^1: Q \to R$ and $f^0: \Lambda \to M$ are maps, such that the following diagram commutes:

When Q and R have same set of vertices Λ , we say that a morphism over Λ is a weak morphism $f = (f^1, f^0)$ with $f^0 = \mathrm{id}_{\Lambda}$.

The category $\operatorname{\mathsf{Quiv}}_{\Lambda}$ of quivers over Λ , with morphisms over Λ , is monoidal: the monoidal product $Q \otimes R$ is given by

$$\{(x,y)\in Q\times R\mid \mathfrak{t}_Q(x)=\mathfrak{s}_R(y)\},\$$

$$\mathfrak{s}_{Q \otimes R}(x, y) := \mathfrak{s}_{Q}(x), \quad \mathfrak{t}_{Q \otimes R}(x, y) := \mathfrak{t}_{R}(y).$$

The monoidal unit $\mathbb{1}_{\Lambda}$ is the loop bundle with one loop on each object.

Let Q, R be quivers, over Λ and M respectively. A *weak morphism* of quivers $f: Q \to R$ is a pair $f = (f^1, f^0)$, where $f^1: Q \to R$ and $f^0: \Lambda \to M$ are maps, such that the following diagram commutes:

When Q and R have same set of vertices Λ , we say that a morphism over Λ is a weak morphism $f = (f^1, f^0)$ with $f^0 = \mathrm{id}_{\Lambda}$.

The category $\operatorname{\mathsf{Quiv}}_{\Lambda}$ of quivers over Λ , with morphisms over Λ , is monoidal: the monoidal product $Q \otimes R$ is given by

$$\{(x,y) \in Q \times R \mid \mathfrak{t}_Q(x) = \mathfrak{s}_R(y)\},\$$

$$\mathfrak{s}_{Q \otimes R}(x, y) := \mathfrak{s}_{Q}(x), \quad \mathfrak{t}_{Q \otimes R}(x, y) := \mathfrak{t}_{R}(y).$$

The monoidal unit $\mathbb{1}_{\Lambda}$ is the loop bundle with one loop on each object.

The Yang–Baxter Equation

Let $(\mathscr{C}, \otimes, \mathbb{1})$ be a monoidal category. A solution to the Yang–Baxter equation in \mathscr{C} is an object X with a morphism $\sigma \colon X^{\otimes 2} \to X^{\otimes 2}$ satisfying

 $(\sigma \otimes \mathrm{id}_X)(\mathrm{id}_X \otimes \sigma)(\sigma \otimes \mathrm{id}_X) = (\mathrm{id}_X \otimes \sigma)(\sigma \otimes \mathrm{id}_X)(\mathrm{id}_X \otimes \sigma).$

The YBE is famous in the categories of vector spaces (Vec_{\Bbbk}) and of sets (Set). These are also symmetric categories: the flip morphism $\tau_{X,Y}$ is a natural isomorphism between $X \otimes Y$ and $Y \otimes X$.

This means that the YBE has always at least one solution on each object in Set or Vec_k : namely, the flip.

This is not true for quivers: $Q \otimes R \ncong R \otimes Q$ in general.

The YBE is famous in the categories of vector spaces (Vec_{\Bbbk}) and of sets (Set). These are also symmetric categories: the flip morphism $\tau_{X,Y}$ is a natural isomorphism between $X \otimes Y$ and $Y \otimes X$.

This means that the YBE has always at least one solution on each object in Set or Vec_k : namely, the flip.

This is not true for quivers: $Q \otimes R \ncong R \otimes Q$ in general.

The YBE is famous in the categories of vector spaces (Vec_{\Bbbk}) and of sets (Set). These are also symmetric categories: the flip morphism $\tau_{X,Y}$ is a natural isomorphism between $X \otimes Y$ and $Y \otimes X$.

This means that the YBE has always at least one solution on each object in Set or Vec_k : namely, the flip.

This is not true for quivers: $Q \otimes R \ncong R \otimes Q$ in general.

$$\sigma \colon Q \otimes Q \to Q \otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

$$\sigma\colon Q\otimes Q\to Q\otimes Q$$

The quiver-theoretic YBE includes the set-theoretic YBE as a subcase.

Indeed, a set X can be seen as a quiver with a single object. Here, the **arrows** are in bijection with the elements of X, while the single object plays no role.

The quiver-theoretic YBE includes the set-theoretic YBE as a subcase.

Indeed, a set X can be seen as a quiver with a single object. Here, the **arrows** are in bijection with the elements of X, while the single object plays no role.

Yet Another Yang-Baxter Equation!...

A **dynamical set over** Λ (Shibukawa, 2005) is a set X with a function $\phi: \Lambda \times X \to \Lambda$, called the *transition map*.

The category of dynamical sets over Λ is monoidal: thus, a YBE on it makes sense. This is called the **set-theoretic Dynamical Yang–Baxter Equation** (DYBE).

...But not really.

Every dynamical set can be seen as a quiver, and this operation turns the DYBE into a quiver-theoretic YBE:

_

Of course, the **essential image** of this functor is not the entire category of quivers. It is the subcategory of quivers Q such that all **sets** $Q(\lambda, \Lambda)$ of outgoing **arrows at** λ are in bijection with each other, for all vertices λ .

Overview:

Braided groupoids

↕

Quiver-theoretic version of skew braces

 \supseteq

Dynamical version of skew braces

(turns out \subseteq , up to iso)

This one works nicely, has good-looking *ideals* and *quotients*, has geometric interpretations, and is very general: it comprises every braided groupoid.

↑

This one, however, has better combinatorics, and makes you construct explicit stuff by hand.

Groupoids

A groupoid is a quiver \mathscr{G} over Λ , with a binary operation $\circ: \mathscr{G} \otimes \mathscr{G} \to \mathscr{G}$, and a family $\{1_{\lambda}\}_{\lambda \in \Lambda}$ (one loop on each vertex), such that

- (1) \circ is associative;
- (2) the 1_{λ} 's are **units**, i.e. $x \circ 1_{\mathfrak{t}(x)} = x$ and $1_{\mathfrak{s}(x)} \circ x = x$ for all $x \in \mathscr{G}$; and
- (3) every arrow x from λ to μ has an **inverse** $x^{-1} \colon \mu \to \lambda$, such that $x \circ x^{-1} = 1_{\mathfrak{s}(x)}$ and $x^{-1} \circ x = 1_{\mathfrak{t}(x)}$.

If you think about it for some minutes, you probably notice the following fact:

The underlying quiver of a **groupoid** is a union of connected components, where each connected component \mathcal{K} is a "complete **quiver of degree** $d_{\mathcal{K}}$ " for some number $d_{\mathcal{K}}$.

Braided groupoids

Let \mathscr{G} be a groupoid over Λ . A **braiding** on \mathscr{G} is a bijective morphism $\sigma: \mathscr{G}^{\otimes 2} \to \mathscr{G}^{\otimes 2}$, with $\sigma(x \otimes y) =: (x \rightharpoonup y) \otimes (x \leftarrow y)$, such that (1) $\sigma(x \otimes 1) = 1 \otimes x$ and $\sigma(1 \otimes x) = x \otimes 1$; (2) $(x \circ y) \rightharpoonup z = x \rightharpoonup (t \rightharpoonup z)$, $x \leftarrow (y \circ z) = (x \leftarrow y) \leftarrow z$, i.e., \rightharpoonup is a left action and \leftarrow is a right action; and (3) $x \rightharpoonup (y \circ z) = (x \rightharpoonup y) \circ ((x \leftarrow y) \rightharpoonup z)$, $(x \circ y) \leftarrow z = (x \leftarrow (y \rightharpoonup z)) \circ (y \leftarrow z)$.

A braiding is, in particular, a solution to the Yang–Baxter equation. When $\Lambda = \{\bullet\}$, this is called a **braided group**, and is equivalent to a **skew brace**.

A skew brace is the datum of a set G with two group structures, (G, +, 0) and $(G, \circ, 0)$, satisfying the compatibility

$$a \circ (b+c) = a \circ b - a + a \circ c.$$

Dynamical skew braces

Definition (Matsumoto)

A **dynamical skew brace** is the datum of a dynamical set (A, ϕ) over Λ , with a group structure (A, +, 0) and a family of left quasigroup structures $\{A, \circ_{\lambda}\}_{\lambda \in \Lambda}$ satisfying

$$\begin{split} a \circ_{\lambda} (b \circ_{\phi(\lambda, a)} c) &= (a \circ_{\lambda} b) \circ_{\lambda} c \qquad (\text{dynamical associativity}) \\ a \circ_{\lambda} (b + c) &= a \circ_{\lambda} b - a + a \circ_{\lambda} c \qquad (\text{brace compatibility}) \end{split}$$

It is always true that $a \circ_{\lambda} 0 = a$. A dynamical skew brace is called ZERO-SYMMETRIC if $0 \circ_{\lambda} a = a$ for all a, λ .

Let $Q := Q(A, \phi)$ be the quiver over Λ associated with the dynamical set (A, ϕ) . Then, we can describe a binary operation $\circ : Q \otimes Q \to Q$ by $[\lambda \| a] \circ [\phi(\lambda, a) \| b] := [\lambda \| a \circ_{\lambda} b].$

This is a left semiloopoid operation (forget about it), but it is a GROUPOID operation, if and only if A is ZERO-SYMMETRIC.

Dynamical skew braces admit the following, more handy description:

Let (A, +) be a group. The holomorph is $\operatorname{Hol}(A) := A \rtimes \operatorname{Aut}(A)$. A subset S of the holomorph is regular if $S = \{(a, f_a^S) \mid a \in A\}$ for suitable maps $f_a^S \in \operatorname{Aut}(A)$. (Basically, the projection on the first factor $S \to A$ is a bijection.) A dynamical subgroup of $\operatorname{Hol}(A)$ is a family \mathscr{S} of regular subsets $S \subseteq \operatorname{Hol}(A)$, such that for all $S \in \mathscr{S}$ and $(a, f_a^S) \in S$, the set $(a, f_a^S)^{-1}S$ is also in \mathscr{S} .

Take \mathscr{S} as the set of vertices, and define $a \circ_S b := a + f_a^S(b)$. This is a dynamical skew brace. Every dynamical skew brace arises in this way. It is ZERO-SYMMETRIC if and only if $f_0^S = \text{id}$ for all S; i.e., if and only if every S contains the pair (0, id).

Skew bracoids*

*A different structure with the same name already exists (This is gonna make Isabel and Paul a bit upset, I am afraid)

Definition (Sheng–Tang–Zhu)

A skew bracoid $(\mathcal{G}, \{+_{\lambda}\}_{\lambda \in \Lambda}, \circ, \{1_{\lambda}\}_{\lambda \in \Lambda})$ over Λ is the datum of

- (1) a groupoid structure $(\mathscr{G}, \circ, \{1_{\lambda}\}_{\lambda \in \Lambda})$; and
- (2) a group structure $+_{\lambda}$ on each set $\mathscr{G}(\lambda, \Lambda)$;

satisfying the compatibility

$$a \circ (b +_{\mathfrak{t}(a)} c) = a \circ b -_{\mathfrak{s}(a)} a +_{\mathfrak{s}(a)} a \circ c.$$

Theorem (Sheng–Tang–Zhu)

Skew bracoids are equivalent to braided groupoids.

Just not to lose the big picture:

Turns out that every dynamical skew brace yields a skew bracoid. Conversely, every (connected) skew bracoid can be "parallelised", making it isomorphic to a dynamical skew brace

Just not to lose the big picture:

Turns out that every dynamical skew brace yields a skew bracoid. Conversely, every (connected) skew bracoid can be "parallelised", making it isomorphic to a dynamical skew brace Enough with the boring stuff! Now fun with Pictures! and Weird Integers Sequences!

Me at age 14. (Yes, I was already wearing shirts.)

Recall that

a dynamical skew brace is the same thing as a group (A, +), and a dynamical subgroup \mathscr{S} of Hol(A).

Of course, there is a **MAXIMAL dynamical skew brace** on A: choose \mathscr{S}_A as the family of **all** the regular subsets of Hol(A). This is clearly a dynamical subgroup. All dynamical skew braces on A are contained in $(A, +, \mathscr{S}_A)$.

The dynamical skew brace $(A, +, \mathscr{S})$ is **ZERO-SYMMETRIC** if and only if every element $S \in \mathscr{S}$ contains the pair $(0, \mathrm{id})$.

The family \mathscr{S}^0_A of all regular subsets containing (0, id) is also a dynamical subgroup (straightforward). Thus, there is a **MAXIMAL ZERO-SYMMETRIC dynamical skew brace** on A, which is $(A, +, \mathscr{S}^0_A)$.

 $A = \mathbb{Z}/4\mathbb{Z}$

 \mathscr{S}^0_A

For each connected component in \mathscr{S}^0_A ,

(#vertices $) \cdot ($ degree of the component) = |A|.

Thus, the "shape" of the quiver \mathscr{S}^0_A is determined by the string of numbers

$$N_s^A =$$
#connected components with s vertices,

where s divides |A|.

One clearly has

$$\sum_{s} N_s^A = |\operatorname{Aut}(A)|^{|A|-1}.$$

For each connected component in \mathscr{S}^0_A ,

(#vertices $) \cdot ($ degree of the component) = |A|.

Thus, the "shape" of the quiver \mathscr{S}^0_A is determined by the string of numbers

$$N_s^A =$$
#connected components with s vertices,

where s divides |A|.

One clearly has

$$\sum_{s} N_s^A = |\operatorname{Aut}(A)|^{|A|-1}.$$

These numbers are an utter mystery.

... and not an easy one: observe that N_1^A is the number of skew braces on A.

 $A = \mathbb{Z}/3\mathbb{Z}$

 $\implies N_1^A = 1, \ N_3^A = 1.$

 $A = \mathbb{Z}/4\mathbb{Z}$

 S_1 S_0 $\implies N_4^A = 1, N_2^A = 1, N_1^A = 2.$... and for $A = (\mathbb{Z}/2\mathbb{Z})^2$ one can compute $N_4^A = 50, N_2^A = 6, N_1^A = 4.$ Recall that the quiver of \mathscr{S}_A also has some **initial vertices**:

How many per connected component? Where and how many are the arrows? Fortunately, at least on this we can answer:

Let Q be the quiver of \mathscr{S}_A . Let \mathscr{S}_{in} be the set of initial vertices, and \mathscr{S}_{un} the set of vertices containing (0, id). Then:

- (1) for all $S \in \mathscr{S}_{in}$, and for all $S', S'' \in \mathscr{S}_{un}$ in the same connected component, there is a bijection $Q(S, S') \cong Q(S', S'')$;
- (2) for all $S \in \mathscr{S}_{in}$, and for all $S', S'' \in \mathscr{S}_{un}$ in the same connected component, there is a bijection $Q(S, S') \cong Q(S, S'')$;
- (3) if *H* is a connected component in *S*^A_A with *s* vertices, then the number of initial vertices in *S*_A pointing at *H* is

$$\operatorname{in}_{\mathscr{K}}^{A} = s(|\operatorname{Aut}(A)| - 1).$$

"While the other mathematicians climb the mountains, the combinatorist sticks around in the jungle, and looks for frogs."

-M. D'Adderio

We need to get done with the fun part, now, and climb some mountain.

Attempts at classifying Skew Bracoids

In the set-theoretic world, there are notions of **normal subgroup** and **ideal of a skew brace**.

Likewise, for quivers, there are notions of **normal sugbroupoid** and **ideal of a skew bracoid**.

Let \mathscr{G} be a groupoid over Λ . A **subgroupoid** of \mathscr{G} is a subquiver that is a groupoid with the restricted operation. A subgroupoid \mathscr{H} is **normal** if $g^{-1} \circ h \circ g \in \mathscr{H}$ for all $h \in \mathscr{H}, g \in \mathscr{G}$ (compatible).

The expression $g^{-1} \circ h \circ g$ is well-defined **only when** h **is a loop**, whence the following:

A subgroupoid $\mathscr{H} \subseteq \mathscr{G}$ is normal in \mathscr{G} if and only if the **subgroupoid of loops** $\mathscr{H}^{\circlearrowright} \subseteq \mathscr{H}$ is normal in \mathscr{G} .

An **ideal** \mathscr{H} of a skew bracoid \mathscr{G} is a normal subgroupoid \mathscr{H} of \mathscr{G} such that every additive group $\mathscr{H}(\lambda, \Lambda)$ is normal in $\mathscr{G}(\lambda, \Lambda)$; and \mathscr{H} is stable under the left action \rightharpoonup .

We can take **left and right quotients** of groupoids (resp. skew bracoids) by normal subgroupoids (resp. ideals), and obtain new groupoids (resp. skew bracoids):

Proposition

Let \mathscr{G} be a connected groupoid, and hence complete of degree d, over a set of vertices Λ of cardinality n. Let \mathscr{N} be a normal subgroupoid such that all the connected components of \mathscr{N} have m vertices and are complete of degree k. Then, $\mathscr{N} \backslash \mathscr{G}$ is complete of degree d/k on a set of n/m vertices.

Examples: $\mathscr{G}^{\circlearrowright} \backslash \mathscr{G}$ is a groupoid with same vertices as \mathscr{G} , but with degree 1.

If \mathscr{H} is a **wide** normal subgroupoid of \mathscr{G} , then $\mathscr{H} \setminus \mathscr{G}$ is a **group**.

Groupoids of pairs

A principal homogeneous groupoid of degree 1 is a very special object.

For every pair of vertices (a, b), there is **exactly one** arrow $a \to b$. We denote it by [a, b]. Thus, such a groupoid is just the **groupoid of pairs** on the set of vertices Λ .

The composition \circ is the only one possible: $[a, b] \circ [b, c] = [a, c]$.

We denote by $\hat{\Lambda}$ the groupoid of pairs on Λ .

Question

A braiding on $\hat{\Lambda}$ corresponds to what structure on Λ ?

Answer

A group structure (kinda). More precisely, a **heap** structure.

Heaps

Definition

A heap is a set Λ with a ternary operation $\langle _, _, _ \rangle \colon \Lambda^3 \to \Lambda$, satisfying

$$egin{aligned} &\langle a,a,b
angle &=b \ &\langle a,b,b
angle &=a \ &\langle a,b,\langle b,c,d
angle
angle &=\langle a,c,d \ &\langle \langle a,b,c
angle, c,c,d
angle &=\langle a,b,d \end{aligned}$$

The map $[a, b] \otimes [b, c] \mapsto [a, \langle a, b, c \rangle] \otimes [\langle a, b, c \rangle, c]$ is a braiding on $\hat{\Lambda}$ if and only if $(\Lambda, \langle _, _, _, _))$ is a heap.

$\mathrm{Heaps}\leftrightarrow\mathrm{groups}$

If (G, \cdot) is a group, then it has a heap structure given by

$$\langle a, b, c \rangle := a - b + c.$$

If $(\Lambda, \langle --, --, --\rangle)$ is a heap, then every $b \in \Lambda$ provides a group structure with b as unit; given by

 $a \cdot_b c := \langle a, b, c \rangle.$

Heaps are "affine" groups.

(Like affine spaces and vector spaces: you go from one to the other by fixing a neutral element.)

Dream ...*

For every skew bracoid \mathscr{G} , we would like to find a maximal **subgroupoid of pairs** \mathscr{G}^P which is an **ideal**. The quotient $\mathscr{G}^P \setminus \mathscr{G}$ is thereby a **skew brace**, and we have squeezed \mathscr{G} in between (1) a **braided groupoid of pairs (fundamentally a heap)**, and (2) a **skew brace**:

$$\mathbb{1} \to \mathscr{G}^P \to \mathscr{G} \to \mathscr{G}^P \backslash \mathscr{G} \to \mathbb{1}.$$

Thus every skew bracoid would be an extension, made using two objects that we already know.

...REALITY

Although it is always possible to find a maximal subgroupoid of pairs \mathscr{G}^P (which is also normal), it is not always possible to find it σ -invariant.

E.g.
$$3 \stackrel{\frown}{\bigcirc} S_2 \stackrel{1}{\underset{2}{\longleftarrow}} S_3 \stackrel{\frown}{\underset{3}{\bigcirc}} 1$$

We try to do our best: find a bundle of normal subgroupoids which is **the widest** and **the "thinnest"** possible. But sometimes (as in the above example), even this "best we can do" is just taking the entire groupoid \mathscr{G} .

Thus, we have two "layers" that we understand: *(minimum degree)* heaps, and *(maximum degree)* skew braces; plus a number of **simple objects** in the middle, that can possibly be complicated

Possible classification programs

Idea 1:

Try to sandwich all skew bracoids between (1) a skew brace (below) and a simple object (above); or (2) a simple object (below) and a heap (above).

Try to classify the simple objects.

Assume that we have already "classified skew braces" (take them as a black box).

Idea 2:

Use the "elevated point" of skew bracoids, to attack the classification of skew braces from above.

In the "highest position" we have heaps, that are already fully understood: from there we can go down in a cascade, and try to classify (or at least count) skew braces.

Possible classification programs

Idea 1:

Try to sandwich all skew bracoids between (1) a skew brace (below) and a simple object (above); or (2) a simple object (below) and a heap (above).

Try to classify the simple objects.

Assume that we have already "classified skew braces" (take them as a black box).

Idea 2:

Use the "elevated point" of skew bracoids, to attack the classification of skew braces from above.

In the "highest position" we have heaps, that are already fully understood: from there we can go down in a cascade, and try to classify (or at least count) skew braces.

Hard, but a natural program

Possible classification programs

Idea 1:

Try to sandwich all skew bracoids between (1) a skew brace (below) and a simple object (above); or (2) a simple object (below) and a heap (above).

Try to classify the simple objects.

Assume that we have already "classified skew braces" (take them as a black box).

Idea 2:

Use the "elevated point" of skew bracoids, to attack the classification of skew braces from above.

In the "highest position" we have heaps, that are already fully understood: from there we can go down in a cascade, and try to classify (or at least count) skew braces.

Hard, but a natural program

Bonkers

Bedankt voor het luisteren! Hopelijk hebben jullie genoten :-)