Germs and Sylows for structure group of solutions to the Yang–Baxter equation VUB Algebra Seminar

Edouard Feingesicht (LMNO, Caen, France)

15th February 2023

Yang–Baxter Equation

Set-theoretical solution of the YBE (*Drinfeld '92*) (X, r) where X is a set and $r : X \times X \to X \times X$ a bijection, such that

 $r_1r_2r_1 = r_2r_1r_2$

where $r_i: X \times X \times X \to X \times X \times X$ acts on the coordinates *i* and *i* + 1.

For any X, r(x, y) = (y, x) defines a solution.

Definition (*Etingof-Schedler-Soloviev '99*)

Denote $r(x, y) = (\lambda(x, y), \rho(x, y))$. (X, r) is said to be:

• Involutive if $r^2 = id_{X \times X}$

• Left non-degenerate (resp. right) if $\lambda(x, -)$ (resp. $\rho(-, y)$) is a bijection for any x (resp. y).

Cycle sets

Cycle set (Rump '05)

(S,*) where S is a set and * a binary operation such that for any s in S the map $\psi(s) : t \mapsto s * t$ is bijective, and for all s, t, u in S

$$(s * t) * (s * u) = (t * s) * (t * u).$$

Example:
$$S = \{s_1, \ldots, s_n\}$$
 and $s * s_i = s_{\sigma(i)}$, with $\sigma = (12 \ldots n)$
 $(\psi(s_i) = \sigma)$.

Theorem (Rump '05)

There is a bijection correspondence

involutive left non-degenerate solutions \longleftrightarrow Cycle sets

Structure groups

Definition-Proposition (*Etingof-Schedler-Soloviev '99, Rump '05*) Define the structure group G (resp. monoid M) by the presentation

$$\langle X \mid xy = x'y' \text{ if } r(x,y) = (x',y') \rangle \quad \longleftrightarrow \quad \langle S \mid s(s*t) = t(t*s) \rangle.$$

Example: $S = \{s_1, s_2\}$ with $\psi(s_i) = (12)$ yields $M = \langle s_1, s_2 | s_1^2 = s_2^2 \rangle^+$. Suppose S finite and fix an enumeration $S = \{s_1, \ldots, s_n\}$.

Representation (Dehornoy '15)

We define the morphism $\Theta: M \to \operatorname{GL}_n(\mathbb{Q}[q,q^{-1}])$ induced by

$$s_i \mapsto D_i P_{s_i} = \operatorname{diag}(1, \ldots, q, \ldots, 1) \cdot P_{\psi(s_i)}.$$

Example:
$$\Theta(s_1) = \begin{pmatrix} q \ 0 \\ 0 \ 1 \end{pmatrix} \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix} = \begin{pmatrix} 0 \ q \\ 1 \ 0 \end{pmatrix}$$
 et $\Theta(s_2) = \begin{pmatrix} 0 \ 1 \\ q \ 0 \end{pmatrix}$.

• A monomial matrix *m* decomposes uniquely as $m = D_m P_m$.

Dehornoy's calculus

Definition (Dehornoy '15)

Define inductively $\Omega_1(t) = t$ then

$$egin{aligned} \Omega_k(s_{i_1},\ldots,s_{i_k}) &= \Omega_{k-1}(s_{i_1},\ldots,s_{i_{k-1}})*\Omega_{k-1}(s_{i_1},\ldots,s_{i_{k-2}},s_{i_k}) \in S \ & \Pi_k(s_{i_1},\ldots,s_{i_k}) &= \Omega_1(s_{i_1})\ldots\Omega_k(s_{i_1},\ldots,s_{i_k}) \in M. \end{aligned}$$

$$\Omega_3(s, t, u) = (s * t) * (s * u) = \Omega_3(t, s, u)$$

 $\Pi_2(s, t) = s(s * t) = \Pi_2(t, s)$

Lemma

Any word $s_{i_1} \dots s_{i_k}$ in S^* can be written as a Π_k .

 $st u = s(s * t')u = s(s * t')((s * t') * u') = s(s * t')((s * t') * (s * u'')) = \Pi_3(s, t', u'').$

Cayley graph Fix s, t, u in S.

I-Structure

 \mathfrak{S}_n acts by conjugation on diagonal matrices: $P_{\sigma}D_s = D_{\sigma^{-1}(s)}P_{\sigma}$

Proposition

$$D_{\Theta(\prod_k(s_{i_1},\ldots,s_{i_k}))}=D_{s_{i_1}}\ldots D_{s_{i_k}}$$

$$\Theta(\Pi_2(s,t)) = \Theta(s(s*t)) = D_s P_s D_{s*t} P_{s*t} = D_s D_t P_{\psi(s*t)\psi(s)} = \Theta(t(t*s)).$$

Theorem

G is the (left) fraction group of M.

Theorem (I-structure)

The only permutation matrix in $\Theta(G)$ is the identity.

- In other words, $\Theta(f)$ is uniquely determined by $D_{\Theta(f)}$ for f in G.
- $G < \mathbb{Z}^n \rtimes \mathfrak{S}_n$ such that projecting on the 1st coordinate is bijective.

Garside structure

Theorem

 Θ is a faithful representation.

Theorem (Chouraqui '10)

M is a Garside monoid.

Example:
$$S = \{s_1, s_2, s_3\}, \psi(s_i) = (123), f_1 = \begin{pmatrix} 0 & q^3 & 0 \\ 0 & 0 & 1 \\ q & 0 & 0 \end{pmatrix}$$
 and $f_2 = \begin{pmatrix} 0 & 0 & q^5 \\ q & 0 & 0 \\ 0 & q^2 & 0 \end{pmatrix}$

- Length: sum of powers $(\lambda(f_1) = 3 + 0 + 1 = 4, \lambda(f_2) = 8)$.
- Left divisibility: by the rows $(3 \le 5, 0 \le 1, 1 \le 2$ thus $f_1 \preceq f_2)$.
- Right divisibility: by the columns $(3 \leq 2 \text{ thus } f_1 \leq_r f_2)$.
- GCD/LCM: min/max $(f_1 \wedge f_2 = \begin{pmatrix} 0 & q^3 & 0 \\ 0 & 0 & 1 \\ q & 0 & 0 \end{pmatrix}, f_1 \vee_r f_2 = \begin{pmatrix} q & 0 & 0 \\ 0 & q^3 & 0 \\ 0 & 0 & q^5 \end{pmatrix}).$

•
$$\Delta = \prod_n(s_1, \ldots, s_n) = \begin{pmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \mathsf{P}.$$

 \Longrightarrow Solution to the word problem, normal forms, torsion-free, etc.

A proof

• Dehornoy used a result of Rump to obtain the previous results.

Theorem (Rump '05)

$$(X, r)$$
 finite, $Inv + LND \Rightarrow (X, r) RND \longleftrightarrow T : \frac{S \rightarrow S}{s \mapsto s * s}$ is bijective.

 \mathfrak{S}_n acts by conjugation on diagonal matrices $\Longrightarrow P_s^{-1}D_t = D_{s*t}P_s^{-1}$

Proof.

Suppose
$$s * s = s' * s'$$
. Let $g = ss'^{-1}$.

 $g = D_s P_s P_{s'}^{-1} D_{s'}^{-1} = D_s P_s D_{s'*s'}^{-1} P_{s'}^{-1} = D_s P_s D_{s*s}^{-1} P_{s'}^{-1} = D_s D_s^{-1} P = P$

By the I-structure, P = 1 thus s = s'.

Dehornoy's class and germ

 $s_i^{[k]}$ the unique element of G with diagonal part D_i^k .

Proposition (Dehornoy's class)

There exists $d \in \mathbb{N}$ such that $s^{[d]}$ is diagonal for all $s \in S$.

Example: If $S = \{s_1, \ldots, s_n\}$ et $\psi(s_i) = (12 \ldots n)$, d = n. • The quotient $\overline{G} = G/\langle s^{[d]} \rangle$ is finite.

Theorem (Germ)

 (M, Δ^{d-1}) can be "recovered" from \overline{G} .

- Similar to the role of Coxeter groups for spherical type Artin groups.
- $G \rightarrow \overline{G}$ amounts to evaluating $q = \exp(\frac{2i\pi}{d})$.
- "Recovering" M amounts to forgetting $q^d = 1$ in the products in \overline{G} .

 $s_2^{[3]} = \begin{pmatrix} 0 & 1 \\ q^3 & 0 \end{pmatrix}$

A conjecture on the class

Using Vendramin's enumeration :

n	$d_{\max}(n)$
3	3
4	4
5	6
6	8
7	12
8	15
9	24
10	30
Maximum of the classes of cycle sets with size n	

1

Conjecture (F.)

 $d_{\max}(n)$ is equal to "Maximum of products of distinct partitions of n".

- Example: n = 9 = 2 + 3 + 4, and $2 \cdot 3 \cdot 4 = 24$ is maximal.
- A034893 on the OEIS. And Došlić gave an explicit formula (with T_m).

More on Dehornoy's class

Denote $\mathcal{G} < \mathfrak{S}_n$ the group generated by the $\psi(s)$.

Proposition

```
If T : s \mapsto s * s, we have : o(T) \mid d \mid \#\mathcal{G} \mid d^n.
In particular, d and \#\mathcal{G} have the same prime divisors.
```

Proposition (F.)

If s * s = s for all s and G is abelian, the conjecture is verified.

Proof.

•
$$s * s = s \Rightarrow s^{[k]} = \prod_k (s, \dots, s) = s^k$$

•
$$s^k$$
 diagonal $\Leftrightarrow o(\psi(s)) \mid k$.

•
$$\mathcal{G}$$
 abelian $\Rightarrow \exists f \in M$, $o(\psi(f)) = e(\mathcal{G})$.

• $o(\psi(s)) \mid o(\psi(f)) \leq \max\{\operatorname{lcm}(a_1, \ldots, a_k) \mid a_1 + \cdots + a_k = n\}.$

Some histograms

Sylow for the germs

Theorem (Lebed-Ramírez-Vendramin '22, F.)

 $G^{[k]} = \langle s^{[k]} \rangle$ induces a cycle set structure on $S^{[k]} = \{s^{[k]}\}_{s \in S}$. Moreover, its class is $\frac{d}{d \wedge k}$ (if $k \leq d$).

• $G^{[k]}$ is the subgroup of G of matrices with coefficients powers that are multiples of k.

• Decompose
$$d = p_1^{a_1} \dots p_r^{a_r}$$
, and let $\alpha_i = p_i^{a_i}, \beta_i = \frac{d}{\alpha_i}$.

Lemma

The $\overline{G}^{[\beta_i]}$ are p_i -Sylow of \overline{G} , they commute two by two and their product is \overline{G} .

(*H*, *K* < *G* commute means HK = KH, i.e $\forall h, k, \exists h', k', hk = k'h'$.) • We decomposed *S* in cycle sets with classes that are prime powers!

An example

Let
$$S = \{s_1, ..., s_6\}$$
 with $\psi(s_i) = (12...6) = \sigma$. Then:

•
$$s_i * s_i = s_{\sigma(i)} \Rightarrow T = \sigma$$

•
$$\psi(s_{i_1} \dots s_{i_k}) = \sigma^k \Rightarrow d = 6$$

•
$$\mathcal{G} = \langle \sigma \rangle \simeq \mathbb{Z}/6\mathbb{Z}$$

- $G^{[3]}$ is generated by the $s_i^{[3]} = D_i^3 P_{\sigma^3}$, where $\sigma^3 = (14)(25)(36)$.
- *S*^[3] is of class 2

•
$$\overline{G} = \overline{G}^{[2]}\overline{G}^{[3]}$$
, $s_i = (s_i^{[2]})^2 \cdot s_{\sigma^4(i)}^{[3]}$

Reconstructing

Denote $\sum_{n=1}^{d} \zeta_{n}^{d}$ the group of monomial matrices with coefficient powers of ζ_{d} . Define $\iota_{d}^{dk} : \Sigma_{n}^{d} \hookrightarrow \Sigma_{n}^{dk}$ sending ζ_{d} to ζ_{dk}^{k} .

- Let $(S, *_1)$ and $(S, *_2)$ be two cycle set structure on S.
- Suppose their classes d_1 and d_2 are coprime.
- Denote $\overline{G}_i < \Sigma_n^{d_i}$ their germs.
- Let $d = d_1 d_2$ and $\overline{G} = \iota^d_{d_1}(\overline{G}_1)\iota^d_{d_2}(\overline{G}_2)$.
- Bézout $\Rightarrow \exists u, v \in \mathbb{N}, \ d_2u + d_1v = 1[d] \Rightarrow \forall s \in S, \exists g \in \overline{G}, D_g = D_s.$

Does \overline{G} induces a cycle set structure on S? • No in general. Yes if \overline{G}_1 and \overline{G}_2 commute in $\sum_{n=1}^{d} \frac{1}{2}$ Example

$$S = \{s_1, \dots, s_6\} \text{ with } (S', *_1) \text{ et } (S'', *_2) \text{ given by:} \\ \psi_1(\{s'_1, \dots, s'_6\}) = (14)(25)(36) \qquad d_1 = 2 \\ \psi_2(\{s''_1, s''_3, s''_5\}) = (135) \qquad \psi_2(\{s''_2, s''_4, s''_6\}) = (246) \qquad d_2 = 3 \end{cases}$$

• We find: $\psi(\{s_1, s_3, s_5\}) = (125634), \ \psi(\{s_2, s_4, s_6\}) = (145236)$

r 1

Reconstructing

Theorem (F.) If $(S, *_1)$ et $(S, *_2)$ satisfy a "mixed" cycle set condition:

 $\forall s, t, u \in S, (s *_1 t) *_2 (s *_1 u) = (t *_2 s) *_1 (t *_2 u)$

Then \overline{G} previously defined induces a cycle set structure on S of class (dividing) $d = d_1 d_2$.

We can restrict to cycle sets of class a prime-power to classify all cycle sets!

For n=10, there is \sim 4.9m cycle sets, with \sim 3.3m of class a prime-power (67%)

Indecomposability

Definition

(S,*) is said to be decomposable if there exists a partition $S = X \sqcup Y$ such that $(X,*_{|_X}), (Y,*_{|_Y})$ are cycle sets. Otherwise (S,*) is called indecomposable.

• Up to a change of enumeration, S is decomposable iff the generators are diagonal by same blocks.

Proposition

If S is indecomposable and $d = p^k$, then $n = p^l$.

• We can "restrict" to cycle sets of size and class powers of the same prime.

Example: (S, *) with n = 16 and d = 30 splits as cycle sets of class 2, 3 and 5. Those with class 3 and 5 must be decomposable.

Future work

Better understand d

Conjecture, relation with decomposability (indec. $\Rightarrow d \le n$, relation between d_S and d_X, d_Y)

- S Characterizing balanced elements and germs isomorphism.
- Optime the notion of Hecke algebra associated to a germ.
- Generalize the approach to Weyl groups
 G < T ⋊ W, representation, class, etc.

Thank you for your attention!