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Problem (Drinfeld)

Study set-theoretic solutions (to the YBE).

A set-theoretic solution (to the YBE) is a pair (X, r), where X is a
set and r : X × X → X × X is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).



Examples:

I The flip: r(x, y) = (y, x).
I Let X be a set and σ, τ : X → X be bijections such that
στ = τσ. Then

r(x, y) = (σ(y), τ(x))

is a solution.
I Let X = Z/n. Then

r(x, y) = (2x− y, x) and r(x, y) = (y− 1, x + 1)

are solutions.



More examples:
If X is a group, then

r(x, y) = (xyx−1, x) and r(x, y) = (xy−1x−1, xy2)

are solutions.



Problem
Construct (finite) set-theoretical solutions.

We deal with non-degenerate solutions, i.e. solutions

r(x, y) = (σx(y), τy(x)),

where all maps σx : X → X and τx : X → X are bijective.



If R is a ring, the operation

x ◦ y = x + xy + y

is always associative with neutral element 0. We say that R is a
radical ring if (R, ◦) is a group.

Example of a radical ring:

R =

{
2x

2y + 1
: x, y ∈ Z

}
.



Theorem (Rump)

Let A be a radical ring. Then r : A× A→ A× A,

r(a, b) = (−a + a ◦ b, (−a + a ◦ b)′ ◦ a ◦ b)

is a non-degenerate solution such that r2 = idA×A.

Here z′ denotes the inverse of the element z with respect to the
circle operation.



Do we need radical rings to produce set-theoretic solutions sim-
ilar to those of Rump?



Definition:
A skew brace is a triple (A,+, ◦), where (A,+) and (A, ◦) are
groups such that

a ◦ (b + c) = a ◦ b− a + a ◦ c

holds for all a, b, c ∈ A.



Examples:

I Radical rings
I Trivial skew braces: Any additive group G with g ◦ h = g + h

for all g, h ∈ A.
I An additive exactly factorizable group G (i.e. G = A + B for

disjoint subgroups A and B) is a skew brace with

g ◦ h = a + h + b,

where g = a + b, a ∈ A and b ∈ B.



Skew braces produce solutions:

Theorem (with Guarnieri)

Let A be a skew brace. Then rA : A× A→ A× A,

rA(a, b) = (−a + a ◦ b, (−a + a ◦ b)′ ◦ a ◦ b)

is a non-degenerate solution. Moreover,

r2
A = idA×A ⇐⇒ (A,+) is abelian.



Skew braces classify solutions. We need the structure group of
the solution (first considered by Etingof, Schedler and Soloviev):

G(X, r) = 〈X : x ◦ y = u ◦ v whenever r(x, y) = (u, v)〉.

Theorem (with Smoktunowicz)

Let (X, r) be a non-degenerate solution. Then there exists a
unique skew brace structure over G(X, r) such that its
associated solution rG(X,r) satisfies

rG(X,r)(ι× ι) = (ι× ι)r,

where ι : X → G(X, r) is the canonical map.



Skew braces have a universal property:

Theorem (with Smoktunowicz)

Let (X, r) be a non-degenerate solution. If B is a skew brace
and f : X → B is a map such that

(f × f )r = rB(f × f ),

then there exists a unique homomorphism ϕ : G(X, r)→ B of
skew braces such that

ϕι = f and (ϕ× ϕ)rG(X,r) = rB(ϕ× ϕ).

These results are based on similar results by Etingof, Schedler
and Soloviev, Rump, and Lu, Yan and Zhu.



Radical rings are examples of skew braces!

This means that one can use method from ring theory and group
theory to study solutions!



Let us consider non-degenerate involutive solutions.
If r2 = idX×X, then

x = σσx(y)(τy(x)), y = ττy(x)(σx(y)).

Facts:
I The map T : X → X, x 7→ τ−1

x (x), is bijective.
I TσxT−1 = τ−1

x for all x ∈ X.
I The groups 〈σx : x ∈ X〉 and 〈τx : x ∈ X〉 are isomorphic as

permutation groups on X.



Important fact:
Let (X, r) be a non-degenerate involutive solution,

r(x, y) = (σx(y), τy(x)).

For x, y ∈ X we define

x ∼ y⇐⇒ σx = σy.

This equivalence relation induces a solution on X/∼,

Ret(X, r) = (X/∼, r),

the retraction of X.



The solution (X, r) is retractable if there exist x, y ∈ X with x 6= y
such that σx = σy and it is multipermutation if there exist n ≥ 1
such that |Retn(X, r)| = 1.

The number of (not multipermutation) involutive solutions.

n 4 5 6 7 8
solutions 23 88 595 3456 34528

not multipermutation 2 4 41 161 2375



Example:
Let X = {1, 2, 3, 4} and

r(x, y) = (σx(y), τy(x)),

where

σ1 = σ2 = τ1 = τ2 = id, σ3 = τ3 = (34), σ4 = τ4 = (12)(34).

Then Ret(X, r) is the solution over {1, 2, 3} given by

σ1 = τ1 = id, σ2 = σ3 = τ2 = τ3 = (23).

Since Ret2(X, r) is then the flip over {1, 2}, it follows that Ret3(X, r)
has only one element.



Are there easier ways of detecting multipermutation solutions?
Yes! There are results related to the permutation group

G(X, r) = 〈σx : x ∈ X〉

of the solution.



Facts
Let (X, r) non-degenerate, finite and involutive.

1. If G(X, r) is cyclic, then (X, r) is multipermutation.
2. If G(X, r) is abelian, then (X, r) is multipermutation.
3. If G(X, r) has abelian Sylow subgroups and has the Sylow

tower property, then (X, r) is multipermutation.

(1) was proved by Rump; (2) was proved by Cedó, Jespers and
Okniński and independently by Cameron and Gateva–Ivanova;
(3) was proved by Ballester–Bolinches, Meng and Romero.



With Bachiller and Cedó we found a characterization of multiper-
mutation solutions in terms of left orderability of groups.

A group G is said to be left orderable if < is a total ordering on
G such that the following holds:

x < y =⇒ zx < zy

for all x, y, z ∈ G.

Examples:
Torsion-free abelian groups, free groups, braid groups.



Theorem (with Bachiller and Cedó)

Let (X, r) be a non-degenerate finite involutive solution. Then
(X, r) is multipermutation if and only if the group G(X, r) is left
orderable.

The implication =⇒ was proved by Jespers and Okniński and
independently by Chouraqui.



Theorem (with Lebed)

A finite involutive non-degenerate solution (X, r) is
multipermutation if and only if G(X, r) is diffuse.

This result implies the following:

Corollary (with Acri and Lutowski)

Let (X, r) be a finite non-degenerate involutive solution. If all
Sylow subgroups of G(X, r) are cyclic, then (X, r) is
multipermutation.



Diffuse groups appear in connection with the following well-known
open problem:

Kaplansky problem

Let G be a torsion-free group. Does the group algebra C[G]
have only trivial units?

Recall that a trivial unit of C[G] is an element of the form λg,
where λ ∈ C \ {0} and g ∈ G.



Kaplansky’s question has an affirmative answer if G is abelian.



Kaplansky’s question has an affirmative answer if G admits a left
ordering.



Kaplansky’s question has an affirmative solution if G has the
unique product property.



A group G has the unique product property if for all finite non-
empty subsets A and B of G there exists x ∈ G that can be written
uniquely as x = ab with a ∈ A and b ∈ B.

Diffuse groups have the unique product property. Nobody knows
whether these two notions are equivalent.



When G(X, r) has the unique product property?

Example (Jespers and Okniński)
Let X = {1, 2, 3, 4} and r(x, y) = (σx(y), τy(x)) be the irretractable
solution given by

σ1 = (12), σ2 = (1324), σ3 = (34), σ4 = (1423),

τ1 = (14), τ2 = (1243), τ3 = (23), τ4 = (1342).

The group G(X, r) with generators x1, x2, x3, x4 and relations

x2
1 = x2x4, x1x3 = x3x1, x1x4 = x4x3,

x2x1 = x3x2, x2
2 = x2

4, x2
3 = x4x2,

does not have the unique product property.



Let x = x1x−1
2 and y = x1x−1

3 and

S = {x2y, y2x, xyx−1, (y2x)−1, (xy)−2, y, (xy)2x, (xy)2,

(xyx)−1, yxy, y−1, x, xyx, x−1}.

To prove that G(X, r) does not have the unique product property
it is enough to prove that each s ∈ S2 = {s1s2 : s1, s2 ∈ S} admits
at least two different decompositions of the form s = ab = uv for
a, b, u, v ∈ S.

This set S is taken from the work of Promislow.



Our G(X, r) is a finitely presented group. How can we do all
these calculations?

We use a faithful linear representation of G(X, r):

x1 7→

( 0 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, x2 7→

( 0 0 0 1 0
0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

)
,

x3 7→

( 1 0 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 0 0 1

)
, x4 7→

( 0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
0 0 0 0 1

)
.

Theorem (Etingof, Schedler and Soloviev)

Let (X, r) be a finite involutive non-degenerate solution. If
|X| = n, then G(X, r) ↪→ GL(n + 1,Z).



The same trick works for almost all our solutions but there some
only eight open cases!

Example:
Let X = {1, . . . , 8} and r(x, y) = (σx(y), τy(x)), where

σ1 = σ2 = (3745), τ1 = τ2 = (3648),

σ3 = σ4 = (1826), τ3 = τ4 = (1527),

σ5 = σ7 = (13872465), τ5 = τ7 = (16542873),

σ6 = σ8 = (17842563), τ6 = τ8 = (13562478).

Then (X, r) is not a multipermutation solution, so G(X, r) is not
diffuse. Does G(X, r) have the unique product property?



Another approach through “ring theory”.

Fact
Let (X, r) be an involutive non-degenerate finite solution. Then
(X, r) is multipermutation if and only if the brace G(X, r) is right
nilpotent.

The connection between multipermutation solutions and right
nilpotency of braces depends on the work of several different au-
thors: Cedó, Jespers, Okniński, Gateva–Ivanova, Rump, Smok-
tunowicz.



We say that a group G admits a factorization if G = AB for sub-
groups A and B of G.

Theorem (Ito)

Let G = AB be a factorizable group. If A and B are abelian, then
G is meta-abelian (i.e. [G,G] is abelian).

What about skew brace factorizations?



For skew braces one needs to consider strong left ideals.

A left ideal of a skew brace A is an additive subgroup I of A such
that −a+a◦ x ∈ I for all a ∈ A and all x ∈ I. Strong left ideals are
left ideals that are normal in the additive subgroup of the skew
brace. An ideal is a strong left ideal that is also normal in the
multiplicative group of the skew brace.

{left ideals} ( {strong left ideals} ( {ideals}



We found an analog of Ito theorem for skew braces.

Theorem (with Jespers, Kubat and Van Antwerpen)

Let A = B ◦ C be a factorization of the skew brace A into strong
left ideals. If B and C are trivial as skew braces, then A is
meta-trivial.

A skew brace A is meta-trivial if there exists a trivial ideal I such
that A/I is a trivial skew brace.



Since G(X, r) is a quotient of the brace G(X, r), we obtain the
following corollary:

Corollary

Let (X, r) be a finite non-degenerate involutive solution. If the
brace G(X, r) admits a factorization into trivial strong left ideals,
then (X, r) is multipermutation.



It would be nice to find a good analog of the following result:

Theorem (Kegel–Wielandt)

Let G = AB be a finite factorizable group. If A and B are
nilpotent, then G is solvable.

The recent construction of simple braces of Cedó, Jespers and
Okniński shows that finding a naive brace-theoretic version of
this theorem is not possible.



Thanks!


