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In 1992 Drinfeld propose to study set-theoretical solutions of the
Yang–Baxter equation (YBE).

A set-theoretical solution is a pair (X, r), where X is a set and
r : X × X → X × X is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).



Examples:

I The flip: r(x, y) = (y, x).
I Let X be a set and σ, τ : X → X be bijections such that
στ = τσ. Then

r(x, y) = (σ(y), τ(x))

is a solution.



More examples:
Let X be a group. Then:

I r(x, y) = (xyx−1, x) is a solution.
I r(x, y) = (xy−1x−1, xy2) is a solution.



Main problem

Construct (finite) set-theoretical solutions.

Applications:
I Representations of the braid group.
I Combinatorial knot theory.



The first papers devoted to set-theoretical solutions are those
of Etingof, Schedler and Soloviev and Gateva-Ivanova and Van
den Bergh.

Both papers deal with non-degenerate involutive solutions, i.e.
solutions r : X × X → X × X such that r2 = id and

r(x, y) = (σx(y), τy(x)),

where σx and τx are permutations of X for each x ∈ X.



Let us review the theory of non-degenerate involutive solutions.



Number s(n) of finite non-degenerate involutive solutions of size n.

n 1 2 3 4 5 6 7 8 9
s(n) 1 2 5 23 88 595 3456 34528 ?

Problems

I Compute s(9).
I Estimate s(n) for n→∞.



The structure group of a solution (X, r) is defined as

G(X, r) = 〈X : xy = uv if r(x, y) = (u, v)〉.

The group G(X, r) acts on X by

x · y = σx(y), x, y ∈ X.



Theorem (Etingof, Schedler, Soloviev)

Let (X, r) be an involutive non-degenerate solution. Then there
exists a bijective 1-cocycle

π : G(X, r)→ Z(X)

such that x 7→ x, x ∈ X.

Recall that π is a 1-cocycle if and only if

π(gh) = π(g) + g · π(h)

for all g, h ∈ G(X, r).



Corollary

Let (X, r) be an involutive non-degenerate solution. Then the
canonical map X → G(X, r) is injective.



Theorem (Etingof, Schedler, Soloviev)

Let (X, r) be a finite involutive non-degenerate solution. Then
G(X, r) is solvable.



Theorem (Gateva-Ivanova and Van den Bergh)

Let (X, r) be a finite involutive non-degenerate solution. Then
G(X, r) is torsion-free



Theorem (Chouraqui)

Let (X, r) be a finite involutive non-degenerate solution. Then
G(X, r) is a Garside group.



One can use bijective 1-cocycles to classify solutions but these
cocycles are hard to compute. Braces were introduced by Rump
as a tool for studying non-degenerate involutive solutions.



Definition:
A brace1 is an abelian group (A,+) with another group structure,
defined by (a, b) 7→ ab, such that

a(b + c) + a = ab + ac

for all a, b, c ∈ A.

Examples:
I Z/2× Z/4 with (a, b)(c, d) = (a + c, b + d + 2(a + b)d).
I Z/p× Z/p with (a, b)(c, d) = (a + c + bd, b + d).

1This definition was given by Cedó, Jespers and Okniński.



Theorem (Rump)

Let A be an abelian group. There exists a bijective
correspondence between

I braces with additive group isomorphic to A, and
I pairs (G, π), where π : G→ A is a bijective 1-cocycle.



Theorem (Rump)

Let A be a brace. Then rA : A× A→ A× A,

rA(a, b) = (ab− a, (ab− a)−1ab),

is a non-degenerate involutive solution of the YBE.



Now we can translate the classification result of Etingof, Schedler
and Soloviev into the language of braces.

Theorem
Let (X, r) be an involutive non-degenerate solution. Then there
exists a unique brace structure over G(X, r) such that its
associated solution rG(X,r) satisfies

rG(X,r)|X×X = r.



Radical rings are examples of braces!

This means that one can use methods from ring theory to study
solutions of the YBE.



Using results of Catino and Rizzo and Bachiller one can classify
finite braces. With Guarnieri we computed the number b(n) of
braces of size n (up to isomorphism).

n 1 2 3 4 5 6 7 8 9 10
b(n) 1 1 1 4 1 2 1 27 4 2

n 11 12 13 14 15 16 17 18 19 20
b(n) 1 10 1 2 1 357 1 8 1 11

n 21 22 23 24 25 26 27 28 29 30
b(n) 2 2 1 96 4 2 37 9 1 4

Problem
Compute b(2k) for k ≥ 5.



Important fact:
Let (X, r) be a non-degenerate involutive solution,

r(x, y) = (σx(y), τy(x)).

For x, y ∈ X we define

x ∼ y⇐⇒ σx = σy.

Then (X, r) induces a solution on Ret(X, r) = X/∼.

An involutive solution (X, r) is said to be retractable if there exist
x, y ∈ X with x 6= y such that σx = σy. We say that (X, r) is
multipermutation if there exists n such that Retn(X, r) has only
one element.



Conjecture (Gateva-Ivanova, 2004)

Let (X, r) be a non-degenerate involutive solution with X finite.
Assume that r(x, x) = (x, x) for all x ∈ X. Then σx = σy for some
x 6= y.

Cedó, Jespers y Okniński and independently Gateva-Ivanova
and Cameron proved that the conjecture is true if the group

L(X, r) = 〈σx : x ∈ X〉

is abelian.



Here there is a counterexample:

Let X = {1, . . . , 8} and

r(x, y) = (ϕx(y), ϕy(x)),

where

ϕ1 = (57), ϕ2 = (68),

ϕ3 = (26)(48)(57), ϕ4 = (15)(37)(68),

ϕ5 = (13), ϕ6 = (24),

ϕ7 = (13)(26)(48), ϕ8 = (15)(24)(37).



This counterexample was found using extensions of solutions.
This theory of extensions and the corresponding cohomology
of solutions was later developed in collaboration with Victoria
Lebed.



Do we really understand retractability?



A group G is left orderable if there exists a total order < such
that x < y =⇒ zx < zy for all x, y, z ∈ G.

Theorem (with Bachiller and Cedó)

A non-degenerate involutive solution (X, r) with |X| ≥ 3 is a
multipermutation solution if and only if the group G(X, r) is left
orderable.

Remark:
The implication⇒ was proved by Chouraqui and independently
by Jespers and Okniński.



What if we want to study non-involutive solutions? Things are
more complicated. . .



One still has the structure group but now in general the canon-
ical map X → G(X, r) is not injective!

Example:
Let X = {1, 2, 3, 4}, σ = (12) and τ = (34). Then (X, r), where

r(x, y) = (σ(y), τ(x))

is a solution. In G(X, r):

x1x1 = xσ(1)xτ(1) = x2x1 =⇒ x1 = x2.



One still has the structure group but now in general G(X, r) has
torsion and it is not solvable.

Example:
Let G be a non-abelian finite simple group and let X be a non-
trivial conjugacy class of G. Then

r(x, y) = (xyx−1, x)

is a solution. But:
I The commutator of G(X, r) is a nontrivial finite group!
I G(X, r) admits a quotient isomorphic to G, so G(X, r) is not

solvable!



Do we still have the bijective 1-cocycle? Yes, but we need to
replace the free abelian group on X by

A(X, r) = 〈X : y1y = y2y1〉,

where
(x, y) r−→ (x1, y1)

r−→ (x2, y2).

Theorem (Lu, Yan, Zhu; Soloviev)

Let (X, r) be a non-degenerate solution. Then there exists a
bijective 1-cocycle

π : G(X, r)→ A(X, r).



Definition:
A skew brace is a group (A,+) with another group structure,
defined by (a, b) 7→ ab, such that

a(b + c) = ab− a + ac

for all a, b, c ∈ A.



Skew braces have connections with different topics: rings, near-
rings, triply factorizable groups, combinatorial knot theory, regu-
lar subgroups, Hopf–Galois extensions. . .



Theorem (with Smoktunowicz)

Let A be an (not necessarily) additive group that admits an
exact factorization A = B + C. Then

aa′ = b + a′ + c,

where a = b + c, is a skew brace with additive group A and
multiplicative group B× C.

Proof: Use the bijective map f : B × C → A, (b, c) 7→ b − c, to
transport the structure of B× C into A.



As in the classical case, skew braces are equivalent to bijective
1-cocycles. The 1-cocycles have values in an arbitrary group!



To construct non-degenerate solutions with skew braces we need
the following lemma.

Lemma
Let A be a skew brace. Then λ : (A, ·)→ Aut(A,+), a 7→ λa,
where λa(b) = −a + ab, is a group homomorphism.



Now we can construct non-degenerate solutions!

Theorem
Let A be a skew brace. Then rA : A× A→ A× A,

rA(a, b) = (λa(b), λa(b)−1ab),

is a non-degenerate solution of the YBE.



Corollary (with Smoktunowicz)

Let A be a skew brace. Then (A, rA) is a biquandle.

The pair (A, rA) is a biquandle if and only if for each a ∈ A there
exists a unique b ∈ A such that

r(a, b) = (a, b).

Biquandles are those solutions of the YBE that can be used to
construct a coloring invariant of a knot. This means that one
could use skew braces in combinatorial knot theory.



Theorem (with Smoktunowicz)

Let A be a finite skew brace. Then the solution rA a permutation
of even order. Moreover, the order of rA is

2 exp(G/Z(G)),

where G is the additive group of the skew brace.



We translate the results of Lu, Yan, Zhu and Soloviev in the lan-
guage of skew braces.

Theorem
Let (X, r) be a non-degenerate solution. Then there exists a
unique skew brace structure over G(X, r) such that its
associated solution rG(X,r) satisfies

rG(X,r)(ι× ι) = (ι× ι)r,

where ι : X → G(X, r) is the canonical map.



Based on the results of Catino and Rizzo, we can construct small
skew braces. Let c(n) be the number of non-isomorphic skew
braces of size n.

n 1 2 3 4 5 6 7 8
c(n) 1 1 1 4 1 6 1 47

n 9 10 11 12 13 14 15 16
c(n) 4 6 1 38 1 6 1 1605

n 17 18 19 20 21 22 23 24
c(n) 1 49 1 43 8 6 1 855

n 25 26 27 28 29 30 31 32
c(n) 4 6 101 29 1 36 1 ?



Problems:
I Classify simple skew braces.
I Develop the cohomology and the theory of extensions of

non-involutive solutions and skew braces.
I Study knot invariants produced by skew braces and their

cohomology.
I Construct/enumerate skew braces of small size.
I Is there a skew brace with solvable additive group and

non-solvable multiplicative group?
I Is there a skew brace with nilpotent multiplicative group

and non-solvable additive group?



Thanks!


