Fomin and Kirillov algebras

Leandro Vendramin

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
Marburg, Germany
Nichols Algebras and Weyl Groupoids Oberwolfach, October 2012

In 1995 Fomin \& Kirillov introduced the quadratic algebras \mathcal{E}_{n} to study the combinatorics of the cohomology of flag manifolds.

Definition:

Let \mathcal{E}_{n} be the algebra (of type A_{n-1}) with generators $x_{(i j)}$, where $i, j \in\{1, \ldots, n\}$, and relations

$$
\begin{aligned}
& x_{(i j)}+x_{(j i)}=0 \\
& x_{(i j)}^{2}=0 \\
& x_{(i j)} x_{(j k)}+x_{(j k)} x_{(k i)}+x_{(k i)} x_{(i j)}=0 \\
& x_{(i j)} x_{(k l)}=x_{(k l)} x_{(i j)}
\end{aligned}
$$

for any distinct i, j, k, l.

Remarks:

- \mathcal{E}_{n} is quadratic,
- \mathcal{E}_{n} is graded: $\operatorname{deg}\left(x_{(i j)}\right)=1$,
- \mathcal{E}_{n} provides a solution for the classical Yang-Baxter equation:

$$
\left[x_{(i j)}, x_{(j k)}\right]=\left[x_{(j k)}, x_{(i k)}\right]+\left[x_{(i k)}, x_{(i j)}\right]
$$

where $[u, v]=u v-v u$ is the usual commutator.

Example:

The algebra \mathcal{E}_{3} can be presented with generators
$x_{(12)}, x_{(23)}, x_{(13)}$ and relations

$$
\begin{gathered}
x_{(12)}^{2}=x_{(23)}^{2}=x_{(13)}^{2}=0 \\
x_{(12)} x_{(23)}+x_{(23)} x_{(13)}=x_{(12)} x_{(13)}, \\
x_{(23)} x_{(12)}+x_{(13)} x_{(23)}=x_{(13)} x_{(12)} .
\end{gathered}
$$

It is a graded algebra of dimension 12.
The Hilbert series is

$$
\mathcal{H}(t)=1+3 t+4 t^{2}+3 t^{3}+t^{4}=(2)_{t}^{2}(3)_{t}
$$

where $(k)_{t}=1+t+\cdots+t^{k-1}$.
The degree of $\mathcal{H}(t)$ is four: $\operatorname{top}\left(\mathcal{E}_{3}\right)=4$.

Problems (Fomin \& Kirillov)

- Is \mathcal{E}_{n} finite-dimensional?
- If \mathcal{E}_{n} is finite-dimensional, compute $\operatorname{dim} \mathcal{E}_{n}$.
- Compute the Hilbert series of \mathcal{E}_{n}.

For example: $\mathcal{E}_{3}, \mathcal{E}_{4}$ and \mathcal{E}_{5} are finite-dimensional:

	top	dimension	Hilbert series
\mathcal{E}_{3}	4	12	$(2)_{t}^{2}(3)_{t}$
\mathcal{E}_{4}	12	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
\mathcal{E}_{5}	40	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$

Example:

The algebra \mathcal{E}_{6} can be presented with 15 generators and 91 relations. The Hilbert series of \mathcal{E}_{6} is

$$
\mathcal{H}(t)=1+15 t+125 t^{2}+765 t^{3}+3831 t^{4}+16605 t^{5}+\cdots
$$

Remark (Fomin \& Kirillov):

- $\mathcal{H}(t)$ cannot expressed as a product of t-numbers.

Conjectures

- $\operatorname{dim} \mathcal{E}_{n}=\infty$ for $n \geq 6$.
- $\operatorname{dim}\left(\mathcal{E}_{n}\right)_{k} \sim\left(\begin{array}{c}n \\ 2 \\ k\end{array}\right)$.

Fomin \& Kirillov introduced the algebras \mathcal{E}_{n} to study the cohomology of flags varieties.

For example:
Let \mathcal{A} be the subalgebra of \mathcal{E}_{3} generated by the Dunkl elements:

$$
\theta_{1}=x_{(12)}+x_{(13)}, \quad \theta_{2}=-x_{(12)}+x_{(23)}, \quad \theta_{3}=-x_{(13)}-x_{(23)}
$$

Then $\left[\theta_{i}, \theta_{j}\right]=0$ for all i, j and hence \mathcal{A} is commutative.
Furthermore,

$$
\theta_{1}+\theta_{2}+\theta_{3}=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}=\theta_{1} \theta_{2} \theta_{3}=0,
$$

and $\mathcal{A} \simeq H^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{3}\right)\right)$.

In general, the Dunkl elements are

$$
\theta_{j}=\sum_{j \neq k} x_{(j k)}
$$

for all $j \in\{1,2, \ldots, n\}$.

Remarks:

- The Dunkl elements commute pairwise,
- The complete list of relations among the Dunkl elements is given by

$$
e_{i}\left(\theta_{1}, \ldots, \theta_{n}\right)=0,
$$

for $i \in\{1,2, \ldots, n\}$, where $e_{1}, e_{2}, \ldots, e_{n}$ are the elementary symmetric functions.

- \mathcal{E}_{n} contains a commutative subalgebra isomorphic to the cohomology of flags manifolds.

What is the connection with Nichols algebras?
Recall that the algebras $\mathcal{E}_{3}, \mathcal{E}_{4}$ and \mathcal{E}_{5} are finite-dimensional:

	top	dimension	Hilbert series
\mathcal{E}_{3}	4	12	$(2)_{t}^{2}(3)_{t}$
\mathcal{E}_{4}	12	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
\mathcal{E}_{5}	40	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$

Let V_{n} be the vector space with basis $\left\{v_{(i j)} \mid 1 \leq i<j \leq n\right\}$ and the braiding $c \in \mathbf{G L}\left(V_{n} \otimes V_{n}\right)$ defined by

$$
c\left(v_{\sigma} \otimes v_{\tau}\right)=\chi(\sigma, \tau) v_{\sigma \tau \sigma} \otimes v_{\sigma}
$$

where

$$
\chi(\sigma, \tau)= \begin{cases}1 & \text { if } \sigma(i)<\sigma(j) \\ -1 & \text { otherwise }\end{cases}
$$

where $\tau=(i j)$ with $i<j$.

It is well-known that

$$
\mathfrak{B}\left(V_{n}\right)=\mathcal{E}_{n}
$$

if $n \in\{3,4,5\}$.

Remarks:

- Bazlov proved that the Nichols algebra $\mathfrak{B}\left(V_{n}\right)$ contains a commutative subalgebra isomorphic to $H^{*}\left(\operatorname{Flags}\left(\mathbb{C}^{n}\right)\right)$.
- This subalgebra is isomorphic to the subalgebra generated by the Dunkl elements.

Conjectures

- $\operatorname{dim} \mathfrak{B}\left(V_{n}\right)=\infty$ for $n \geq 6$.
- $\mathfrak{B}\left(V_{n}\right)$ is quadratic and hence $\mathcal{E}_{n}=\mathfrak{B}\left(V_{n}\right)$.

Bazlov's construction

Let Δ be a root system, and let V be the vector space spanned by the symbols $[\alpha]$, where $\alpha \in \Delta$, and $[-\alpha]=[\alpha]$.
The map $c \in \mathbf{G L}(V \otimes V)$ defined by

$$
c([\alpha] \otimes[\beta])=\left[s_{\alpha} \beta\right] \otimes[\alpha],
$$

where

$$
s_{\alpha}(x)=x-\frac{2(x, \alpha)}{(\alpha, \alpha)} \alpha
$$

is a solution of the braid equation. Hence (V, c) is a braided vector space.

Theorem (Bazlov):

$\mathfrak{B}(V)$ contains a commutative subalgebra isomorphic to the cohomology of flags manifolds.

Preprojective algebras

Let Q be an orientation of a Dynkin diagram of type A_{n-1}

and let \bar{Q} be the double quiver: for each arrow $\alpha: i \rightarrow j$ add a new arrow $\bar{\alpha}: j \rightarrow i$.

Definition (Gelfand \& Ponomarev):

The preprojective algebra of Q is

$$
\Lambda=\mathbb{C} \bar{Q} / \mathcal{I}
$$

where $\mathbb{C} \bar{Q}$ is the path algebra of \bar{Q} and \mathcal{I} is the two-sided ideal generated by $\sum_{\alpha}(\alpha \bar{\alpha}-\bar{\alpha} \alpha)$.

Remarks:

- Λ is finite-dimensional.
- Λ is of finite representation type if and only if $n \leq 5$.

In 2001 Majid and Marsh noticed that maybe there exists a relationship between the algebras \mathcal{E}_{n} and the representation theory of preprojective algebras of type A_{n-1}.

Let d be the number of indecomposable modules of the preprojective algebra Λ. Then

n	d	top $\left(\mathcal{E}_{n}\right)$
3	4	4
4	12	12
5	40	40
≥ 6	∞	$?$

Cluster algebras

Let $\mathbb{F}=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be a field.
A seed is a pair $\left(Q, y_{1}, \ldots, y_{n}\right)$, where Q is a quiver with n vertices, with no loops and no 2 -cycles, and $\left\{y_{1}, \ldots, y_{n}\right\}$ is a free generating set of \mathbb{F}.

The k-mutation of the seed $\left(Q, y_{1}, \ldots, y_{n}\right)$ is the seed $\left(\mu_{k}(Q), \mu_{k}\left(y_{1}\right), \ldots, \mu_{k}\left(y_{n}\right)\right)$, where

$$
\mu_{k}\left(y_{j}\right)= \begin{cases}y_{j} & \text { if } j \neq k \\ \frac{1}{y_{k}}\left(\prod_{i \rightarrow k} y_{i}+\prod_{k \rightarrow j} y_{j}\right) & \text { if } j=k\end{cases}
$$

and $\mu_{k}(Q)$ is obtained from Q by:

- adding a new arrow $i \rightarrow j$ for every $i \rightarrow k \rightarrow j$,
- erasing all the 2-cycles created,
- changing the orientation of every arrow incident to k.

The mutation class $\mu(\Sigma)$ of a seed $\Sigma=\left(Q, y_{1}, \ldots, y_{n}\right)$ is the set of all seeds obtained from a finite sequence of mutations.

If $\left(Q^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ is a seed in $\mu(\Sigma)$, then

- the set $\left\{y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\}$ is called a cluster, and
- the elements of $\left\{y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right\}$ are called cluster variables.

Definition (Fomin \& Zelevinsky):

The cluster algebra A_{Σ} is the subring of \mathbb{F} generated by all the cluster variables.

Theorem (Fomin \& Zelevinsky):

A_{Σ} has a finite number of cluster variables if and only if the mutation class of Σ contains a seed whose quiver is an orientation of a Dynkin diagram of type A, D or E.

Example:

Let A be the cluster algebra with initial seed

where the variables x_{4}, x_{5} and x_{6} are frozen (they belong to every cluster).

After removing the frozen variables, the cluster algebra A has finite type A_{3}. It has 12 cluster variables.

Let G be a simple algebraic group of type A, D or $E, N \subseteq G$ be a maximal unipotent subgroup, and $\mathbb{C}[N]$ be the coordinate ring of N.

Theorem (Berenstein, Fomin, Zelevinsky):

$\mathbb{C}[N]$ is a cluster algebra.

Example:

The case A_{3}. Let $G=\mathbf{S L}_{4}$ and N be the subgroup of upper triangular matrices with ones in the diagonal. The cluster algebra $\mathbb{C}[N]$ is the cluster algebra associated to the quiver

where x_{4}, x_{5} and x_{6} are frozen.

In general

Lie type of G	Cluster type of $\mathbb{C}[N]$	Clusters
A_{2}	A_{1}	4
A_{3}	A_{3}	12
A_{4}	D_{6}	40
others	∞	∞

Remarks:

- Berenstein and Zelevinsky proved that the cluster monomials coincide with the elements of Lusztig's dual canonical basis of $\mathbb{C}[N]$.
- Geiss, Leclerc and Schröer established a connection between the number of clusters of $\mathbb{C}[N]$ and the number of indecomposable modules over preprojective algebras.

Final remarks:

- Maybe there is a relationship between \mathcal{E}_{n} and the number cluster of $\mathbb{C}[N]$.
- By the relationship between the representation theory of the preprojective algebras Λ and the cluster type of $\mathbb{C}[N]$ found by Geiss, Leclerc and Schröer, the existence of a relationship between \mathcal{E}_{n} and $\mathbb{C}[N]$ turns out to be equivalent to the conjecture of Majid and Marsh.

