Fomin and Kirillov algebras

Leandro Vendramin

Philipps-Universität Marburg Fachbereich Mathematik und Informatik Marburg, Germany

Nichols Algebras and Weyl Groupoids Oberwolfach, October 2012

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

In 1995 Fomin & Kirillov introduced the quadratic algebras \mathcal{E}_n to study the combinatorics of the cohomology of flag manifolds.

Definition:

Let \mathcal{E}_n be the algebra (of type A_{n-1}) with generators $x_{(ij)}$, where $i, j \in \{1, ..., n\}$, and relations

$$\begin{aligned} x_{(ij)} + x_{(ji)} &= 0, \\ x_{(ij)}^2 &= 0, \\ x_{(ij)}x_{(jk)} + x_{(jk)}x_{(ki)} + x_{(ki)}x_{(ij)} &= 0, \\ x_{(ij)}x_{(kl)} &= x_{(kl)}x_{(ij)} \end{aligned}$$

うして 山田 マイボット ボット シックション

for any distinct i, j, k, l.

Remarks:

- \mathcal{E}_n is quadratic,
- \mathcal{E}_n is graded: deg $(x_{(ij)}) = 1$,
- *E_n* provides a solution for the classical Yang-Baxter equation:

$$[x_{(ij)}, x_{(jk)}] = [x_{(jk)}, x_{(ik)}] + [x_{(ik)}, x_{(ij)}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

where [u, v] = uv - vu is the usual commutator.

Example:

The algebra \mathcal{E}_3 can be presented with generators $x_{(12)}, x_{(23)}, x_{(13)}$ and relations

$$\begin{aligned} x_{(12)}^2 &= x_{(23)}^2 = x_{(13)}^2 = 0\\ x_{(12)}x_{(23)} + x_{(23)}x_{(13)} &= x_{(12)}x_{(13)},\\ x_{(23)}x_{(12)} + x_{(13)}x_{(23)} &= x_{(13)}x_{(12)}. \end{aligned}$$

It is a graded algebra of dimension 12. The Hilbert series is

$$\mathcal{H}(t) = 1 + 3t + 4t^2 + 3t^3 + t^4 = (2)_t^2(3)_t,$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $(k)_t = 1 + t + \dots + t^{k-1}$. The degree of $\mathcal{H}(t)$ is four: $top(\mathcal{E}_3) = 4$.

Problems (Fomin & Kirillov)

- Is \mathcal{E}_n finite-dimensional?
- If \mathcal{E}_n is finite-dimensional, compute dim \mathcal{E}_n .
- Compute the Hilbert series of \mathcal{E}_n .

For example: \mathcal{E}_3 , \mathcal{E}_4 and \mathcal{E}_5 are finite-dimensional:

	top	dimension	Hilbert series
\mathcal{E}_3	4	12	$(2)_t^2(3)_t$
\mathcal{E}_4	12	576	$(2)_t^2(3)_t^2(4)_t^2$
\mathcal{E}_5	40	8294400	$(4)_t^4(5)_t^2(6)_t^4$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example:

The algebra \mathcal{E}_6 can be presented with 15 generators and 91 relations. The Hilbert series of \mathcal{E}_6 is

$$\mathcal{H}(t) = 1 + 15t + 125t^2 + 765t^3 + 3831t^4 + 16605t^5 + \cdots$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark (Fomin & Kirillov):

• $\mathcal{H}(t)$ cannot expressed as a product of *t*-numbers.

Conjectures

• dim
$$\mathcal{E}_n = \infty$$
 for $n \ge 6$.
• dim $(\mathcal{E}_n)_k \sim \binom{\binom{n}{2}}{k}$.

Fomin & Kirillov introduced the algebras \mathcal{E}_n to study the cohomology of flags varieties.

For example:

Let \mathcal{A} be the subalgebra of \mathcal{E}_3 generated by the Dunkl elements:

$$\theta_1 = x_{(12)} + x_{(13)}, \quad \theta_2 = -x_{(12)} + x_{(23)}, \quad \theta_3 = -x_{(13)} - x_{(23)}.$$

Then $[\theta_i, \theta_j] = 0$ for all i, j and hence A is commutative. Furthermore,

$$\theta_1 + \theta_2 + \theta_3 = \theta_1^2 + \theta_2^2 + \theta_3^2 = \theta_1 \theta_2 \theta_3 = 0,$$

うして 山田 マイボット ボット シックション

and $\mathcal{A} \simeq H^*(\operatorname{Flags}(\mathbb{C}^3))$.

In general, the Dunkl elements are

$$\theta_j = \sum_{j \neq k} x_{(jk)}$$

for all $j \in \{1, 2, ..., n\}$.

Remarks:

- ► The Dunkl elements commute pairwise,
- The complete list of relations among the Dunkl elements is given by

$$e_i(\theta_1,\ldots,\theta_n)=0,$$

for $i \in \{1, 2, ..., n\}$, where $e_1, e_2, ..., e_n$ are the elementary symmetric functions.

E_n contains a commutative subalgebra isomorphic to the cohomology of flags manifolds. What is the connection with Nichols algebras?

Recall that the algebras \mathcal{E}_3 , \mathcal{E}_4 and \mathcal{E}_5 are finite-dimensional:

	top	dimension	Hilbert series
\mathcal{E}_3	4	12	$(2)_t^2(3)_t$
\mathcal{E}_4	12	576	$(2)_t^2(3)_t^2(4)_t^2$
\mathcal{E}_5	40	8294400	$(4)_t^4(5)_t^2(6)_t^4$

Let V_n be the vector space with basis $\{v_{(ij)} \mid 1 \le i < j \le n\}$ and the braiding $c \in \mathbf{GL}(V_n \otimes V_n)$ defined by

$$c(v_{\sigma}\otimes v_{\tau})=\chi(\sigma,\tau)v_{\sigma\tau\sigma}\otimes v_{\sigma},$$

where

$$\chi(\sigma, \tau) = egin{cases} 1 & ext{if } \sigma(i) < \sigma(j), \ -1 & ext{otherwise,} \end{cases}$$

where $\tau = (i j)$ with i < j.

It is well-known that

$$\mathfrak{B}(V_n) = \mathcal{E}_n$$

if $n \in \{3, 4, 5\}$.

Remarks:

- ► Bazlov proved that the Nichols algebra 𝔅(V_n) contains a commutative subalgebra isomorphic to H^{*}(Flags(ℂⁿ)).
- This subalgebra is isomorphic to the subalgebra generated by the Dunkl elements.

・ロト・(中・・モト・モー・)の()

Conjectures

- dim $\mathfrak{B}(V_n) = \infty$ for $n \ge 6$.
- $\mathfrak{B}(V_n)$ is quadratic and hence $\mathcal{E}_n = \mathfrak{B}(V_n)$.

Bazlov's construction

Let Δ be a root system, and let *V* be the vector space spanned by the symbols $[\alpha]$, where $\alpha \in \Delta$, and $[-\alpha] = [\alpha]$. The map $c \in \mathbf{GL}(V \otimes V)$ defined by

$$c([\alpha] \otimes [\beta]) = [s_{\alpha}\beta] \otimes [\alpha],$$

where

$$s_{\alpha}(x) = x - \frac{2(x,\alpha)}{(\alpha,\alpha)}\alpha,$$

is a solution of the braid equation. Hence (V, c) is a braided vector space.

Theorem (Bazlov):

 $\mathfrak{B}(V)$ contains a commutative subalgebra isomorphic to the cohomology of flags manifolds.

Preprojective algebras

Let Q be an orientation of a Dynkin diagram of type A_{n-1}

and let \overline{Q} be the double quiver: for each arrow $\alpha : i \to j$ add a new arrow $\overline{\alpha} : j \to i$.

Definition (Gelfand & Ponomarev):

The preprojective algebra of Q is

$$\Lambda = \mathbb{C}\overline{Q}/\mathcal{I},$$

where $\mathbb{C}\overline{Q}$ is the path algebra of \overline{Q} and \mathcal{I} is the two-sided ideal generated by $\sum_{\alpha} (\alpha \overline{\alpha} - \overline{\alpha} \alpha)$.

うして 山田 マイボット ボット シックション

Remarks:

- Λ is finite-dimensional.
- Λ is of finite representation type if and only if $n \leq 5$.

In 2001 Majid and Marsh noticed that maybe there exists a relationship between the algebras \mathcal{E}_n and the representation theory of preprojective algebras of type A_{n-1} .

Let *d* be the number of indecomposable modules of the preprojective algebra Λ . Then

п	d	$top(\mathcal{E}_n)$
3	4	4
4	12	12
5	40	40
≥ 6	∞	?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cluster algebras

Let $\mathbb{F} = \mathbb{Q}(x_1, \ldots, x_n)$ be a field.

A seed is a pair (Q, y_1, \ldots, y_n) , where Q is a quiver with n vertices, with no loops and no 2-cycles, and $\{y_1, \ldots, y_n\}$ is a free generating set of \mathbb{F} .

The *k*-mutation of the seed (Q, y_1, \ldots, y_n) is the seed $(\mu_k(Q), \mu_k(y_1), \ldots, \mu_k(y_n))$, where

$$\mu_k(y_j) = \begin{cases} y_j & \text{if } j \neq k, \\ \frac{1}{y_k}(\prod_{i \to k} y_i + \prod_{k \to j} y_j) & \text{if } j = k, \end{cases}$$

and $\mu_k(Q)$ is obtained from Q by:

- adding a new arrow $i \rightarrow j$ for every $i \rightarrow k \rightarrow j$,
- erasing all the 2-cycles created,
- ► changing the orientation of every arrow incident to *k*.

The mutation class $\mu(\Sigma)$ of a seed $\Sigma = (Q, y_1, \dots, y_n)$ is the set of all seeds obtained from a finite sequence of mutations.

If (Q', y'_1, \dots, y'_n) is a seed in $\mu(\Sigma)$, then

- the set $\{y'_1, \ldots, y'_n\}$ is called a cluster, and
- ► the elements of $\{y'_1, \ldots, y'_n\}$ are called cluster variables.

Definition (Fomin & Zelevinsky):

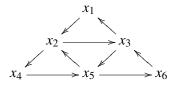
The cluster algebra A_{Σ} is the subring of \mathbb{F} generated by all the cluster variables.

Theorem (Fomin & Zelevinsky):

 A_{Σ} has a finite number of cluster variables if and only if the mutation class of Σ contains a seed whose quiver is an orientation of a Dynkin diagram of type A, D or E.

Example:

Let A be the cluster algebra with initial seed



where the variables x_4 , x_5 and x_6 are frozen (they belong to every cluster).

After removing the frozen variables, the cluster algebra A has finite type A_3 . It has 12 cluster variables.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

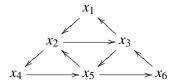
Let *G* be a simple algebraic group of type *A*, *D* or *E*, $N \subseteq G$ be a maximal unipotent subgroup, and $\mathbb{C}[N]$ be the coordinate ring of *N*.

Theorem (Berenstein, Fomin, Zelevinsky):

 $\mathbb{C}[N]$ is a cluster algebra.

Example:

The case A_3 . Let $G = \mathbf{SL}_4$ and N be the subgroup of upper triangular matrices with ones in the diagonal. The cluster algebra $\mathbb{C}[N]$ is the cluster algebra associated to the quiver



where x_4 , x_5 and x_6 are frozen.

In general

Lie type of G	Cluster type of $\mathbb{C}[N]$	Clusters
A_2	A_1	4
A_3	A_3	12
A_4	D_6	40
others	∞	∞

Remarks:

- ► Berenstein and Zelevinsky proved that the cluster monomials coincide with the elements of Lusztig's dual canonical basis of C[N].
- ► Geiss, Leclerc and Schröer established a connection between the number of clusters of C[N] and the number of indecomposable modules over preprojective algebras.

Final remarks:

- ► Maybe there is a relationship between *E_n* and the number cluster of C[N].
- By the relationship between the representation theory of the preprojective algebras Λ and the cluster type of C[N] found by Geiss, Leclerc and Schröer, the existence of a relationship between E_n and C[N] turns out to be equivalent to the conjecture of Majid and Marsh.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>