Nichols algebras

Leandro Vendramin

Philipps-Universität Marburg Fachbereich Mathematik und Informatik Marburg, Germany

Séminaire Lotharingien de Combinatoire 69 Strobl, September 2012 Let (V, c) be a braided vector space. That is: V is a vector space and $c \in \operatorname{Aut}(V \otimes V)$ is a solution of the braid equation in $\operatorname{Aut}(V \otimes V \otimes V)$:

$$(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$$

Examples:

- $V = \langle x_1, x_2, \dots, x_n \rangle, \ c(x_i \otimes x_i) = q_{ij}x_i \otimes x_i \ \text{for} \ q_{ij} \in \mathbb{C}^{\times};$
- ► *G* a group, $V = \mathbb{C}G$, $c(g \otimes h) = ghg^{-1} \otimes g$.

A braided vector space V gives a special type of algebra called the Nichols algebra $\mathfrak{B}(V)$.

To define Nichols algebras we need Artin's braid group \mathbb{B}_n . This is the quotient of the free group in $\sigma_1, \sigma_2, \cdots, \sigma_{n-1}$ by the relations:

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1}$$
 $1 \le i \le n-2$
 $\sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i}$ $|i-j| \ge 2$

Recall that \mathbb{S}_n is the quotient of the free group in $\tau_1, \dots, \tau_{n-1}$ by the relations:

$$\tau_{i}\tau_{i+1}\tau_{i} = \tau_{i+1}\tau_{i}\tau_{i+1} \qquad 1 \le i \le n-2$$

$$\tau_{i}\tau_{j} = \tau_{j}\tau_{i} \qquad |i-j| \ge 2$$

$$\tau_{i}^{2} = 1 \qquad 1 \le i \le n-1$$

Some remarks:

- ▶ There exists a surjection $\mathbb{B}_n \to \mathbb{S}_n$ defined by $\sigma_i \mapsto \tau_i$.
- (Matsumoto) There exists a section of sets

$$\mu: \mathbb{S}_n \to \mathbb{B}_n$$
$$\tau_i \mapsto \sigma_i$$

such that $\mu(xy) = \mu(x)\mu(y)$ for any $s, t \in \mathbb{S}_n$ with length(xy) = length(x) + length(y).

▶ Let (V, c) a braided vector space and let

$$c_i = c_{i,i+1} = \mathrm{id}_{V^{\otimes (i-1)}} \otimes c \otimes \mathrm{id}_{V^{\otimes (n-i-1)}} \in \mathrm{Aut}(V^{\otimes n}).$$

Then c_1, \dots, c_{n-1} satisfy the relations of the Braid group and hence $\rho_n : \mathbb{B}_n \to \operatorname{Aut}(V^{\otimes n})$, defined by $\rho(\sigma_i) = c_i$, is a representation.

Let (V, c) be a braided vector space. We construct the Nichols algebra of V as

$$\mathfrak{B}(V) = \bigoplus_{n} \mathfrak{B}^{n}(V) = \bigoplus_{n} T^{n}(V)/(\ker \mathfrak{S}_{n}).$$

The map \mathfrak{S}_n is the quantum symmetrizer:

$$\mathfrak{S}_n = \sum_{\sigma \in \mathbb{S}_n} \rho_n(\mu(\sigma)),$$

where ρ_n is the representation of \mathbb{B}_n induced by c and μ is the Matsumoto section.

Examples:

- ▶ $\mathfrak{S}_2 = 1 + c$,
- $\bullet \ \mathfrak{S}_3 = 1 + c_{12} + c_{23} + c_{12}c_{23} + c_{23}c_{12} + c_{12}c_{23}c_{12}.$

Some well-known examples of Nichols algebras:

- ► (V, flip) gives the symmetric algebra;
- ▶ (*V*, −flip) gives the exterior algebra.

Problem

Classify finite-dimensional Nichols algebras

Nichols algebras appear, for example, in:

- Quantum groups (Drinfeld; Jimbo; Lusztig; Rosso);
- Differential calculus in quantum groups (Woronowicz);
- Quantized Lie superalgebras (Khoroshkin, Tolstoy);
- Deformations of Lie (super)algebras (Hodges);
- Pointed Hopf algebras (Nichols; Andruskiewitsch, Schneider);
- Cohomology rings of flag manifolds (Fomin, Kirillov; Postnikov; Bazlov);
- Mathematical-physics (Majid; Semikhatov).

Definition:

A Nichols algebra is of diagonal type if there exists a basis $\{v_1, \cdots, v_n\}$ such that

$$c(v_i \otimes v_j) = q_{ij}v_j \otimes v_i, \quad q_{ij} \in \mathbb{K}^{\times}.$$

Nichols algebras of diagonal type have many interesting properties and applications.

Heckenberger classified finite-dimensional Nichols algebras of diagonal type in terms of generalized Dynkin diagrams. The key: the Weyl groupoid.

How to construct (non-diagonal) braided vector spaces?

In 1992 Drinfeld proposed to study a set theoretical version of the braid equation.

Let X be a set. A bijective function $c: X \times X \to X \times X$ is a solution of the set-theoretical braid equation if

$$(c \times id)(id \times c)(c \times id) = (id \times c)(c \times id)(id \times c).$$

Definition:

A rack is a pair (X,\triangleright) , where X is a finite set and $\triangleright: X \times X \to X$ is a map such that:

- ▶ $\varphi_i : X \mapsto i \triangleright X$ is bijective for all $i \in X$.
- ▶ $i \triangleright (j \triangleright k) = (i \triangleright j) \triangleright (i \triangleright k)$ for all $i, j, k \in X$.

Remark:

The map $c(x, y) = (x \triangleright y, x)$ is a solution of the set-theoretical braid equation if and only if (X, \triangleright) is a rack.

Example (Important!):

A conjugacy class X with the conjugation $x \triangleright y = xyx^{-1}$ is a rack.

A rack (X, \triangleright) is faithful if the map $i \mapsto \varphi_i$ is injective for all $i \in X$.

Remark:

Let (X,\triangleright) be a rack. Let $V=\mathbb{C}X$ and define $c\in \mathrm{GL}(V\otimes V)$ by

$$c(x\otimes y)=(x\triangleright y)\otimes x.$$

Then (V, c) is a braided vector space.

Questions:

- ▶ Is it possible to construct more "braidings" from (X,\triangleright) ?
- ▶ Let $q: X \times X \to \mathbb{C}^{\times}$ be a map. When is the map

$$c(x\otimes y)=q(x,y)(x\triangleright y)\otimes x$$

a solution of the braid equation?

Remark: The map

$$c(x\otimes y)=q(x,y)(x\triangleright y)\otimes x$$

is a solution of the braid equation if and only if q is an abelian rack 2-cocycle:

$$q(x,y\triangleright z)q(y,z)=q(x\triangleright y,x\triangleright z)q(x,z).$$

Notation:

 $\mathfrak{B}(X,q)$ is the Nichols algebra $\mathfrak{B}(V,c)$ where $V=\mathbb{C}X$ and the braiding is $c(x\otimes y)=q(x,y)(x\triangleright y)\otimes x$.

Examples of racks, 2-cocycles and Nichols algebras

3-cycles in \mathbb{A}_4 :

Let $X = (123)^{\mathbb{A}_4}$ be the rack associated to the conjugacy class of (123) in \mathbb{A}_4 :

For example:

$$(243) \triangleright (123) = (243)(123)(243)^{-1}$$

= $(243)(123)(234)$
= $(243)(13)(24)$
= (134)

Remark:

It is possible to prove that

$$H^2((123)^{\mathbb{A}_4},\mathbb{C}^{\times})=\mathbb{C}^{\times}\times\langle\eta
angle,$$

where η is the 2-cocycle defined by

	(243)	(123)	(134)	(142)
(243)	1	1	1	1
(123)	1	1	-1	-1
(134)	1	-1	1	-1
(142)	1	-1	-1	1

Affine racks:

Let $X = \mathbb{F}_q$ be the field of q elements and let $\alpha \in \mathbb{F}_q \setminus \{0, 1\}$. Define

$$x \triangleright y = (1 - \alpha)(x) + \alpha(y)$$

for $x, y \in X$. Then (\mathbb{F}_q, α) is a rack (called affine rack), and it will be denoted by $\mathrm{Aff}(q, \alpha)$.

Transpositions in S_n :

Let X_n be the conjugacy class of transpositions in \mathbb{S}_n and let χ be the 2-cocycle:

$$\chi(\sigma, \tau) = \begin{cases} 1 & \text{if } \sigma(i) < \sigma(j), \\ -1 & \text{otherwise,} \end{cases}$$

where $\tau = (i j)$ with i < j.

Remarks:

- These algebras appear in the work of Fomin & Kirillov.
- χ is cohomologous to the trivial 2-cocycle for n=3.
- $H^2(X_n, \mathbb{C}^{\times}) = \mathbb{C}^{\times} \times \langle \chi \rangle \text{ for } n \in \{4, \dots, 10\}.$

Conjeture

$$H^2(X_n, \mathbb{C}^{\times}) = \mathbb{C}^{\times} \times \langle \chi \rangle$$
 for all $n \geq 4$.

As an example we work out the case n = 3.

Let X_3 be the conjugacy class of transpositions in \mathbb{S}_3 :

\triangleright	(12)	$(2\ 3)$	(13)
(1 2)	(1 2)	(13)	(23)
$(2\ 3)$	(13)	$(2\ 3)$	$(1\ 2)$
(13)	(23)	(12)	(13)

The algebra $\mathfrak{B}(X_3,\chi)$ is generated by $x_{(12)},x_{(23)},x_{(13)}$ in degree 1 and has relations:

$$\begin{aligned} x_{(12)}^2 &= x_{(23)}^2 = x_{(13)}^2 = 0 \\ x_{(12)}x_{(23)} + x_{(23)}x_{(13)} &= x_{(12)}x_{(13)}, \\ x_{(23)}x_{(12)} + x_{(13)}x_{(23)} &= x_{(13)}x_{(12)}. \end{aligned}$$

It is a graded algebra of dimension 12. The Hilbert series is

$$\mathcal{H}(t) = 1 + 3t + 4t^2 + 3t^3 + t^4.$$

Remark:

 $\mathfrak{B}(X_n,\chi)$ is finite-dimensional for $n \in \{3,4,5\}$:

n	rank	top	dimension	Hilbert series
3	3	4	12	$(2)_t^2(3)_t$
4	6	12	576	$(2)_t^2(3)_t^2(4)_t^2$
5	10	40	8294400	$(4)_t^4(5)_t^2(6)_t^4$

where $(k)_t = 1 + t + t^2 + \cdots + t^{k-1}$.

Conjetures

- ▶ dim $\mathfrak{B}(X_n,\chi) = \infty$ for $n \ge 6$.
- ▶ $\mathfrak{B}(X_n, \chi)$ is quadratic.

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X = Y \sqcup (X \backslash Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given rack X classify all 2-cocycles of X such that $\dim \mathfrak{B}(X,q) < \infty$.

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X = Y \sqcup (X \backslash Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given indecomposable rack X classify all 2-cocycles of X such that dim $\mathfrak{B}(X,q)<\infty$.

Only a few examples of non-diagonal finite-dimensional Nichols algebras over indecomposable racks are known

Examples of Nichols algebras over $\ensuremath{\mathbb{C}}$

	dim V	$\dim \mathfrak{B}(V)$
Milinski, Schneider (1996) ¹	3	12
Graña (2000)	4	72
Andruskiewitsch, Graña (2002)	5	1280
Andruskiewitsch, Graña (2002)	5	1280
Milinski, Schneider ¹ (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Graña (2002)	7	326592
Graña (2002)	7	326592
Graña (2002)	10	8294400
Graña ¹ (2002)	10	8294400

X	q	X	$\dim \mathfrak{B}(X,q)$	Hilbert series
(12) ^{S₃}	χ	3	12	$(2)_t^2(3)_t$
(123) ^{∆₄}	-1	4	72	$(2)_t^2(3)_t(6)_t$
Aff(5, 2)	-1	5	1280	$(4)_t^4(5)_t$
Aff(5, 3)	-1	5	1280	$(4)_t^4(5)_t$
(1234) ^{S₄}	-1	6	576	$(2)_t^2(3)_t^2(4)_t^2$
(12) ^{S₄}	-1	6	576	$(2)_t^2(3)_t^2(4)_t^2$
(12) ^{S₄}	χ	6	576	$(2)_t^2(3)_t^2(4)_t^2$
Aff(7, 3)	-1	7	326592	$(6)_t^6(7)_t$
Aff(7, 5)	-1	7	326592	$(6)_t^6(7)_t$
(12) ^{S₅}	-1	10	8294400	$(4)_t^4(5)_t^2(6)_t^4$
(12) ^{S₅}	χ	10	8294400	$(4)_t^4(5)_t^2(6)_t^4$

$$(k)_t = 1 + t + t^2 + \cdots + t^{k-1}$$

Theorem (with Grana & Heckenberger)

Let X be a non-trivial indecomposable faithful rack of size d and let q be a 2-cocycle of X. The following are equivalent:

- 1. dim $\mathfrak{B}_2(X, q) \leq \frac{d(d+1)}{2}$.
- 2. X is one of the racks

$$(12)^{\mathbb{S}_n} \text{ for } n \in \{3,4,5\},$$

$$(1234)^{\mathbb{S}_4}, (123)^{\mathbb{A}_4},$$

$$\text{Aff}(p,\alpha) \text{ for } (p,\alpha) \in \{(5,2),(5,3),(7,3),(7,5)\},$$

and the Nichols algebra is one of the algebras listed before.

3. There exist $n_1, n_2, \dots, n_d \in \mathbb{N}$ such that the Hilbert series of $\mathfrak{B}(X, q)$ factorizes as

$$\mathcal{H}(t) = (n_1)_t (n_2)_t \cdots (n_d)_t.$$

A new example (with Heckenberger & Lochmann):

Recall that the rack $X = (123)^{\mathbb{A}_4}$ can be presented as

Consider the 2-cocycle q:

	а	b	С	d
а	ω ω ω	ω	ω	ω
b	ω	ω	$-\omega$	$-\omega$
С	ω	$-\omega$	ω	$-\omega$
d	ω	$-\omega$	$-\omega$	ω

where ω is a cubic root of 1.

Then $\mathfrak{B}(X,q)$ has dimension 5184.

- ► Generators: a, b, c, d,
- ► Relations: four relations in degree 2, four in degree 3 and one in degree 6,
- ► Hilbert series: $\mathcal{H}(t) = (6)_t^4 (2)_{t^2}^2$.