Nichols algebras

Leandro Vendramin

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
Marburg, Germany
Séminaire Lotharingien de Combinatoire 69 Strobl, September 2012

Let (V, c) be a braided vector space. That is: V is a vector space and $c \in \operatorname{Aut}(V \otimes V)$ is a solution of the braid equation in $\operatorname{Aut}(V \otimes V \otimes V):$

$$
(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)
$$

Examples:

- $V=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, c\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}$ for $q_{i j} \in \mathbb{C}^{\times}$;
- Ga group, $V=\mathbb{C} G, c(g \otimes h)=g h g^{-1} \otimes g$.

A braided vector space V gives a special type of algebra called the Nichols algebra $\mathfrak{B}(V)$.

To define Nichols algebras we need Artin's braid group \mathbb{B}_{n}. This is the quotient of the free group in $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}$ by the relations:

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & |i-j| \geq 2
\end{aligned}
$$

Recall that \mathbb{S}_{n} is the quotient of the free group in $\tau_{1}, \cdots, \tau_{n-1}$ by the relations:

$$
\begin{array}{rl}
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} & 1 \leq i \leq n-2 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} & |i-j| \geq 2 \\
\tau_{i}^{2}=1 & 1 \leq i \leq n-1
\end{array}
$$

Some remarks:

- There exists a surjection $\mathbb{B}_{n} \rightarrow \mathbb{S}_{n}$ defined by $\sigma_{i} \mapsto \tau_{i}$.
- (Matsumoto) There exists a section of sets

$$
\begin{aligned}
\mu: \mathbb{S}_{n} & \rightarrow \mathbb{B}_{n} \\
\tau_{i} & \mapsto \sigma_{i}
\end{aligned}
$$

such that $\mu(x y)=\mu(x) \mu(y)$ for any $s, t \in \mathbb{S}_{n}$ with length $(x y)=$ length $(x)+$ length (y).

- Let (V, c) a braided vector space and let

$$
c_{i}=c_{i, i+1}=\mathrm{id}_{V \otimes(i-1)} \otimes c \otimes \mathrm{id}_{V \otimes(n-i-1)} \in \operatorname{Aut}\left(V^{\otimes n}\right)
$$

Then c_{1}, \cdots, c_{n-1} satisfy the relations of the Braid group and hence $\rho_{n}: \mathbb{B}_{n} \rightarrow \operatorname{Aut}\left(V^{\otimes n}\right)$, defined by $\rho\left(\sigma_{i}\right)=c_{i}$, is a representation.

Let (V, c) be a braided vector space. We construct the Nichols algebra of V as

$$
\mathfrak{B}(V)=\bigoplus_{n} \mathfrak{B}^{n}(V)=\bigoplus_{n} T^{n}(V) /\left(\operatorname{ker} \mathfrak{S}_{n}\right)
$$

The $\operatorname{map} \mathfrak{S}_{n}$ is the quantum symmetrizer:

$$
\mathfrak{S}_{n}=\sum_{\sigma \in \mathbb{S}_{n}} \rho_{n}(\mu(\sigma))
$$

where ρ_{n} is the representation of \mathbb{B}_{n} induced by c and μ is the Matsumoto section.

Examples:

- $\mathfrak{S}_{2}=1+c$,
- $\mathfrak{S}_{3}=1+c_{12}+c_{23}+c_{12} c_{23}+c_{23} c_{12}+c_{12} c_{23} c_{12}$.

Some well-known examples of Nichols algebras:

- (V, flip) gives the symmetric algebra;
- ($V,-$ flip) gives the exterior algebra.

Problem

Classify finite-dimensional Nichols algebras

Nichols algebras appear, for example, in:

- Quantum groups (Drinfeld; Jimbo; Lusztig; Rosso);
- Differential calculus in quantum groups (Woronowicz);
- Quantized Lie superalgebras (Khoroshkin, Tolstoy);
- Deformations of Lie (super)algebras (Hodges);
- Pointed Hopf algebras (Nichols; Andruskiewitsch, Schneider);
- Cohomology rings of flag manifolds (Fomin, Kirillov; Postnikov; Bazlov);
- Mathematical-physics (Majid; Semikhatov).

Definition:

A Nichols algebra is of diagonal type if there exists a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ such that

$$
c\left(v_{i} \otimes v_{j}\right)=q_{i j} v_{j} \otimes v_{i}, \quad q_{i j} \in \mathbb{K}^{\times}
$$

Nichols algebras of diagonal type have many interesting properties and applications.

Heckenberger classified finite-dimensional Nichols algebras of diagonal type in terms of generalized Dynkin diagrams. The key: the Weyl groupoid.

How to construct (non-diagonal) braided vector spaces?

In 1992 Drinfeld proposed to study a set theoretical version of the braid equation.

Let X be a set. A bijective function $c: X \times X \rightarrow X \times X$ is a solution of the set-theoretical braid equation if

$$
(c \times \mathrm{id})(\mathrm{id} \times c)(c \times \mathrm{id})=(\mathrm{id} \times c)(c \times \mathrm{id})(\mathrm{id} \times c)
$$

Definition:

A rack is a pair (X, \triangleright), where X is a finite set and $\triangleright: X \times X \rightarrow X$ is a map such that:

- $\varphi_{i}: x \mapsto i \triangleright x$ is bijective for all $i \in X$.
- $i \triangleright(j \triangleright k)=(i \triangleright j) \triangleright(i \triangleright k)$ for all $i, j, k \in X$.

Remark:

The map $c(x, y)=(x \triangleright y, x)$ is a solution of the set-theoretical braid equation if and only if (X, \triangleright) is a rack.

Example (Important!):

A conjugacy class X with the conjugation $x \triangleright y=x y x^{-1}$ is a rack.

A rack (X, \triangleright) is faithful if the map $i \mapsto \varphi_{i}$ is injective for all $i \in X$.

Remark:

Let (X, \triangleright) be a rack. Let $V=\mathbb{C} X$ and define $c \in \mathrm{GL}(V \otimes V)$ by

$$
c(x \otimes y)=(x \triangleright y) \otimes x
$$

Then (V, c) is a braided vector space.

Questions:

- Is it possible to construct more "braidings" from (X, \triangleright) ?
- Let $q: X \times X \rightarrow \mathbb{C}^{\times}$be a map. When is the map

$$
c(x \otimes y)=q(x, y)(x \triangleright y) \otimes x
$$

a solution of the braid equation?

Remark: The map

$$
c(x \otimes y)=q(x, y)(x \triangleright y) \otimes x
$$

is a solution of the braid equation if and only if q is an abelian rack 2-cocycle:

$$
q(x, y \triangleright z) q(y, z)=q(x \triangleright y, x \triangleright z) q(x, z)
$$

Notation:
$\mathfrak{B}(X, q)$ is the Nichols algebra $\mathfrak{B}(V, c)$ where $V=\mathbb{C} X$ and the braiding is $c(x \otimes y)=q(x, y)(x \triangleright y) \otimes x$.

Examples of racks, 2-cocycles and Nichols algebras

3-cycles in \mathbb{A}_{4} :

Let $X=(123)^{\mathbb{A}_{4}}$ be the rack associated to the conjugacy class of (123) in \mathbb{A}_{4} :

	(243)	(123)	(134)	(142)
(243)	(243)	(134)	(142)	(123)
(123)	(142)	(123)	(243)	(134)
(134)	(123)	(142)	(134)	(243)
(142)	(134)	(243)	(123)	(142)

For example:

$$
\begin{aligned}
(243) \triangleright(123) & =(243)(123)(243)^{-1} \\
& =(243)(123)(234) \\
& =(243)(13)(24) \\
& =(134)
\end{aligned}
$$

Remark:

It is possible to prove that

$$
H^{2}\left((123)^{\mathbb{A}_{4}}, \mathbb{C}^{\times}\right)=\mathbb{C}^{\times} \times\langle\eta\rangle
$$

where η is the 2-cocycle defined by

	(243)	(123)	(134)	(142)
(243)	1	1	1	1
(123)	1	1	-1	-1
(134)	1	-1	1	-1
(142)	1	-1	-1	1

Affine racks:

Let $X=\mathbb{F}_{q}$ be the field of q elements and let $\alpha \in \mathbb{F}_{q} \backslash\{0,1\}$. Define

$$
x \triangleright y=(1-\alpha)(x)+\alpha(y)
$$

for $x, y \in X$. Then $\left(\mathbb{F}_{q}, \alpha\right)$ is a rack (called affine rack), and it will be denoted by $\operatorname{Aff}(q, \alpha)$.

Transpositions in \mathbb{S}_{n} :

Let X_{n} be the conjugacy class of transpositions in \mathbb{S}_{n} and let χ be the 2-cocycle:

$$
\chi(\sigma, \tau)= \begin{cases}1 & \text { if } \sigma(i)<\sigma(j), \\ -1 & \text { otherwise },\end{cases}
$$

where $\tau=(i j)$ with $i<j$.

Remarks:

- These algebras appear in the work of Fomin \& Kirillov.
- χ is cohomologous to the trivial 2 -cocycle for $n=3$.
- $H^{2}\left(X_{n}, \mathbb{C}^{\times}\right)=\mathbb{C}^{\times} \times\langle\chi\rangle$ for $n \in\{4, \ldots, 10\}$.

Conjeture

$H^{2}\left(X_{n}, \mathbb{C}^{\times}\right)=\mathbb{C}^{\times} \times\langle\chi\rangle$ for all $n \geq 4$.

As an example we work out the case $n=3$.
Let X_{3} be the conjugacy class of transpositions in \mathbb{S}_{3} :

\triangleright	(12)	(23)	(13)
(12)	(12)	(13)	(2 3)
(2 3)	(13)	(2 3)	(12)
(13)	(2 3)	(12)	(13)

The algebra $\mathfrak{B}\left(X_{3}, \chi\right)$ is generated by $x_{(12)}, x_{(23)}, x_{(13)}$ in degree 1 and has relations:

$$
\begin{gathered}
x_{(12)}^{2}=x_{(23)}^{2}=x_{(13)}^{2}=0 \\
x_{(12)} x_{(23)}+x_{(23)} x_{(13)}=x_{(12)} x_{(13)}, \\
x_{(23)} x_{(12)}+x_{(13)} x_{(23)}=x_{(13)} x_{(12)} .
\end{gathered}
$$

It is a graded algebra of dimension 12. The Hilbert series is

$$
\mathcal{H}(t)=1+3 t+4 t^{2}+3 t^{3}+t^{4}
$$

Remark:

$\mathfrak{B}\left(X_{n}, \chi\right)$ is finite-dimensional for $n \in\{3,4,5\}$:

n	rank	top	dimension	Hilbert series
3	3	4	12	$(2)_{t}^{2}(3)_{t}$
4	6	12	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
5	10	40	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$

where $(k)_{t}=1+t+t^{2}+\cdots+t^{k-1}$.

Conjetures

- $\operatorname{dim} \mathfrak{B}\left(X_{n}, \chi\right)=\infty$ for $n \geq 6$.
- $\mathfrak{B}\left(X_{n}, \chi\right)$ is quadratic.

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X=Y \sqcup(X \backslash Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given rack X classify all 2-cocycles of X such that $\operatorname{dim} \mathfrak{B}(X, q)<\infty$.

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X=Y \sqcup(X \backslash Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given indecomposable rack X classify all 2-cocycles of X such that $\operatorname{dim} \mathfrak{B}(X, q)<\infty$.

Only a few examples of non-diagonal finite-dimensional Nichols algebras over indecomposable racks are known

Examples of Nichols algebras over \mathbb{C}

	$\operatorname{dim} V$	$\operatorname{dim} \mathfrak{B}(V)$
Milinski, Schneider (1996) ${ }^{1}$	3	12
Graña (2000)	4	72
Andruskiewitsch, Graña (2002)	5	1280
Andruskiewitsch, Graña (2002)	5	1280
Milinski, Schneider ${ }^{1}$ (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Graña (2002)	7	326592
Graña (2002)	7	326592
Graña (2002)	10	8294400
Graña ${ }^{1}$ (2002)	10	8294400

X	q	$\|X\|$	$\operatorname{dim} \mathfrak{B}(X, q)$	Hilbert series
$(12)^{S_{3}}$	χ	3	12	$(2)_{t}^{2}(3)_{t}$
$(123)^{\mathbb{A}_{4}}$	-1	4	72	$(2)_{t}^{2}(3)_{t}(6)_{t}$
$\operatorname{Aff}(5,2)$	-1	5	1280	$(4)_{t}^{4}(5)_{t}$
$\operatorname{Aff}(5,3)$	-1	5	1280	$(4)_{t}^{4}(5)_{t}$
$(1234)^{S_{4}}$	-1	6	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
$(12)^{S_{4}}$	-1	6	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
$(12)^{S_{4}}$	χ	6	576	$(2)_{t}^{2}(3)_{t}^{2}(4)_{t}^{2}$
$\operatorname{Aff}(7,3)$	-1	7	326592	$(6)_{t}^{6}(7)_{t}$
$\operatorname{Aff}(7,5)$	-1	7	326592	$(6)_{t}^{6}(7)_{t}$
$(12)^{S_{5}}$	-1	10	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$
$(12)^{S_{5}}$	χ	10	8294400	$(4)_{t}^{4}(5)_{t}^{2}(6)_{t}^{4}$

$$
(k)_{t}=1+t+t^{2}+\cdots+t^{k-1}
$$

Theorem (with Graña \& Heckenberger)

Let X be a non-trivial indecomposable faithful rack of size d and let q be a 2 -cocycle of X. The following are equivalent:

1. $\operatorname{dim} \mathfrak{B}_{2}(X, q) \leq \frac{d(d+1)}{2}$.
2. X is one of the racks

$$
\begin{gathered}
(12)^{\mathbb{S}_{n}} \text { for } n \in\{3,4,5\}, \\
(1234)^{\mathrm{S}_{4}},(123)^{\mathbb{A}_{4}}, \\
\operatorname{Aff}(p, \alpha) \text { for }(p, \alpha) \in\{(5,2),(5,3),(7,3),(7,5)\},
\end{gathered}
$$

and the Nichols algebra is one of the algebras listed before.
3. There exist $n_{1}, n_{2}, \ldots, n_{d} \in \mathbb{N}$ such that the Hilbert series of $\mathfrak{B}(X, q)$ factorizes as

$$
\mathcal{H}(t)=\left(n_{1}\right)_{t}\left(n_{2}\right)_{t} \cdots\left(n_{d}\right)_{t} .
$$

A new example (with Heckenberger \& Lochmann):
Recall that the rack $X=(123)^{\mathbb{A}_{4}}$ can be presented as

	a	b	c	d
a	a	c	d	b
b	d	b	a	c
c	b	d	c	a
d	c	a	b	d

Consider the 2-cocycle q :

	a	b	c	d
a	ω	ω	ω	ω
b	ω	ω	$-\omega$	$-\omega$
c	ω	$-\omega$	ω	$-\omega$
d	ω	$-\omega$	$-\omega$	ω

where ω is a cubic root of 1 .

Then $\mathfrak{B}(X, q)$ has dimension 5184 .

- Generators: a, b, c, d,
- Relations: four relations in degree 2, four in degree 3 and one in degree 6,
- Hilbert series: $\mathcal{H}(t)=(6)_{t}^{4}(2)_{t^{2}}^{2}$.

