About the classification of pointed Hopf algebras

Leandro Vendramin

Philipps-Universität Marburg Fachbereich Mathematik und Informatik Marburg, Germany

Groups, Rings, Lie and Hopf algebras III August 2012

The Lifting method of Andruskiewitsch and Schneider:

In 1998 Andruskiewitsch and Schneider invented the Lifting method: in order to classify finite dimensional pointed Hopf algebras we need to know the classification of certain finite dimensional braided Hopf algebras: Nichols algebras.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What is a Nichols algebra?

Let (V, c) be a braided vector space. That is: V is a vector space and $c \in Aut(V \otimes V)$ is a solution of the braid equation in $Aut(V \otimes V \otimes V)$:

$$(\boldsymbol{c}\otimes\mathrm{id})(\mathrm{id}\otimes\boldsymbol{c})(\boldsymbol{c}\otimes\mathrm{id})=(\mathrm{id}\otimes\boldsymbol{c})(\boldsymbol{c}\otimes\mathrm{id})(\mathrm{id}\otimes\boldsymbol{c})$$

Examples:

►
$$V = \langle x_1, x_2, ..., x_n \rangle$$
, $c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$ for $q_{ij} \in \mathbb{C}^{\times}$;

• *G* a group, $V = \mathbb{C}G$, $c(g \otimes h) = ghg^{-1} \otimes g$.

A braided vector space V gives a special type of Hopf algebra called the Nichols algebra $\mathfrak{B}(V)$.

To define Nichols algebras we need Artin's braid group \mathbb{B}_n . This is the quotient of the free group in $\sigma_1, \sigma_2, \cdots, \sigma_{n-1}$ by the relations:

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \qquad 1 \le i \le n-2$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad |i-j| \ge 2$$

Recall that \mathbb{S}_n is the quotient of the free group in $\tau_1, \dots, \tau_{n-1}$ by the relations:

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1} \qquad 1 \le i \le n-2$$

$$\tau_i \tau_j = \tau_j \tau_i \qquad |i-j| \ge 2$$

$$\tau_i^2 = 1 \qquad 1 \le i \le n-1$$

Some remarks:

- There exists a surjection $\mathbb{B}_n \to \mathbb{S}_n$ defined by $\sigma_i \mapsto \tau_i$.
- (Matsumoto) There exists a section of sets

$$\mu: \mathbb{S}_n \to \mathbb{B}_n$$
$$\tau_i \mapsto \sigma_i$$

such that $\mu(xy) = \mu(x)\mu(y)$ for any $s, t \in S_n$ with length(xy) = length(x) + length(y).

► Let (*V*, *c*) a braided vector space and let

$$c_i = c_{i,i+1} = \mathrm{id}_{V^{\otimes (i-1)}} \otimes c \otimes \mathrm{id}_{V^{\otimes (n-i-1)}} \in \mathrm{Aut}(V^{\otimes n}).$$

Then c_1, \dots, c_{n-1} satisfy the relations of the Braid group and hence $\rho_n : \mathbb{B}_n \to \operatorname{Aut}(V^{\otimes n})$, defined by $\rho(\sigma_i) = c_i$, is a representation. Let (V, c) be a braided vector space. We construct the Nichols algebra of V as

$$\mathfrak{B}(V) = \bigoplus_n \mathfrak{B}^n(V) = \bigoplus_n T^n(V)/(\ker \mathfrak{S}_n).$$

The map \mathfrak{S}_n is the quantum symmetrizer:

$$\mathfrak{S}_n = \sum_{\sigma \in \mathbb{S}_n} \rho_n(\mu(\sigma)),$$

where ρ_n is the representation of \mathbb{B}_n induced by *c* and μ is the Matsumoto section.

Examples:

- $\mathfrak{S}_2 = 1 + c$,
- $\mathfrak{S}_3 = 1 + c_{12} + c_{23} + c_{12}c_{23} + c_{23}c_{12} + c_{12}c_{23}c_{12}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some well-known examples of Nichols algebras:

- ► (*V*, flip) gives the symmetric algebra;
- (V, -flip) gives the exterior algebra.

Problem

Classify finite-dimensional Nichols algebras

Nichols algebras appear, for example, in:

- Quantum groups (Drinfeld; Jimbo; Lusztig; Rosso);
- Differential calculus in quantum groups (Woronowicz);
- Quantized Lie superalgebras (Khoroshkin, Tolstoy);
- Deformations of Lie (super)algebras (Hodges);
- Pointed Hopf algebras (Nichols; Andruskiewitsch, Schneider);
- Cohomology rings of flag manifolds (Fomin, Kirillov; Postnikov; Bazlov);

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Mathematical-physics (Majid; Semikhatov).

Definition:

A Nichols algebra is of diagonal type if there exists a basis $\{v_1, \cdots, v_n\}$ such that

$$c(v_i \otimes v_j) = q_{ij}v_j \otimes v_i, \quad q_{ij} \in \mathbb{K}^{\times}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nichols algebras of diagonal type have many interesting properties and applications:

- Heckenberger discovered an object which encodes the symmetries: the Weyl groupoid.
- Using the Weyl groupoid Heckenberger classified finite-dimensional Nichols algebras of diagonal type in terms of generalized Dynkin diagrams.
- Andruskiewitsch and Schneider, using the Lifting Method and Heckenberger's theorem, classified all finite dimensional pointed Hopf algebras with abelian coradical with prime divisors > 7.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

How to construct (non-diagonal) braided vector spaces?

In 1990 Drinfeld proposed to study a set theoretical version of the braid equation.

Let X be a set. A bijective function $c : X \times X \to X \times X$ is a solution of the set-theoretical braid equation if

 $(\boldsymbol{c} \times \mathrm{id})(\mathrm{id} \times \boldsymbol{c})(\boldsymbol{c} \times \mathrm{id}) = (\mathrm{id} \times \boldsymbol{c})(\boldsymbol{c} \times \mathrm{id})(\mathrm{id} \times \boldsymbol{c}).$

Definition:

A rack is a pair (X, \triangleright) , where X is a finite set and $\triangleright : X \times X \to X$ is a map such that:

- $x \mapsto i \triangleright x$ is bijective for all $i \in X$.
- $i \triangleright (j \triangleright k) = (i \triangleright j) \triangleright (i \triangleright k)$ for all $i, j, k \in X$.

Remark:

The map $c(x, y) = (x \triangleright y, x)$ is a solution of the set-theoretical braid equation if and only if (X, \triangleright) is a rack.

Example (Important!):

A conjugacy class X with the conjugation $x \triangleright y = xyx^{-1}$ is a rack.

All our racks are conjugacy classes of groups

Remark:

Let (X, \triangleright) be a rack. Let $V = \mathbb{C}X$ and define $c \in GL(V \otimes V)$ by

$$c(x\otimes y)=(x\triangleright y)\otimes x.$$

Then (V, c) is a braided vector space.

Questions:

- ► Is it possible to construct more "braidings" from (X, ▷)?
- Let $q: X \times X \to \mathbb{C}^{\times}$ be a map. When is the map

$$c(x\otimes y)=q(x,y)(x\triangleright y)\otimes x$$

a solution of the braid equation?

Remark: The map

$$c(x\otimes y)=q(x,y)(x\triangleright y)\otimes x$$

is a solution of the braid equation if and only if q is an abelian rack 2-cocycle:

$$q(x, y \triangleright z)q(y, z) = q(x \triangleright y, x \triangleright z)q(x, z).$$

Theorem (Andruskiewitsch, Graña, Takeuchi):

The braided vector spaces relevant to the classification of finite-dimensional pointed Hopf algebras are those coming from racks and 2-cocycles.

racks and 2-cocycles wy Yetter-Drinfeld modules over groups

Notation:

 $\mathfrak{B}(X,q)$ is the Nichols algebra $\mathfrak{B}(V,c)$ where $V = \mathbb{C}X$ and the braiding is $c(x \otimes y) = q(x,y)(x \triangleright y) \otimes x$.

Examples of racks, 2-cocycles and Nichols algebras

Rig, A GAP package for racks and Nichols algebras http://code.google.com/p/rig/

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

3-cycles in \mathbb{A}_4 : Let $X = (123)^{\mathbb{A}_4}$ be the rack associated to the conjugacy class of (123) in \mathbb{A}_4 :

	(243)	(123)	(134)	(142)
			(142)	
(123)	(142)	(123)	(243)	(134)
(134)	(123)	(142)	(134)	(243)
			(123)	

For example:

$$(243) \triangleright (123) = (243)(123)(243)^{-1}$$
$$= (243)(123)(234)$$
$$= (243)(13)(24)$$
$$= (134)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Remark:

It is possible to prove that

$$H^{2}((123)^{\mathbb{A}_{4}},\mathbb{C}^{ imes})=\mathbb{C}^{ imes} imes\langle\eta
angle,$$

where η is the 2-cocycle defined by

	(243)	(123)	(134)	(142)	
(243)	1	1	1	1	
(123)	1	1	-1	-1	
(134)	1	-1	1	-1	
(142)	1	-1	-1	1	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Affine racks:

Let \mathbb{F}_q be the field of q elements and let $\alpha \in \mathbb{F}_q \setminus \{0, 1\}$. Define

$$\boldsymbol{x} \triangleright \boldsymbol{y} = (1 - \alpha)(\boldsymbol{x}) + \alpha(\boldsymbol{y}).$$

Then (A, α) is a rack (called affine rack), and it will be denoted by Aff (q, α) .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Transpositions in S_n:

Let X_n be the conjugacy class of transpositions in S_n and let χ be the 2-cocycle:

$$\chi(\sigma, au) = egin{cases} 1 & ext{if } \sigma(i) < \sigma(j), \ -1 & ext{otherwise}, \end{cases}$$

where $\tau = (i j)$ with i < j.

Remarks:

• χ is cohomologous to the trivial 2-cocycle for n = 3.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

•
$$H^2(X_n, \mathbb{C}^{\times}) = \mathbb{C}^{\times} \times \langle \chi \rangle$$
 for $n \in \{4, \ldots, 10\}$.

Conjeture

$$H^2(X_n, \mathbb{C}^{\times}) = \mathbb{C}^{\times} \times \langle \chi \rangle$$
 for all $n \ge 4$.

As an example we work out the case n = 3.

Let X_3 be the conjugacy class of transpositions in S_3 :

\triangleright	(1 2)	(23)	(1 3)
(1 2)	(1 2)	(13)	(23)
(23)	(13)	(23)	(12)
(13)	(23)	(12)	(13)

The algebra $\mathfrak{B}(X_3, \chi)$ is generated by $x_{(12)}, x_{(23)}, x_{(13)}$ in degree 1 and has relations:

$$\begin{aligned} x_{(12)}^2 &= x_{(23)}^2 = x_{(13)}^2 = 0\\ x_{(12)}x_{(23)} + x_{(23)}x_{(13)} &= x_{(12)}x_{(13)},\\ x_{(23)}x_{(12)} + x_{(13)}x_{(23)} &= x_{(13)}x_{(12)}. \end{aligned}$$

It is a graded algebra of dimension 12. The Hilbert series is

$$\mathcal{H}(t) = 1 + 3t + 4t^2 + 3t^3 + t^4$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Remark:

 $\mathfrak{B}(X_n, \chi)$ is finite-dimensional for $n \in \{3, 4, 5\}$:

п	rank	top	dimension	Hilbert series
3	3	4	12	$(2)_t^2(3)_t$
4	6	12	576	$(2)_t^2(3)_t^2(4)_t^2$ $(4)_t^4(5)_t^2(6)_t^4$
5	10	40	8294400	$(4)_t^{4}(5)_t^{2}(6)_t^{4}$

where
$$(k)_t = 1 + t + t^2 + \cdots + t^{k-1}$$
.

Conjetures

- dim $\mathfrak{B}(X_n, \chi) = \infty$ for $n \ge 6$.
- $\mathfrak{B}(X_n, \chi)$ is quadratic.

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X = Y \sqcup (X \setminus Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given rack X classify all 2-cocycles of X such that $\dim \mathfrak{B}(X, q) < \infty$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Definition:

A rack X is decomposable if there exists a subset $\emptyset \neq Y \subseteq X$ such that $X = Y \sqcup (X \setminus Y)$ and $X \triangleright Y \subseteq Y$.

The problem:

For a given indecomposable rack *X* classify all 2-cocycles of *X* such that dim $\mathfrak{B}(X, q) < \infty$.

Only a few examples of non-diagonal finite-dimensional Nichols algebras over indecomposable racks are known

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Examples of Nichols algebras over $\ensuremath{\mathbb{C}}$

	dim V	$\dim \mathfrak{B}(V)$
Milinski, Schneider (1996) ¹	3	12
Graña (2000)	4	72
Andruskiewitsch, Graña (2002)	5	1280
Andruskiewitsch, Graña (2002)	5	1280
Milinski, Schneider ¹ (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Andruskiewitsch, Graña (2002)	6	576
Graña (2002)	7	326592
Graña (2002)	7	326592
Graña (2002)	10	8294400
Graña ¹ (2002)	10	8294400

¹Based on the work of Fomin & Kirillov

X	q	X	$\dim \mathfrak{B}(X,q)$	Hilbert series
(12) ^{S₃}	χ	3	12	$(2)_t^2(3)_t$
(123) ^{∆₄}	-1	4	72	$(2)_t^2(3)_t(6)_t$
Aff(5,2)	-1	5	1280	$(4)_t^4(5)_t$
Aff(5,3)	-1	5	1280	$(4)_t^4(5)_t$
(1234) ^{S4}	-1	6	576	$(2)_t^2(3)_t^2(4)_t^2$
(12) ^{S4}	-1	6	576	$(2)_t^2(3)_t^2(4)_t^2$
(12) ^{S4}	χ	6	576	$(2)_t^2(3)_t^2(4)_t^2$
Aff(7,3)	-1	7	326592	$(6)_t^6(7)_t$
Aff(7,5)	-1	7	326592	$(6)_t^6(7)_t$
(12) ^{S₅}	-1	10	8294400	$(4)_t^4(5)_t^2(6)_t^4$
(12) ^{S₅}	χ	10	8294400	$(4)_t^4(5)_t^2(6)_t^4$

 $(k)_t = 1 + t + t^2 + \dots + t^{k-1}$

Theorem (with Graña & Heckenberger)

Let X be a non-trivial indecomposable rack and let q be a 2-cocycle of X. The following are equivalent:

- 1. dim $\mathfrak{B}_2(X,q) \leq \frac{d(d+1)}{2}$.
- 2. X is one of the racks

 $\begin{array}{l} (12)^{\mathbb{S}_n} \text{ for } n \in \{3,4,5\},\\ (1234)^{\mathbb{S}_4}, (123)^{\mathbb{A}_4},\\ \mathrm{Aff}(\pmb{p},\alpha) \text{ for } (\pmb{p},\alpha) \in \{(5,2),(5,3),(7,3),(7,5)\}, \end{array}$

and the Nichols algebra is one of the algebras listed before.

3. There exist $n_1, n_2, ..., n_d \in \mathbb{N}$ such that the Hilbert series of $\mathfrak{B}(X, q)$ factorizes as

$$\mathcal{H}(t)=(n_1)_t(n_2)_t\cdots(n_d)_t.$$

A new example (with Heckenberger & Lochmann):

Recall that the rack $X = (123)^{\mathbb{A}_4}$ can be presented as

		b		
а	а	С	d	b
b	d	b	а	С
С	b	d	С	а
d	a d b c	а	b	d

Consider the 2-cocycle q:

	а	b	С	d
а	ω ω ω ω	ω	ω	ω
b	ω	ω	$-\omega$	$-\omega$
С	ω	$-\omega$	ω	$-\omega$
d	ω	$-\omega$	$-\omega$	ω

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where ω is a cubic root of 1.

Then $\mathfrak{B}(X, q)$ has dimension 5184.

- ► Generators: *a*, *b*, *c*, *d*,
- Relations: four relations in degree 2, four in degree 3 and one in degree 6,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Hilbert series: $\mathcal{H}(t) = (6)_t^4 (2)_{t^2}^2$.

Definition:

A rack X is simple if #X > 1 and for any epimorphism of racks $\pi : X \to Y$, either π is bijective or #Y = 1.

Example:

Non-trivial conjugacy classes of finite simple groups are simple racks.

Remarks:

- Joyce obtained deep results about simple racks.
- Andruskiewitsch, Graña & Guralnick classified simple racks.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Every rack *X* has a surjection into a simple rack *Y*.

Definition: A subset $\emptyset \neq Y \subseteq X$ is a subrack if $Y \triangleright Y \subseteq Y$.

Definition:

A rack X is of type D if there exists a decomposable subrack $Y = R \sqcup S$ such that

$$r \triangleright (s \triangleright (r \triangleright s)) \neq s$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

for some $r \in R$, $s \in S$.

Remarks:

- ► A conjugacy class of type D is a rack of type D.
- If $Y \subseteq X$ is a subrack of type D, then X is of type D.
- If X → Y is an epimorphism of racks and Y is of type D, then X is of type D.

The following theorem is based on the theory of Weyl groupoids developed by Andruskiewitsch, Heckenberger and Schneider.

Theorem (with Andruskiewitsch, Fantino, Graña)

Let X is a finite simple rack of type D. Then dim $\mathfrak{B}(X,q) = \infty$ for any 2-cocycle q.

Racks of type D are a powerful tool for studying pointed Hopf algebras.

A natural problem is to study finite-dimensional pointed Hopf algebras over finite simple groups.

Conjeture

Let *G* be a finite simple group and let *H* be a finite-dimensional pointed Hopf algebra with coradical *G*. Then $H \simeq \mathbb{C}G$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

With:

- Racks of type D,
- Heckenberger's classification, and
- ► the Lifting Method of Andruskiewitsch & Schneider,

is possible to obtain the following:

Theorem (with Andruskiewitsch, Fantino, Graña)

The only finite-dimensional pointed Hopf algebra over the alternating simple group A_n ($n \ge 5$) is the group algebra.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

There exist 26 sporadic simple groups:

- ► Mathieu groups: *M*₁₁, *M*₁₂, *M*₂₂, *M*₂₃, *M*₂₄.
- ► Leech lattice groups: HS, J₂, Co₁, Co₂, Co₃, McL, Suz.
- Pariahs: J_1 , ON, J_3 , Ru, Ly, J_4 .
- ▶ Monster sections: *He*, *HN*, *Th*, *Fi*₂₂, *Fi*₂₃, *Fi*₂₄, ℝ, M.

Theorem (with Andruskiewitsch, Fantino, Graña)

Let *G* be a sporadic simple group different from Fi_{22} , \mathbb{B} , and \mathbb{M} and let *H* be a finite-dimensional pointed Hopf algebra with coradical *G*. Then $H \simeq \mathbb{C}G$.