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Introduction

The goal of this work is to review some fundamental problems in the theory of Nichols
algebras of group type, i.e. Nichols algebras over Yetter-Drinfeld modules over groups. Most
of these problems appeared in [1]. We refer to [6] for the basic theory of Nichols algebras.

Problems.
(1) Classify finite-dimensional Nichols algebras.
(2) Give an optimal set of defining relations for finite-dimensional Nichols algebras.

Sections 1 and 2 are devoted to recall some basic preliminaries. In Sections 3 and 4 we will
study the problem over indecomposable braided vector spaces. In this context Fomin–Kirillov
algebras appear naturally and form one of the main examples to study. In Sections 5–5 we
will review the classification of finite-dimensional Nichols algebras over decomposable braided
vector spaces of group type and sketch the proof in the case of two simple summands.

1. Braided vector spaces and Nichols algebras

We start with the definition of Nichols algebras. For that purpose we need first to define
braided vector spaces. Fix a field K.

1.1. A braided vector space is a pair (V , c), where V is a vector space and c ∈ GL(V ⊗ V)
is a solution of the braid equation:

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

1.2. Example (braided vector spaces of diagonal type). Let V be a complex vector space
with basis x1, x2, ..., xn. Let qij ∈ C×, where 1 6 i, j 6 n. Define c(xi ⊗ xj) = qijxj ⊗ xi. Then
(V , c) is a braided vector space.

1



NICHOLS ALGEBRAS 2

Using the theory of Weyl groupoids and generalized root systems [16], Heckenberger
classified finite-dimensional Nichols algebras over complex braided vector spaces of diagonal
type [15, 17, 18, 19]. Heckenberger’s results have applications in the classification problem of
finite-dimensional pointed Hopf algebras (over the complex numbers) with abelian coradical
of order coprime to 210 [7]. Angiono found a minimal set of defining relations [8, 9].

For the classification of finite-dimmensional Nichols algebras of braided vector spaces of
diagonal type in arbitrary characteristic we refer to [32] and [31].

1.3. Example. Let G be a finite group and V = CG be the complex vector space with basis
{g : g ∈ G}. Define c(g⊗ h) = ghg−1 ⊗ g for g,h ∈ G. Then (V , c) is a braided vector space.

1.4. A braided vector space yields a special type of (braided) Hopf algebra called the
Nichols algebra of (V , c). To define Nichols algebras we need the Artin braid group Bn. This
group can be presented with generators σ1, ...,σn−1 and relations

σiσi+1σi = σi+1σiσi+1 for 1 6 i 6 n− 2,

σiσj = σjσi for |i− j| > 1.

Recall that the symmetric group Sn can be presented with generators τ1, ..., τn−1 and relations

τiτi+1τi = τi+1τiτi+1 for 1 6 i 6 n− 2,

τiτj = τjτi for |i− j| > 1,

τ2

i = 1 for 1 6 i 6 n− 1.

Hence there exists a surjection Bn → Sn defined by σi 7→ τi.

Lemma (Matsumoto). There exists a set-theoretical section µ : Sn → Bn, τi 7→ σi, such that
µ(xy) = µ(x)µ(y) if length(xy) = length(x) + length(y).

Remark. Let (V , c) be a braided vector space, and n ∈ N. Define

ci = idV⊗(i−1) ⊗c⊗ idV⊗(n−i−1) ∈ Aut(V⊗n)

for 1 6 i 6 n− 1, i.e.,

ci · (v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vi−1 ⊗ c(vi ⊗ vi+1)⊗ vi+2 ⊗ · · · ⊗ vn.

The operators ci (1 6 i 6 n− 1) satisfy the defining-relations of the braid group and hence
ρn : Bn → Aut(V⊗n), defined by ρn(σi) = ci, is a representation of Bn into V⊗n.

1.5. Let (V , c) be a braided vector space. The Nichols algebra of (V , c) is

B(V , c) =
⊕
n

Tn(V)/ kerSn = K⊕ V ⊕
⊕
n>2

V⊗n/ kerSn,

where Sn is the quantum symmetrizer:

Sn =
∑
σ∈Sn

ρnµ(σ).

Let us compute some quantum symmetrizers:

S2 = id+c,
S3 = id+c1 + c2 + c1c2 + c2c1 + c1c2c1,

where c1 = c⊗ id and c2 = id⊗c.
1.6. Examples. Let V be a complex vector space and let flip : V ⊗ V → V ⊗ V be the linear

map defined by x⊗ y 7→ y⊗ x. The Nichols algebra of the braided vector space (V , flip) is
the Symmetric Algebra S(V). The Nichols algebra of the braided vector space (V ,−flip) is the
Exterior Algebra Λ(V).

1.7. Our braided vector spaces will be a particular family of G-modules. Recall that a
Yetter-Drinfeld module (over KG) is a KG-module V = ⊕g∈GVg such that hVg ⊆ Vhgh−1 for
all g,h ∈ G. The braiding is c : V ⊗ V → V ⊗ V is the map defined by c(u⊗ v) = xv⊗ u if
degu = x.
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1.8. Over the complex numbers, the category of Yetter-Drinfeld modules overG is semisim-
ple. Furthermore, simple Yetter-Drinfeld modules over G are parametrized by pairs (gG, ρ),
where gG denotes the conjugacy class of g ∈ G and (ρ,M) is an irreducible representation of
the centralizer CG(g).

Let us describe the simple Yetter-Drinfeld modules over G. Let {x1, . . . , xn} be a set of
representatives of left cosets of CG(g) in G. Then the simple Yetter-Drinfeld modules over G
are

M(gG, ρ) = IndGCG(g)ρ =

n⊕
i=1

xi ⊗CCG(g)M

with the induced action y(x ⊗m) = yx ⊗m for x,y ∈ G and m ∈ M, and the coaction
δ(xi ⊗m) = xigx

−1

i ⊗ (xi ⊗m) for m ∈W. The braiding is

c
(
(xi ⊗m)⊗ (xj ⊗m ′)

)
= (xigx

−1

i xj ⊗m
′)⊗ (xi ⊗m).

Thus over the complex numbers every simple Yetter-Drinfeld module over G can be written
as V = ⊕x∈gGVx, where Vx = {v ∈ V : δ(v) = x⊗ v} and Vg = 1⊗M. For all x ∈ gG, Vx is a
simple CG(x)-module and yVx ⊆ Vyxy−1 for all y ∈ G.

2. A crash course on quandles

2.1. A quandle is a pair (X, .), where X is a set and . : X× X → X is a binary operation
such that the maps ϕx : X× X → X, given by y 7→ x . y, are bijective for each x ∈ X, x . x = x
for all x ∈ X, and x . (y . z) = (x . y) . (x . z) for all x,y, z ∈ X.

2.2. Example. Let G be a group and X be a union of conjugacy classes. Then X with
x . y = xyx−1 for all x,y ∈ X is a quandle.

2.3. The inner group of X is the group Inn(X) = 〈ϕx : x ∈ X〉. A quandle is called
indecomposable if Inn(X) acts transitively in X. Using the classification of transitive groups,
indecomposable quandles of small size were classified in [30]. Let q(n) be the number of
indecomposable quandles (up to isomorphism) of size n. Table 1 shows some values of q(n).

Table 1. The number of isomorphism classes of indecomposable quandles.

n 1 2 3 4 5 6 7 8 9 10 11 12

q(n) 1 0 1 1 3 2 5 3 8 1 9 10

n 13 14 15 16 17 18 19 20 21 22 23 24

q(n) 11 0 7 9 15 12 17 10 9 0 21 42

n 25 26 27 28 29 30 31 32 33 34 35 36

q(n) 34 0 65 13 27 24 29 17 11 0 15 73

n 37 38 39 40 41 42 43 44 45 46 47

q(n) 35 0 13 33 39 26 41 9 45 0 45

2.4. To describe a finite quandle X we may assume that X = {1, . . . ,n} for some n ∈ N
and then write X : ϕ1 . . . ϕn to denote the quandle structure on X given by the permutations
ϕ1, . . . ,ϕn. The following quandles are very important:

Z
4,1
T : (243) (134) (142) (123) id

Z2,2
2

: (24) (13) (24) (13)

Z
3,1
3 : (23) (13) (12) id

Z
3,2
3 : (23)(45) (13)(45) (12)(45) (123) (132)

Z
4,2
4 : (24)(56) (13)(56) (24)(56) (13)(56) (1234) (1432)

2.5. Exercise. Prove that the quandles given in 2.4 are not indecomposable.



NICHOLS ALGEBRAS 4

2.6. The enveloping group of G is the group

GX = 〈xi : xixj = xi.jxi for all i, j ∈ X〉.
The enveloping group has the following universal property: For any group G and any

map f : X→ G satisfying f(x .y) = f(x)f(y)f(x)−1 there exists a unique group homomorphism
g : GX → G such that f = g ◦ ∂, where ∂ : X→ GX, i 7→ xi.

2.7. Example. Let

T = 〈z〉 × 〈x1, x2, x3, x4 : xixj = xϕi(j)xi, i, j ∈ {1, 2, 3, 4}〉,
where ϕ1 = (243), ϕ2 = (134), ϕ3 = (142) and ϕ4 = (123), and for n > 2 let

Γn = 〈g,h, ε : hg = εgh, gε = ε−1g, hε = εh, εn = 1〉.
The enveloping groups of the quandles of 2.4 are listed in the following table:

Quandle Z2,2
2 Z

3,1
3 Z

3,2
3 Z

4,2
4 Z

4,1
T

Enveloping group Γ2 Γ3 Γ3 Γ4 T

2.8. Let X be a quandle and V = KX be the vector space (over the field K) with basis
{x : x ∈ X}. Let q : X × X → K× be a map and consider the map c ∈ GL(V ⊗ V) given
by c(x⊗ y) = q(x,y)(x . y)⊗ x. Then (V , c) is a braided vector space if and only if q is a
2-cocycle of X, i.e.

q(x,y . z)q(y, z) = q(x . y, x . z)q(x, z)

for all x,y, z ∈ X. The braided vector space (V , c) is said to be of type (X,q).

2.9. Example. Let X = (123)A4 be the quandle associated with the conjugacy class of (123)
in the alternating group A4. The map q : X×X→ C given by

(2.9.1)

(243) (123) (134) (142)
(243) ω ω ω ω
(123) ω ω −ω −ω
(134) ω −ω ω −ω
(142) ω −ω −ω ω

where ω ∈ C is a primitive n-th root of 1, is a 2-cocycle of X.

2.10. Example. Let n > 3 and Xn = (12)Sn . The map χ : X×X→ C given by

χ(σ, τ) =

{
1 if σ(i) < σ(j),
−1 otherwise,

where τ = (ij), i < j, is a 2-cocycle of Xn.

3. Fomin–Kirillov algebras

In [13], Fomin and Kirillov introduced a family of quadratic algebras and proved that
these algebras contain a commutative subalgebra isomorphic to the cohomology ring of the
flag manifold. The problems and conjectures listed in this section are known, see for example
[13], [29] and [10].

3.1. For an integer n > 3 denote by En the C-algebra (of type An−1) with generators x(ij),
where 1 6 i < j 6 n, and relations

x2

(ij) = 0, for 1 6 i < j 6 n,

x(ij)x(jk) = x(jk)x(ik) + x(ik)x(ij), for 1 6 i < j < k 6 n,
x(jk)x(ij) = x(ik)x(jk) + x(ij)x(ik), for 1 6 i < j < k 6 n,
x(ij)x(kl) = x(kl)x(ij), for any discinct i, j,k, l.

The algebras En are graded by deg(x(ij)) = 1. Write

En = (En)0 ⊕ (En)1 ⊕ (En)2 ⊕ · · · ,
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where (En)0 = C and (En)k denotes the homogeneous component of degree k. Then one
defines the Hilbert series of En as

Hn(t) =

∞∑
k=0

(dim(En)k)t
k.

It is natural to ask whether En is finite-dimensional or not. It is known that En is finite-
dimensional for n 6 5.

3.2. Problem. Compute the Hilbert series of En.

3.3. Example. The algebra E3 has dimension 12. The Hilbert series H3(t) of E3 is a poly-
nomial of degree 4: H3(t) = (2)2

t(3)t, where

(k)t = 1 + t+ · · ·+ tk−1.

3.4. Example. Computer calculations yield dimE4 = 576. The Hilbert series H4(t) of E4 is
a polynomial of degree 12: H4(t) = (2)2

t(3)
2

t(4)
2

t.

3.5. Example. Computer calculations yield dimE5 = 8294400. The Hilbert series H5(t) of
E5 is a polynomial of degree 40: H5(t) = (4)

4

t(5)
2

t(6)
4

t.

3.6. Example. The Hilbert series H6(t) of E6 cannot be written as a product of t-numbers.
Further,

H6(t) = 1 + 15t+ 125t2 + 765t3 + 3831t4 + 16605t5 + 64432t6 + · · ·

3.7. Conjecture. dimEn =∞ for all n > 6.

3.8. Conjecture. dim(En)k ∼

((n
2

)
k

)
.

3.9. Let us explain the connection between Fomin–Kirillov algebras and Nichols algebras.
Let Vn be the vector space with basis

{v(ij) : 1 6 i < j 6 n}

and consider the map c ∈ GL(Vn ⊗ Vn) defined by

c(vσ ⊗ vτ) = χ(σ, τ)vστσ−1 ⊗ vσ, χ(σ, τ) =

{
1 if σ(i) < σ(j),
−1 otherwise,

where σ and τ are transpositions, and τ = (ij) with i < j. Since (Vn, c) is a braided vector
space, it is possible to consider the Nichols algebra B(Vn). One has a surjective homomor-
phism of algebras En → B(Vn), see for example [10]. It is known that B(Vn) = En if
3 6 n 6 5; this was proved by Milinski and Schneider for n 6 4, and by Graña for n = 5.
Compare the braided vector space Vn with Example 2.10.

3.10. Conjectures.

(1) B(Vn) is quadratic for all n.
(2) En ' B(Vn) for all n.
(3) dimB(Vn) =∞ for all n > 6.

3.11. Remark. The numbers 4, 12 and 40 appear also as the numbers of indecomposable
representations of the preprojective algebra of a quiver of type A, and in the cluster alge-
bra structure of the coordinate ring of the the maximal unipotent subgroup N of SLn(C).
See [28], [11] and [27].
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4. Nichols algebras of indecomposable modules

Let us review the list of known examples of finite-dimensional Nichols algebras over inde-
composable braided vector spaces of group type.

4.1. Examples. Let X = (123)A4 and consider the 2-cocycle of X given by (2.9.1).
(1) Assume thatω = −1. Then the complex Nichols algebra B(X,q) of the braided vector

space of type (X,q) has dimension 72 and its Hilbert series is H(t) = (2)2

t(3)t(6)t.
(2) Assume that ω is a primitive cubic root of 1. Then the complex Nichols algebra

B(X,ωq) of the braided vector space of type (X,ωq) has dimension 5184 and its
Hilbert series is H(t) = (6)

4

t(2)
2

t2 . This Nichols algebra can be presented with four
generators, four relations in degree two, four relations in degree three and one in
degree six. This example appeared in [20].

4.2. It is known that many Nichols algebras over indecomposable braided vector spaces are
infinite-dimensional, see for example [3, 4] and [2]. Only few examples of finite-dimensional
Nichols algebras over indecomposable braided vector spaces of group type are known. The
complete list appears in Table 2. For these examples we refer to [21] and the references
therein.

Table 2. Finite-dimensional Nichols algebras.

rank dimension Hilbert series remarks
3 12 (2)2

t(3)t
3 432 (3)t(4)t(6)t(6)t2 charK = 2

4 36 (2)2

t(3)
2

t charK = 2

4 72 (2)2

t(3)t(6)t charK 6= 2

4 5184 (6)
4

t(2)
2

t2

6 576 (2)2

t(3)
2

t(4)
2

t

6 576 (2)2

t(3)
2

t(4)
2

t

6 576 (2)2

t(3)
2

t(4)
2

t

5 1280 (4)
4

t(5)t
5 1280 (4)

4

t(5)t
7 326592 (6)6

t(7)t
7 326592 (6)6

t(7)t
10 8294400 (4)

4

t(5)
2

t(6)
4

t

10 8294400 (4)
4

t(5)
2

t(6)
4

t

4.3. One common feature of the algebras appearing in Table 2 is the factorization of the
Hilbert series as

(4.3.1)
k1∏
i=1

(ai)t

k2∏
i=1

(bi)t2

for some k1,k2 > 0, a1, . . . ,ak1
,b1, . . . ,bk2

> 2, and where

(a)tb = 1 + tb + t2b + · · ·+ t(a−1)b

for all a,b > 1. This particular factorization was the starting point of [14], [20] and [21].

4.4. Conjecture. All finite-dimensional Nichols algebras of group type over an absolutely
simple Yetter-Drinfeld module have a Hilbert series of the form (4.3.1)1. Any such Nichols
algebra is one of those listed in Table 2.

1The conjecture was posed in October 2012 at the Oberwolfach mini-workshop “Nichols algebras and Weyl
groupoids”. For a proof or counterexample you will receive a bottle of wine!
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5. Nichols algebras of decomposable modules I: two summands

Now we review the classification of finite-dimensional Nichols algebras over decomposable
braided vector spaces of group type in the case of two simple summands. This classification
was obtained in collaboration with I. Heckenberger, see [23, 24, 26].

5.1. Let G be a group and let V = ⊕g∈GVg be a finite-dimensional Yetter-Drinfeld module
over G. The support of V is

suppV = {g ∈ G : Vg 6= 0}.

5.2. To avoid a discussion of group representations depending on the field and since field
extensions of Nichols algebras are well understood, in general it is more promising to extend
the field appropriately before studying a Nichols algebra.

Let G be a group and V ∈ GGYD. We say that a V is absolutely simple if V 6= 0 and if
for any field extension L of K the only Yetter-Drinfeld submodules of L⊗K V over LG are
{0} and L⊗K V . Absolutely simple Yetter-Drinfeld modules over G are parametrized by pairs
(gG, ρ), where gG is a conjugacy class of G and ρ : KGg → End(W) is an absolutely irreducible
representation of the centralizer Gg.

5.3. Theorem. Let G be a non-abelian group. Let V and W be two absolutely simple Yetter-
Drinfeld modules over G such that G is generated by the support supp(V ⊕W) of V ⊕W. Assume
that dimB(V ⊕W) <∞. If cW,VcV ,W 6= idV⊗W , then G is an epimorphic image of

T = 〈z〉 × 〈x1, x2, x3, x4 : xixj = xϕi(j)xi, i, j ∈ {1, 2, 3, 4}〉,

where ϕ1 = (243), ϕ2 = (134), ϕ3 = (142) and ϕ4 = (123), or an epimorphic image of

Γn = 〈g,h, ε : hg = εgh, gε = ε−1g, hε = εh, εn = 1〉
for some n ∈ {2, 3, 4}.

5.4. Theorem 5.3 has deep consequences. After some work one obtains the list of all V and
W in GGYD such that B(V ⊕W) is finite-dimensional. Moreover, one obtains the Hilbert series
of each B(V ⊕W).

Theorem. Let G be a non-abelian group and V and W be two absolutely simple Yetter-
Drinfeld modules over G such that G is generated by the support of V ⊕W. Assume that
(id−cW,VcV ,W)(V ⊗W) is non-zero and that dimB(V ⊕W) < ∞. Then B(V ⊕W) is one of
the Nichols algebras of Table 3.

5.5. Let us show an example of one of the algebras appearing in the context of Theorem 5.4.
Let G be a non-abelian epimorphic image of the group T and suppose that G has elements
z, x1, . . . , x4 ∈ G such that [z, xi] = 1 for all i and xixj = xϕi(j)xi for all i, j. Let V ,W ∈ GGYD.
Assume that V 'M(z, ρ), where ρ is a character of the centralizer Gz = G, and W =M(x1,σ),
where σ is a character of Gx1 = 〈x1, x2x3, z〉 with σ(x1) = −1 and σ(x2x3) = 1. Let v ∈ Vz \ {0}.
Then {v} is basis of V . The action of G on V is given by

zv = ρ(z)v, xiv = ρ(x1)v for all i ∈ {1, 2, 3, 4}.

Let w1 ∈Wx1
such that w1 6= 0. Then the vectors

w1, w2 := −x4w1, w3 := −x2w1, w4 := −x3w1

form a basis of W. The degrees of these vectors are x1, x2, x3 and x4, respectively. The action
of G on W is given by the following table:

W w1 w2 w3 w4

x1 −w1 −w4 −w2 −w3

x2 −w3 −w2 −w4 −w1

x3 −w4 −w1 −w3 −w2

x4 −w2 −w3 −w1 −w4

z σ(z)w1 σ(z)w2 σ(z)w3 σ(z)w4
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Table 3. Nichols algebras with finite root system of rank two over a field K.

rank group dimension charK support

4 Γ2 64 Z2,2
2

4 Γ2 1296 3 Z2,2
2

4 Γ3 10368 6= 2, 3 Z
3,1
3

4 Γ3 5184 2 Z
3,1
3

4 Γ3 1152 3 Z
3,1
3

4 Γ3 2239488 2 Z
3,1
3

5 Γ3 10368 6= 2, 3 Z
3,2
3

5 Γ3 5184 2 Z
3,2
3

5 Γ3 1152 3 Z
3,2
3

5 Γ3 2304 Z
3,2
3

5 Γ3 2304 Z
3,1
3

5 Γ3 2239488 2 Z
3,2
3

5 T 80621568 6= 2 Z
4,1
T

5 T 1259712 2 Z
4,1
T

6 Γ4 262144 6= 2 Z
4,2
4

6 Γ4 65536 2 Z
4,2
4

Assume further that

(ρ(x1)σ(z))
2 − ρ(x1)σ(z) + 1 = 0, ρ(x1z)σ(z) = 1.

Then B(V ⊕W) is finite-dimensional. If charK 6= 2, then

H(t1, t2) = (6)t1
(6)t1t

3

2

(6)t2

1
t

3

2

(2)2

t2

(3)t2
(6)t2

(2)2

t1t2

(3)t1t2
(6)t1t2

(2)2

t1t2

2

(3)t1t2

2
(6)t1t2

2

and dimB(V ⊕W) = 6
3

72
3 = 80621568, and if charK = 2, then

H(t1, t2) = (3)t1
(3)t1t

3

2

(3)t2

1
t

3

2

(2)2

t2

(3)2

t2

(2)2

t1t2

(3)2

t1t2

(2)2

t1t2

2

(3)2

t1t2

2

and dimB(V ⊕W) = 3
3

36
3 = 1259712.

Sketch of the proof of Theorem 5.3.

5.6. To simplify the presentation let us assume that K = C. The assumptions of Theorem
5.3 are:

• G is a non-abelian group,
• V = ⊕x∈gGVx andW = ⊕y∈hGWy are finite-dimensional simple Yetter-Drinfeld mod-

ules over G,
• G is generated by gG ∪ hG,
• B(V ⊕W) is finite-dimensional, and
• cW,VcV ,W 6= idV⊗W .

5.7. We split the proof into several steps.
The first steps use deep results of Andruskiewitsch, Heckenberger and Schneider, and the

classification of finite Weyl groupoids of rank two of Cuntz and Heckenberger.

5.8. Claim. The pair (V ,W) admits all reflections and its Weyl groupoid is finite. Indeed,
since dimB(V ⊕W) <∞, the claim follows from [5, Cor. 3.18 and Prop. 3.23].
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5.9. Claim. In the Weyl groupoid W(V ,W) there exists an object with an indecomposable
Cartan matrix of finite-type:(

2 −c1

−c2 2

)
where 1 6 c1c2 6 3.

This is a consequence of the classification of Heckenberger and Cuntz of finite Weyl groupoids
of rank two in terms of continued fractions [12].

5.10. So we may assume that our object (V ,W) satisfies

(5.10.1) (adV)(W) 6= 0, (adV)2(W) = 0, (adW)4(V) = 0.

Then we classify which supp(V ⊕W) can appear. Since supp(V ⊕W) generates G, it follows
that G is an epimorphic image of the enveloping group of the quandle supp(V ⊕W). (This is
one of the most important steps in the proof.)

5.11. Now the following proposition gives a complete description of supp(V ⊕W) under
our assumptions.

Proposition. Let G be a non-abelian group, and V and W be two Yetter-Drinfeld modules over
G. Assume that

(1) G is generated by the supports of V and W,
(2) suppV and suppW are conjugacy classes,
(3) (adV)2(W) = 0,
(4) (adW)4(V) = 0.

If (id−cW,VcV ,W)(V ⊗W) 6= 0, then supp(V ⊕W) is isomorphic to one of the quandles:

Z
4,1
T ,Z2,2

2
,Z3,1

3 ,Z3,2
3 ,Z4,2

4 ,

and G is an epimorphic image of the corresponding enveloping groups T , Γ2, Γ3, Γ4, respectively.

Sketch of the proof of Proposition 5.11.

5.12. Lemma. [22, Thm. 1.1] Let ϕ0 = 0, XV ,W
0 =W, and

ϕm = id−cV⊗(m−1)⊗W,V cV ,V⊗(m−1)⊗W + (id⊗ϕm−1)c1,2,

XV ,W
m = ϕm(V ⊗Xm−1)

for all m > 1. Then (adV)n(W) ' XV ,W
n for all n ∈ N0.

5.13. Lemma. Let m ∈ N. Assume that a the conjugacy class gG is an indecomposable quandle ,
(adV)m(W) 6= 0 and (adV)m+1(W) = 0. Then |gG| 6 2m.

5.14. Remember that our pair (V ,W) satisfies

(adV)(W) 6= 0, (adV)2(W) = 0, (adW)4(V) = 0.

To prove Proposition 5.11 we need to consider two cases.
First we assume that the classes gG and hG commute, i.e. xy = yx for all x ∈ gG and

y ∈ hG. Using the assumption G = 〈gG ∪ hG〉, we obtain that the classes gG and hG are
indecomposable quandles. Then Lemma 5.13 implies that |gG| 6 2 and |hG| 6 6. Since gG is
indecomposable, gG = {g}.

5.15. Lemma. Let r1, r2, r3, r4 ∈ gG and s ∈ hG. Assume that gG and hG commute, 0 6=
(r3, r4, s) ∈ (adV)2(W), and

r2 6∈ {r3, r4, r−1

4
. r3}, r2 . r4 6= r4,(5.15.1)

r1 6∈ {r2 . r3, r2, r4, r−1

4
. r2, r−1

4
. r3}, r1 . r4 6= r4.(5.15.2)

Then (adV)4(W) 6= 0.
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5.16. With Lemma 5.15 we obtain that |hG| 6 4. Now since the classification of indecom-
posable quandles of small size is known, we conclude that gG = {g} and hG is (isomorphic to)
one of the following quandles (12)S3 or (123)A4 . Therefore gG ∪ hG = {g}∪ (12)S3 is one of the
quandles:

(5.16.1) Z
3,1
3 = {g}∪ (12)S3 or Z4,1

T = {g}∪ (123)A4 .

5.17. Lemma. Now assume that gG and hG do not commute. Assume further that (adV)2(W) =
0. The following hold.

(1) Let s ∈ hG. Then there exist r1, r2 ∈ gG such that ϕs|gG = (r1r2).
(2) gG is commutative and hG 6= gG.

5.18. So we know that gG is commutative. There are two cases to consider.
If hG is indecomposable, then |hG| 6 6 by Lemma 5.13 and (since the classification of

small indecomposable quandles [or more precisely quandles] is known) we obtain en explicit
description of the quandles hG. Then Lemma 5.17 and some computations yield the list of
possibilities for gG ∪ hG. This list can drastically be reduced using the following lemma.

5.19. Lemma. Let r1, r2, r3 ∈ gG and s ∈ hG. Assume that:
(1) r2 . r3 6= r3,
(2) r1 6∈ {r3r2 . r3, r3 . r2, r3, s−1 . r3, s−1 . r2},
(3) s . r2, s . r3 6∈ {r2, r3},
(4) r1 . s 6= s or r1 . r3 6= r3.

Then (adV)4(W) 6= 0.

5.20. After using Lemma 5.19 we obtain only one possibility for gG ∪ hG. This is the
quandle Z3,2

3 described by the following permutations:

Z
3,2
3 : (23)(45) (13)(45) (12)(45) (123) (132)

5.21. Suppose now that hG is decomposable. Using Lemma 5.19 and after many compu-
tations one proves that gG ∪ hG is one the quandles:

Z2,2
2

: (24) (13) (24) (13)

Z2,2
4

: (24)(56) (13)(56) (24)(56) (13)(56) (1234) (1432)

At the end we have only five quandles!
Since G is generated by gG ∪ hG, the group G is an epimorphic image of the enveloping

group of the quandle gG ∪ hG. The enveloping groups of our five quandles are given in the
following table:

Quandle Z2,2
2 Z

3,1
3 Z

3,2
3 Z

4,2
4 Z

4,1
T

Enveloping group Γ2 Γ3 Γ3 Γ4 T

6. Nichols algebras of decomposable modules II: the general case

Let θ ∈ N with θ > 3. Let K be a field, G be a group and M1, . . . ,Mθ be absolutely simple
Yetter-Drinfeld modules over G. Let us review the classification of finite-dimensional Nichols
algebras B(M1 ⊕ · · · ⊕Mθ), see [25].

6.1. We say that the tuple M = (M1, . . . ,Mθ) of finite-dimensional absolutely simple
Yetter-Drinfeld modules over G has a skeleton if

(1) for all 1 6 i 6 θ there exist si ∈ suppMi and a character σi of Gsi such that Mi '
M(si,σi), and

(2) M is absolutely plain, and for all 1 6 i < j 6 θ with aij 6= 0 at least one of aij, aji is
equal to −1, where A = (aij)16i,j6θ is the Cartan matrix of M.

In this case a skeleton of M is a partially oriented partially labeled loopless graph with θ
vertices satisfying the following properties.
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(1) For all 1 6 i 6 θ, the i-th vertex is symbolized by |suppMi| = dimMi points.
(2) For all i, j ∈ {1, . . . , θ} with i 6= j there are aijaji edges between the i-th and j-th vertex.

The edge is oriented towards j if and only if aij = −1, aji < −1.
(3) Let 1 6 i < j 6 θ with aij < 0. Then the edges between the i-th and j-th vertex are

continuous lines if suppMi and suppMj commute, and dashed lines otherwise.
(4) If the i-th vertex has a label p ∈ K×, then σi(si) = p.
(5) If the edges between the i-th and j-th vertex have a label p ∈ K×, then si ∈ Gsj ,

sj ∈ Gsi , and σi(sj)σj(si) = p.

6.2. It is clear from the definition that two skeletons can at most differ by labels of vertices
and edges. In what follows we will usually omit all labels which can be obtained from the
other data of the skeleton.

6.3. A skeleton is called connected if the underlying graph is connected. A connected
skeleton with at least three vertices is said to be of finite type if it appears in Figure 6.3.1.

αθ qq qq · · · qq qq
βθ qq qq · · · qq qq > qq charK = 3

β ′
3

qp p−1 qp > q qq q (3)−p = 0

β ′′
3

qp p−1

> qq > q qq q (3)−p = 0

γθ qq qq · · · qq qq <
−1 q charK 6= 2

δθ qq qq · · · qq
qq

qq
ε6 qq qq qq

qq
qq qq

ε7 qq qq qq
qq

qq qq qq
ε8 qq qq qq

qq
qq qq qq qq

ϕ4
q −1 q >−1 qq qq charK 6= 2

Figure 6.3.1. Skeletons of finite type with at least three vertices

6.4. We say that a tuple M = (M1, . . . ,Mθ) of Yetter-Drinfeld modules over G is braid-
indecomposable if there is no decomposition

M1 ⊕ · · · ⊕Mθ =M ′ ⊕M ′′

in GGYD with M ′ 6= 0, M ′′ 6= 0 and (id− c2)(M ′ ⊗M ′′) = 0.

6.5. Theorem. Let θ > 3, G be a non-abelian group and M = (M1, . . . ,Mθ) be a tuple
of finite-dimensional absolutely simple Yetter-Drinfeld modules over G. Assume that M is braid-
indecomposable. Then B(M1 ⊕ · · · ⊕Mθ) is finite-dimensional if and only if M has a skeleton of
finite-type.

6.6. Theorem 6.5 gives the dimensions of B(M1 ⊕ · · · ⊕Mθ). The structure of the Mi can
be read off from the skeletons of Figure 6.3.1. Let us show an example. In the case where M
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has a simply-laced skeleton of finite type (i.e. of type ADE, or with a skeleton of type αn, δn,
ε6, ε7 or ε8) or the Nichols algebra B(M) is finite-dimensional and its Hilbert series is

H(t) =
∏
α∈∆+

(1 + tα)2,

where ∆+ denotes the set of positive root of the root system associated with the Weyl gr-
poupoid W(M). The dimensions of these Nichols algebras are listed in Table 4.

Table 4. Nichols algebras with root system of type ADE.

root system Aθ Dθ E6 E7 E8

dimB(M) 4
θ(θ+1)/2

4
θ(θ−1)

4
36

4
63

4
120

skeleton αθ δθ ε6 ε7 ε8
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