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Abstract

The Yang–Baxter equation initially appeared in both quantum and statistical mechanics. Drinfeld proposed
studying a special class of its solutions, the so-called set-theoretical solutions. Although more restrictive,
these solutions remain too general to be classified completely. Nevertheless, studying them leads to a better
understanding of the Yang–Baxter equation. Braces, algebraic structures introduced by Rump, turn out to
provide the right algebraic framework to study involutive non-degenerate solutions. Later, skew braces were
introduced by Guarnieri and Vendramin as a generalization to study also the non-involutive ones. These
algebraic structures form the main focus of this thesis.

We start by studying two classes of skew braces. The first is the class of two-sided skew braces. We
show that they can be described as extensions of weakly trivial skew braces by two-sided braces, which leads
to novel structural results. The second class comprises bi-skew braces, which are more generally related to
brace blocks. We provide a technical characterization of brace blocks as well as more feasible constructions.

In the next three chapters, we treat the connection between skew braces and non-degenerate set-theoretical
solutions of the Yang–Baxter equation. After exploring how certain properties of solutions relate to those
of their associated skew braces, we classify finite indecomposable involutive non-degenerate solutions with
an abelian permutation group and indecomposable involutive non-degenerate solutions of size p2 with p a
prime.

Subsequently, we discuss the existing connection between skew braces and Hopf–Galois structures on
finite Galois field extensions and propose a refined version. This enables an explicit classification of all such
extensions where the Hopf–Galois correspondence is surjective, a behavior closely resembling that of the
classical Galois correspondence.

In the final part of the thesis, we develop a Lazard correspondence between L-nilpotent post-Lie rings
and L-nilpotent skew braces. By means of illustration, we then use this correspondence to obtain in a more
explicit form Zenouz’s classification of skew braces of order p3, p > 3 a prime, through a classification of
L-nilpotent Lie rings of the same order.

Collectively, these results deepen the structural understanding of skew braces and emphasize their pivotal
role, both in algebra and in relation to the Yang–Baxter equation.
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Samenvatting

De Yang–Baxter vergelijking verscheen oorspronkelijk zowel in de kwantummechanica als in de statisti-
sche mechanica. Drinfeld stelde voor om een bijzondere klasse van oplossingen te bestuderen: de verza-
melingtheoretische oplossingen. Hoewel restrictiever, blijven deze oplossingen te algemeen om volledig te
classificeren. Toch leidt het onderzoek ervan tot een beter begrip van de Yang–Baxter vergelijking. Bra-
ces, algebraïsche structuren geïntroduceerd door Rump, blijken het juiste algebraïsche kader te bieden om
involutieve niet-gedegenereerde oplossingen te bestuderen. Later werden skew braces geïntroduceerd door
Guarnieri en Vendramin als een veralgemening hiervan om ook niet-involutieve oplossingen te bestuderen.
Deze algebraïsche structuren vormen de kern van deze thesis.

We beginnen met het bestuderen van twee klassen van skew braces. De eerste is de klasse van tweezijdige
skew braces. We tonen aan dat deze steeds bekomen kunnen worden als extensies van een zwak triviale skew
brace met een tweezijdige brace, wat leidt tot nieuwe structurele resultaten. De tweede klasse omvat bi-
skew braces, die sterk gerelateerd zijn aan braceblokken. We geven voor braceblokken zowel een technische
karakterisering als makkelijker hanteerbare constructies.

Vervolgens behandelen we de connectie tussen skew braces en niet-gedegenereerde verzamelingtheore-
tische oplossingen van de Yang–Baxter vergelijking. Na te onderzoeken hoe bepaalde eigenschappen van
oplossingen gerelateerd zijn aan die van hun geassocieerde skew braces, classificeren we onontbindbare ein-
dige involutieve niet-gedegenereerde oplossingen onder de voorwaarde dat hun permutatiegroep abels is of
ze van grootte p2 zijn, met p priem.

Daarna bespreken we de bestaande connectie tussen skew braces en Hopf–Galois structuren op eindige
Galois velduitbreidingen en geven we een verfijndere correspondentie tussen deze twee structuren. Deze
maakt een expliciete classificatie mogelijk van alle Galoisuitbreidingen waarbij de Hopf–Galoiscorrespondentie
surjectief is, hetgeen overeenkomt met het gedrag van de klassieke Galoiscorrespondentie.

In het laatste deel ontwikkelen we een Lazardcorrespondentie tussen L-nilpotente post-Lie-ringen en
L-nilpotente skew braces. Ter illustratie gebruiken we vervolgens deze correspondentie om Zenouz’s clas-
sificatie van skew braces van orde p3, met p > 3 priem, in een meer expliciete vorm te verkrijgen via een
classificatie van L-nilpotente post-Lie-ringen van dezelfde orde.

De bekomen resultaten dragen bij aan een beter begrip van skew braces en benadrukken hun essentiële
rol in zowel pure algebra als in onderzoek naar de Yang–Baxter vergelijking.
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Introduction

Many, if not most, fields of mathematics revolve around the study of a class of objects of interest. The nature
of said object can range from purely algebraic (groups, fields, algebras, ...) to geometric (topological spaces,
manifolds, ...) to something in between (Lie groups, algebraic varieties, ...) or to something else entirely.
The beauty of it all lies in the fact that none of these research fields really stand on their own. There are, of
course, the obvious inclusions where one simply forgets some structure of an object to end up with a weaker
notion. Any Lie group is, in particular, a group, any manifold is, in particular, a topological space, and so
forth, but there are also more intriguing cases where objects of a different nature are obtained. Whenever a
notion of symmetry is present, one may consider the group formed by these symmetries, thus ending up in
the realm of group theory. A group, in turn, gives rise to a group algebra, the modules of that group algebra
form a monoidal category, etc. Often, when applying such constructions, we lose some of the information
encoded in the original object. One can generally not expect that the symmetry group of an object retains all
information about said object, although that certainly does not mean that no insight into the starting object
is to be recovered from it. On the other hand, sometimes surprising results are obtained that state that, in
fact, all information about the starting object can be recovered. Think, for example, of the Tannaka–Krein
duality, where objects are reconstructed from their representations.

Although uncovering such connections in mathematics is rewarding in its own right, their true strength
often lies in the fact that the objects involved are of fundamentally different natures. A classical example is
Galois theory: starting from a field extension L/K, one may consider its group G of field automorphisms;
the symmetries in this setting. As one might expect, transitioning from a field extension to its group of
automorphisms results in a loss of specific information about L and K. Nonetheless, when the extension
satisfies suitable conditions, it becomes possible to recover key structural features. For instance, the lattice
of intermediate field extensions is then dual to the lattice of subgroups of G.

Another example, and one of central importance to this thesis, is found in the study of set-theoretical
solutions of the Yang–Baxter equation. We will present a more detailed account in Chapter 1; here we limit
ourselves to a brief overview. A set-theoretical solution of the Yang–Baxter equation consists of a non-empty
set X and a map r : X2 → X2 such that the equation

(r × idX)(idX ×r)(r × idX) = (idX ×r)(r × idX)(idX ×r)

is satisfied. Set-theoretical solutions are a special case of the more general Yang–Baxter equation, which
involves a linear map on the tensor square of a vector space, which appeared in the works of Yang [169] and
Baxter [20]. This equation can be visualized as the third Reidemeister move, which explains why it is also
known as the braid equation, see Fig. 1.

1
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Figure 1: A visualisation of the Yang–Baxter equation. On the bottom, the beginning of the three strands
each signifies a copy of X in X3, and every crossing of two strands symbolizes an application of the map
r.

Set-theoretical solutions of the Yang–Baxter equation are at first sight far removed from algebra. How-
ever, we could interpret the map r as giving certain quadratic relations. Such interpretation gives rise to its
structure monoid M = M(X, r). This monoid is constructed by starting from the free monoid on X and
imposing the relation xy = ab whenever r(x, y) = (a, b), where x, y, a, b ∈ X . Note that this construction
solely relies on r being a map from X2 to itself, not on it satisfying the Yang–Baxter equation. A good
indication that this structure monoid is of interest, is that this monoid has a natural left action on X where a
generator x maps y to the first component of r(x, y). Similarly, there is a right action defined where the gen-
erator x maps y to the second component of r(y, x) The obtained monoid naturally gives rise to its monoid
algebra K[M ] over a given field K. Natural questions now arise: is K[M ] interesting from a ring-theoretic
perspective? Are there properties of K[M ] that can be directly related to those of (X, r), and vice versa? It
turns out that the answer to these is positive, see [52, 92]. Going back to the structure monoid M of (X, r),
one can instead head into a different direction and construct its group of fractions G = G(X, r). We call
G the structure group of (X, r). If one wants to make the monoid actions of M on X into actions of the
group G on X , then a non-degeneracy condition on (X, r) appears naturally. Together with bijectivity of
r, which we will henceforth always assume to be the case, this allows for the construction of a secondary
group structure on the set G. Let ◦ denote the original group operation on G and let · denote the secondary
one. Remarkably, these operations satisfy the identity

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c),

for all a, b, c ∈ G, where a−1 is the inverse of a in the group (G, ·). This fact is highly non-trivial and
constitutes the main result of [73, 117, 152]. A triple (G, ·, ◦) for which the above condition is satisfied, is
called a skew brace. If the canonical map ι : X → G is injective then the data (G, ·, ◦) and ι determine
the solution (X, r) completely. When r2 = idX2 , this injectivity condition is always satisfied; in this case,
we say that the solution is involutive. More than just being a surprising construction, this opens the door to
applying group theoretic techniques in the study of set-theoretical solutions. As far as classification purposes
go, attempting to instead classify structure skew braces will, in general, not facilitate the task: even when
X is finite, the structure group G is infinite. To address this, one considers the permutation skew brace
G(X, r), a natural quotient of the structure skew brace that retains finiteness when X is finite. An answer to
how much of the information of (X, r) is lost in the process of passing to G(X, r) is provided in [11, 12]:
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the solution (X, r) can be recovered from G(X, r) provided we are also given the image of the canonical
map X → G(X, r) and the stabilizers of a natural action of G(X, r) on X .

We can summarize the driving force behind this thesis as follows: to deepen our understanding of how
skew braces relate to other mathematical structures, and how these connections can be exploited to transfer
problems from one setting to another. Ideally, of course, the latter then leads to a problem that is more easily
solved. To clarify this perspective, we now provide an overview of the thesis, highlighting some of the novel
contributions that we present.

In an attempt to make this thesis as self-contained as possible, Chapter 1 contains many preliminary
results and examples regarding all of the different objects of interest in this thesis. For most results, we
simply give the statement without proof and provide a reference to where its proof can be found. However,
we include proofs in cases where they offer additional insight or when the statements presented extend
slightly beyond what is found in the literature.

Unlike the later chapters, Chapters 2 and 3 focus exclusively on skew braces. We study two different
classes of skew braces. The first is the class of bi-skew braces; skew braces that remain a skew brace
when the two group operations are interchanged. This property is not merely a curiosity; it follows by a
result of Caranti [41] that the property of being a bi-skew brace can be interpreted as satisfying a certain
nilpotency condition. When (A, ·) is abelian, in this case (A, ·, ◦) is simply called a brace, this is equivalent
to having multipermutation level 2. Braces and involutive solutions of multipermutation level 2 are heavily
featured in Chapters 4 to 6. Moreover, using the theory of bi-skew braces, we prove in Theorem 2.3.6 that
there are precisely three isomorphism classes of skew braces whose multiplicative group is infinite cyclic,
thereby solving [164, Problem 27]. Going beyond bi-skew braces, one can study families (A, ◦i)i∈I of
group structures on the same set A such that, for any i, j ∈ I , the triple (A, ◦i, ◦j) is a skew brace. Such a
family is called a brace block. Our two main results concerning brace blocks are Theorems 2.4.1 and 2.4.5.
Theorem 2.4.1 provides a precise but technical characterization of when a family (A, ◦i)i∈I forms a brace
block. Theorem 2.4.5 gives sufficient conditions for when a family (A, ◦i)i∈I is a brace block, which
are more manageable when one’s interest is in constructing explicit examples. It turns out that all known
constructions of brace blocks in the literature can be obtained through the latter construction. We also use it
to construct new examples exhibiting curious behaviors, where we draw inspiration from ring theory.

The second class that we consider is that of two-sided skew braces. Historically, (left) braces occurred as
generalizations of Jacobson radical rings, where the latter correspond precisely to two-sided braces. Instead
of removing the two-sidedness condition of a Jacobson radical ring and thus ending up with a brace, we
can also relax the abelianity of the additive group to obtain the notion of a two-sided skew brace. Our main
result, Theorem 3.2.3, shows that such a skew brace contains a canonical ideal that is a two-sided brace
and such that the quotient with this ideal is very close to being just a group. We coin the term weakly trivial
skew braces for such quotients, which we characterize in Theorem 3.1.12 by pairs of groups with isomorphic
abelianizations. Finally, we discuss consequences of Theorem 3.2.3 on the nilpotency and solvability of the
groups of two-sided skew braces, thereby extending some of the results by Nasybullov obtained in [123].

We subsequently focus on the earlier-mentioned connection between skew braces and non-degenerate
set-theoretical solutions of the Yang–Baxter equation. In Chapter 4 we explore four of its different aspects.
First, we revisit the well-established notion of the multipermutation level of a set-theoretical solution (X, r),
denoted mpl(X, r), which can be interpreted as a nilpotency condition. There is also the notion of multiper-
mutation level for skew braces, where this interpretation as a nilpotency condition is very precise. For (X, r)
a non-degenerate set-theoretical solution with |X| > 1, results from [49, 79] establish the inequalities

mpl(G(X, r))− 1 ≤ mpl(G(X, r)) ≤ mpl(X, r) ≤ mpl(G(X, r)).

For injective solutions, one has mpl(G(X, r)) = mpl(G(X, r)) + 1, but even then no strict relation exists



4 CONTENTS

between mpl(X, r) and mpl(G(X, r)) without additional assumptions on (X, r). To address this, we pro-
pose a slight modification of the multipermutation level of a solution, which we denote by mpl′(X, r). The
underlying idea here is that while mpl(X, r) measures how far away a solution is from being the trivial one-
element solution, mpl′(X, r) instead quantifies the distance to a trivial solution of the form (x, y) 7→ (y, x)
on a set of cardinality possibly greater than 1. Our main result on this, Theorem 4.1.10, shows that the equal-
ity mpl′(X, r) = mpl(G(X, r)) holds without any additional assumptions. Though the difference between
mpl(X, r) and mpl′(X, r) is minor in the sense that mpl(X, r) − 1 ≤ mpl′(X, r) ≤ mpl(X, r), this re-
finement is significant given that classification problems become considerably more complex when moving
from multipermutation level n to n+1 (cf. Chapter 6). The second aspect concerns the relation between the
indecomposability of non-degenerate set-theoretical solutions of the Yang–Baxter equation and generators
of the associated skew braces G(X, r) and G(X, r). Indecomposable solutions, by definition, cannot be de-
composed into two subsolutions. Results from [136, 150] show that if (X, r) is indecomposable, involutive
and has a finite multipermutation level, then the bracesG(X, r) and G(X, r) are one-generated; that is, there
exists an element such that the smallest subbrace containing this element is the whole brace. Rump also
provided an example to show that this does not necessarily hold without the finite multipermutation level
assumption. In Proposition 4.2.3 and Corollary 4.2.6 we extend the results by instead relating indecom-
posability of a solution to G(X, r) and G(X, r) being one-generated as strong left ideals, and proving that
these two different notions of being one-generated coincide in the multipermutation case. More generally,
we relate the minimal number of orbits in a cycle base of a skew brace to its minimal number of generators,
where indecomposability corresponds to the existence of a unique orbit. We use this then as a stepping stone
to explore different notions of generating sets and how these coincide under certain nilpotency conditions.
Next, motivated by Chapter 2, we describe how the property of being a bi-skew brace interacts with solutions
of the Yang–Baxter equation. We provide a precise characterization of when the structure or permutation
skew brace of a solution is bi-skew. Additionally, we negatively answer the question of whether solutions
associated with (A, ·, ◦) and (A, ◦, ·) are directly related when (A, ·, ◦) is a bi-skew brace. In the last part
of the chapter, we treat automorphisms of both solutions and skew braces. We prove that a non-degenerate
indecomposable multipermutation solution has no trivial subsolutions, which then implies that all homo-
morphisms of such solutions are surjective. In the finite case, this further implies that all endomorphisms of
such a solution are in fact automorphisms. Similar results were previously known in the case of multipermu-
tation level 2 [88, 90]. Any automorphism of a non-degenerate indecomposable involutive solution (X, r)
yields an automorphism of the bracesG(X, r) and G(X, r). Conversely, it is described by Cedó, Jespers and
Bachiller how certain automorphisms of G(X, r) lift to automorphisms of (X, r). We build upon this result
to define a subbrace H of G(X, r) which we can use to construct a subgroup of automorphisms of (X, r).
Moreover, we have control over the structure of this subgroup of automorphisms since we prove that it is
isomorphic to a quotient of (H, ·). Although possibly |H| = 1, the other extreme case H = G(X, r) occurs
precisely when mpl(X, r) = 2. Under this assumption, Theorem 4.4.14 expresses the whole automorphism
group Aut(X, r) as a quotient of (G(X, r), ·), thereby extending a result by Jedlička and Pilitowska [88,
Proposition 5.16].

In Chapter 5 our main result is the classification of non-degenerate, indecomposable, involutive set-
theoretical solutions of size p2, for p a prime.

Theorem. Let p be a prime, let Φ : Z/p → Z/p be a non-constant map with Φ(x) = Φ(−x) and let
α ∈ (Z/p)× be such that Φ(αx) = αΦ(x), where (Z/p)× denotes the group of invertible elements of Z/p.
If we set X = Z/p× Z/p and

r

(
(a, x)
(b, y)

)
=

(
(α−1b− x, α−1y − Φ(α−1b− x− a))

(αa+ y − Φ(b− αx− αa), αx+Φ(αa− αx− b))

)
,
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then (X, r) is a non-degenerate, irretractable, indecomposable, involutive set-theoretical solution of the
Yang–Baxter equation of size p2. Up to isomorphism, every such solution is of this form. The parameters
α,Φ and α′,Φ′ define isomorphic solutions if and only if α = α′ and there is a β ∈ (Z/p)× such that
β−1Φ(βx) = Φ′(x) for all x ∈ Z/p.

We use this result to give an explicit formula for the number of isomorphism classes of such solutions
for any prime p. The strategy used to prove this classification theorem begins by first considering such
solutions (X, r) as transitive cycle bases of their permutation brace. In the case where G(X, r) is a p-group,
then the left nilpotency of the brace yields a subbrace F of fixed points of G(X, r). We prove that X is a
double coset of F in (G(X, r), ◦), from which the explicit form of r can then be deduced. In the remaining
case, where |G(X, r)| contains prime divisors different from p, we prove that (X, r) is a deformation by an
automorphism of one of the solutions obtained in the p-group case.

Another classification is addressed in Chapter 6, namely that of the class of finite non-degenerate, inde-
composable, involutive set-theoretical solutions with abelian permutation group. Such solutions necessarily
have a finite multipermutation level. The classification is first reduced to that of one-generated finite braces
whose multiplicative group is abelian. The generating relations of such braces are then encoded via matri-
ces, allowing us to reduce the classification problem to analyzing orbits of a group action on these matrices.
If we restrict to those solutions of multipermutation level at most 2, we recover in an alternative way the
classification obtained by Jedlićka, Pilitowska and Zamosjka-Dzienio in [90]. For multipermutation level
3, we obtain in Theorem 6.3.4 an explicit formula for the number of isomorphism classes of such solutions
of a given size. We conclude the chapter with a brief discussion of infinite solutions satisfying the same
conditions.

In Chapter 7, we investigate the connection between skew braces and Hopf–Galois structures. The latter
generalizes the classical notion of the Galois group associated with a Galois field extension by replacing
groups with Hopf algebras acting on (not necessarily Galois) field extensions. When we restrict to Hopf–
Galois structures on a Galois field extension L/K with Galois group (G, ◦), results by Greither and Pareigis
[82] and Childs [57] reduce the classification of Hopf–Galois structures on L/K to finding regular affine
actions of G on another group N . Such actions yield regular subgroups of the holomorph of N , which
are fundamentally linked to the theory of skew braces. We first summarize the known connection and then
refine it in Theorem 7.2.1, where we prove a bijective correspondence between Hopf–Galois structures
on L/K and operations · such that (G, ·, ◦) is a skew brace. This correspondence allows for an explicit
construction of the Hopf–Galois structure corresponding to a given skew brace (G, ·, ◦). We further explore
this correspondence by examining how substructures of (G, ·, ◦) relate to those of the corresponding Hopf
algebra and to intermediate fields of L/K. The overarching theme is that skew braces play the same role
in Hopf–Galois theory over Galois fields that groups play in classical Galois theory. The Hopf–Galois
correspondence, analogous to the classical Galois correspondence, is a central object of study. However, in
contrast to the classical case, this correspondence is not always surjective; that is, not every intermediate
field of L/K necessarily is reached through this correspondence. Examples of extensions where surjectivity
holds for all possible Hopf–Galois structures on a given extension are scarce in the literature. Through
Theorem 7.2.1, we reduce the problem of finding such extensions to a concrete question about skew braces.
We then provide a complete answer for this problem in Theorem 7.3.23.

Chapter 8 is entirely devoted to developing a Lazard-type correspondence between skew braces and post-
Lie algebras in a setting that is as general as possible. A post-Lie algebra over a commutative ring R is a
Lie algebra a with Lie bracket [−,−] over R, together with an R-bilinear operation ▷ satisfying

x ▷ [y, z] = [x ▷ y, z] + [y, x ▷ z],

[x, y] ▷ z = (x, y, z)▷ − (y, x, z)▷,



6 CONTENTS

for all x, y, z ∈ a, with (x, y, z)▷ defined as the associator x ▷ (y ▷ z) − (x ▷ y) ▷ z. If the bracket on a is
trivial, then (a, ▷) is a pre-Lie algebra. When R = Z, we call such structures post-Lie rings or pre-Lie rings
respectively. Multiple constructions relating post-Lie algebras and skew braces are known in the literature.
For instance, in [15, 27, 98] the differentiation of a skew Lie brace produces a post-Lie algebra, where a
skew Lie brace is a skew brace (A, ·, ◦) with A a differential manifold and (A, ·) and (A, ◦) Lie groups. We
remark that skew braces appeared here under equivalent formulations like regular affine actions of Lie groups
or post-Lie groups. A similar construction in a purely algebraic context was developed by Smoktunowicz
in [147], under a strong nilpotency condition. Also, methods for constructing pre-Lie rings from braces are
given in [87, 143]. Conversely, methods to construct skew braces from post-Lie algebras are also known: in
[27, 98] this is done via Lie theory, while in [2, 15, 147] algebraic approaches are used. If we restrict our
attention to the finite setting and to constructions where no information is inevitably lost (as is for example
the case in [87, 143]) then all known results are due to Smoktunowicz: mimicking the construction of the
group of formal flows by Agrashev and Gamkredlidze [2], she proved how starting from a left nilpotent pre-
Lie algebra (a, ▷) of size pn with n < p− 1 one obtains a brace (a,+, ◦). She also gives a partial inverse to
this construction, but this requires the starting brace to be strongly nilpotent of class strictly smaller than p.
Since then, it has remained an open problem whether Smoktunowicz’s construction can be inverted without
imposing the strong nilpotency assumption, see [147, Question 1] and [97, Problem 20.92 b)]. A result that
relates to the construction of the group of flows is the Lazard correspondence [112]. This is a correspondence
between filtered Lie rings and filtered groups satisfying a divisibility condition; we refer to these as Lazard
Lie rings and Lazard groups respectively. In the finite setting, the Lazard correspondence restricts to a
correspondence between Lie rings of size a power of p and nilpotency class strictly less than p, and groups
of the same size and nilpotency class, where p is a prime. Our main tool in extending Smoktunowicz’s result
lies in a careful analysis of the behavior of the Lazard correspondence on semidirect sums of Lazard Lie
rings and semidirect products of Lazard groups, and in explicitly relating automorphisms and derivations
of Lazard Lie rings. This leads to a natural notion of filtered post-Lie rings and filtered skew braces, and
subsequently to that of Lazard post-Lie rings and Lazard skew braces. We then establish a correspondence
between these structures in Theorem 8.4.14. Through the theory of filtered skew braces, we also obtain
in Theorem 8.6.6 a statement that was shown to hold for finite skew braces by Cédo, Smoktunowicz and
Vendramin [55, Theorem 4.8].

Theorem. Let (A, ·, ◦) be a left nilpotent skew brace such that the group (A, ·) is nilpotent. Then also the
group (A, ◦) is nilpotent.

The Lazard property, for post-Lie rings and skew braces, gives rise to L-nilpotency. We show that L-
nilpotency is equivalent to left nilpotency and nilpotency of the additive group. In Theorem 8.7.1 we then
restrict our general correspondence to finite structures, where it very closely resembles the classical Lazard
correspondence in its best-known form:

Theorem. Let pn be a prime power. Then there exists a correspondence between post-Lie rings of size pn

and L-nilpotency class less than p, and skew braces of size pn and L-nilpotency class less than p. This
correspondence respects isomorphisms.

We emphasize that our constructions extend those by Smoktunowicz. However, the construction from
skew braces to post-Lie rings is not generally given by the same formula used by Smoktunowicz. We
discuss why both formulas coincide when strong nilpotency of the appropriate class is satisfied and extend
this formula to skew braces in Proposition 8.7.9. Also, since the Lazard correspondence overlaps with Lie
theory, the correspondence given by Burde, Dekimpe and Deschamps [27] can be deduced as a special case
of Theorem 8.4.14. We also extend our correspondence to post-Lie rings and skew braces that appear as the
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inverse limit of Lazard post-Lie rings and Lazard skew braces respectively. This extension bypasses both
that of the group of formal flows [2] and the formal integration of post-Lie algebras by Bai, Guo, Sheng and
Tang [15].

In Chapter 9, we classify all skew braces (A, ·, ◦) of size p3 with (A, ·) non-abelian, for p > 3 a prime.
The classification in the case that (A, ·) is abelian was done by Bachiller in [9], and also the general clas-
sification has already been achieved by Zenouz in his PhD-thesis [124, 125]. Zenouz achieved this through
a careful study of subgroups of the holomorph of groups and classified the regular subgroups in terms of
generating sets. Our approach, however, is entirely different. It is based on the following special case of the
correspondence established in the preceding chapter:

Theorem. Let p be a prime and n < p. Then there exists a bijective correspondence between L-nilpotent
post-Lie rings of size pn and skew braces of size pn. This correspondence respects isomorphisms.

We thus proceed by first classifying L-nilpotent post-Lie rings of size p3 and then explicitly applying
this correspondence. In this way, we get the desired classifications in an explicit form, with the operations
given as polynomial functions on (Z/p)3 or Z/p × Z/p2. Our main goal here is to show the machinery
from the previous chapter in action, to show its potential for classification purposes, and also to provide an
explicit form of the obtained skew braces since we hope that they will be of use to others.

In this way, the thesis aligns with the broader mathematical vision introduced at the outset: how struc-
tures of fundamentally different natures complement the study of one another when their connection is
well understood. This guiding philosophy is reflected through concrete results, which contribute to a more
cohesive understanding of the rich mathematical landscape surrounding skew braces and their many inter-
connections.
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Chapter 1
Preliminaries

1.1 Skew braces
A skew (left) brace is a triple (A, ·, ◦) where A is a set, (A, ·) and (A, ◦) are groups, called the additive and
multiplicative group respectively, and

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c), (B)

is satisfied for all a, b, c ∈ A. Here, a−1 denotes the inverse of a ∈ A in the group (A, ·). The inverse of a
in the group (A, ◦) is denoted by a. A map

f : (A, ·, ◦)→ (B, ·, ◦),

between skew braces is a homomorphism if it respects both group operations. The n-th power of an element
a ∈ A with respect to the groups (A, ·) and (A, ◦) is denoted by an and a◦n respectively. When (A, ·) is
an abelian group, then we say that (A, ·, ◦) is a brace and we usually use the notation (A,+, ◦) instead.
The latter were introduced by Rump in [132] in connection with non-degenerate involutive solutions of the
Yang–Baxter equation, and were subsequently generalized to skew braces by Guarnieri and Vendramin in
[83]. Let 0 denote the neutral element in (A, ·), then

0 ◦ 0 = 0 ◦ (0 · 0) = (0 ◦ 0) · 0 · (0 ◦ 0),

hence 0 = 0 ◦ 0, from which it follows that 0 is also the neutral element of (A, ◦). From now on, when
working in a skew brace A, by 0 we will always mean the common neutral element of (A, ·) and (A, ◦).
In general, when we do not specify the operations on a skew brace A, one can always assume that they are
(A, ·, ◦). Similarly, for a brace, one can always assume them to be (A,+, ◦) in that case.

Example 1.1.1. Let (A, ◦) be a group, then (A, ◦, ◦) is a skew brace. We call this the trivial skew brace on
(A, ◦) and use the notation Triv(A, ◦) = (A, ◦, ◦).

Example 1.1.2. Let (A, ◦) be a group, then (A, ◦op, ◦) is a skew brace, where ◦op denotes the opposite
operation, meaning a ◦op b = b ◦ a. We call this the almost trivial skew brace on (A, ◦) and use the notation
opTriv(A, ◦) = (A, ◦op, ◦).

9
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For a skew brace A and a, b ∈ A, we define

λa(b) = a−1 · (a ◦ b).

If one applies a−1· on both sides of (B), we find precisely λa(b · c) = λa(b) · λa(c). Also, λa is bijective
since its inverse is given by b 7→ a ◦ (a · b). We thus obtain a map

λ : A→ Aut(A, ·) : a 7→ λa,

called the λ-map of the skew brace A. For a, b, c ∈ A, we find

λaλb(c) = λa(b
−1 · (b ◦ c)) = a−1 · (a ◦ (b−1 · (b ◦ c))) = a−1 · (a ◦ b−1) · a−1 · (a ◦ b ◦ c),

which combined with
a = a ◦ (b · b−1) = (a ◦ b) · a−1 · (a ◦ b−1),

yields the equality
λaλb(c) = (a ◦ b)−1 · (a ◦ b ◦ c) = λa◦b(c).

We find that the λ-map induces an action of (A, ◦) on (A, ·), which we refer to as the λ-action of A.

Definition 1.1.3. Let A be a skew brace and L ⊆ A. Then L is a

1. skew subbrace of A if L is a subgroup of (A, ·) and (A, ◦).

2. left ideal of A if L is a subgroup of (A, ·) such that λa(L) ⊆ L for all a ∈ A.

3. strong left ideal of A if L is a normal subgroup of (A, ·) such that λa(L) ⊆ L for all a ∈ A.

4. ideal of A if L is a normal subgroup of (A, ·) and (A, ◦) such that λa(L) ⊆ L for all a ∈ A.

Note that a subset L of A which is invariant under the λ-action is a subgroup of (A, ·) if and only if it is
a subgroup of (A, ◦), since a ◦ b = a · λa(b) and a = λ−1

a (a−1). In particular, this implies that left ideals
are also skew subbraces.

Example 1.1.4. Let A be a skew brace. The fix of A is defined as

Fix(A) = {a ∈ A | λb(a) = a for all b ∈ A},

and is a left ideal of A.

Example 1.1.5. Let A be a skew brace. The socle of A is defined as

Soc(A) = {a ∈ A | a ◦ b = a · b = b · a for all b ∈ A} = (kerλ) ∩ Z(A, ·),

and is an ideal of A. Here, Z(A, ·) denotes the center of the group (A, ·). It is interesting to remark that for
a ∈ Soc(A) we find

λb(a) = b−1 · (b ◦ a) = (b ◦ a) · b−1 = b ◦ (a · b) = b ◦ a ◦ b.

Example 1.1.6. Let A be a skew brace, then kerλ is a skew subbrace of A. Indeed, it is a normal subgroup
of (A, ◦) and since a · b = a ◦ b for all a, b ∈ kerλ, it is also a subgroup of (A, ·). Note that if A is a brace,
then kerλ = Soc(A) and thus it is an ideal, but in general this is not the case.
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Example 1.1.7. Let A be a skew brace. The annihilator of A is defined as

Ann(A) = {a ∈ A | a ◦ b = b ◦ a = a · b = b · a for all b ∈ A},

and is an ideal of A. Note that we can characterize the annihilator in multiple ways:

Ann(A) = Soc(A) ∩ Fix(A) = Soc(A) ∩ Z(A, ◦) = Fix(A) ∩ Z(A, ·) ∩ Z(A, ◦).

If L is an ideal of A, then L · a = a · L = a ◦ L = L ◦ a for any a ∈ A, and thus left and right cosets
of L with respect to both groups coincide. Therefore, we can consider the quotient skew brace A/L with
underlying set the cosets of L and with operations

(a · L) · (b · L) = a · b · L, (a · L) ◦ (b · L) = (a ◦ b) · L.

Let A be a skew brace and let us denote by Aut(A, ·, ◦) the skew brace automorphisms of A, by which
we mean the invertible skew brace homomorphisms. Let B be a skew brace with a group homomorphism
α : (B, ◦) → Aut(A, ·, ◦), we say in this case that the skew brace B acts on A. The semidirect product of
A and B, in the sense of Vendramin and Smoktunowicz [151], is the skew brace A ⋊α B with underlying
set A×B and group operations

(a1, b1) · (a2, b2) = (a1 · a2, b1 · b2),
(a1, b1) ◦ (a2, b2) = (a1 ◦ αb1(a2), b1 ◦ b2).

In other words, the additive group of A ⋊α B is the direct product of the additive groups of A and B,
and the multiplicative group is the semidirect product of the multiplicative groups of A and B by the action
α. Note that the λ-action in this case is given by

λ(a1,b1)(a2, b2) = (λa1(αb1(a2)), λb1(b2)).

Usually, the action α is suppressed in the notation and we write simply A ⋊ B. If we let B act trivially on
A, we obtain the direct product A×B where both operations are defined component-wise.

Another useful construction is that of the opposite skew brace. Given a skew brace (A, ·, ◦), its opposite
is the skew brace (A, ·op, ◦), so we replace the additive group of A by its opposite. We see that this is indeed
a skew brace since for all a, b, c ∈ A we have that

a ◦ (b ·op c) = a ◦ (c · b) = (a ◦ c) · a−1 · (b ◦ c) = (a ◦ b) ·op a−1 ·op (a ◦ c).

We denote the opposite of A by Aop. Note in particular that this explains the notation opTriv(G) for the
almost trivial skew brace on a given group G, since it is precisely the opposite of the trivial skew brace
Triv(G). The λ-map of Aop is

λopa (b) = (a ◦ b) · a−1 = a · λa(b) · a−1,

so we see that a L ⊆ A is a left ideal of both A and Aop if and only if it is a strong left ideal of A. In
particular, strong left ideals and ideals of A and Aop coincide.

When given a skew brace (A, ·, ◦), it is natural to ask how much information on the structure of (A, ◦)
can be deduced from (A, ·) and vice versa. In the infinite case, this answer seems difficult to answer without
assuming any additional structure. See the introduction of Section 1.1.5 and Chapter 9 for some results
when in addition (A, ·) and (A, ◦) are Lie groups. Let us, for this discussion, assume that A is finite. It is a
consequence of Hall’s theorem on Sylow systems that if (A, ·) is nilpotent, then (A, ◦) is solvable, see [151,
Corollary 2.2]. In general, it is an open problem whether the same holds when (A, ·) is solvable. Since Byott
asked this question in the context of Hopf–Galois structures in [37], this is also known as Byott’s conjecture.
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Conjecture 1.1.8 (Byott’s Conjecture). Let A be a finite skew brace. If (A, ·) is solvable, then (A, ◦) is
solvable.

There is strong evidence that shows that this conjecture holds, see [38, 80, 162]. Conversely, if (A, ◦)
is nilpotent, then (A, ·) is solvable, as proved by Tsang and Qin in [162, Theorem 1.3] as a consequence of
the Kegel–Wielandt theorem. Examples contained in [161] show that solvability of (A, ◦) does not imply
solvability of (A, ·). Moreover, results of Ito and Huppert imply that if (A, ◦) is cyclic, then (A, ·) is
supersolvable, and if (A, ◦) is abelian, then (A, ·) is metabelian, as proved in [162, Theorem 1.3].

1.1.1 Regular subgroups of the holomorph
The crux of this thesis is that skew braces are inherently related to many other (algebraic) structures. Some
well-known connections are those with regular subgroups of the holomorph, bijective 1-cocycles of groups,
groups with compatible actions, braiding operators, see [83, 117]. The connection with regular subgroups
of the holomorph will play a crucial role, so we give a full account of this correspondence.

Given a groupG, its holomorph is the semidirect productG⋊Aut(G). We denote this group by Hol(G).
There is a natural faithful action of Hol(G) on G, given by

(g, λ) ⋆ h = gλ(h),

where g, h ∈ G, λ ∈ Aut(G). A subgroup H ⊆ Hol(G) is regular if it acts regularly (meaning freely and
transitively) on G through this action. Note that this means that for every g ∈ G there exists a unique h ∈ H
such that h ⋆ 0 = g, or equivalently that H is regular if and only if for every g ∈ G there exists a unique
λ ∈ Aut(G) such that (g, λ) ∈ H .

Proposition 1.1.9 ([83, Theorem 4.2]). Let (A, ·) be a group, there exists a bijective correspondence be-
tween operations ◦ such that (A, ·, ◦) is a skew brace and regular subgroups of Hol(A, ·).

Proof. Let (A, ·, ◦) be a skew brace and consider the set

G = {(a, λa) | a ∈ A} ⊆ Hol(A, ·).

We claim that G is a subgroup of Hol(A, ·). Indeed, for a, b ∈ A we find

(a, λa)(b, λb) = (a · λa(b), λaλb) = (a ◦ b, λa◦b) ∈ G,

which shows that the map
(A, ◦)→ H : a 7→ (a, λa),

is a group isomorphism. Since every element of A appears as the first coordinate of precisely one element
of G, the latter is regular.

Conversely, assume that G is a regular subgroup of Hol(A, ·) and consider the map

ϕ : G→ A : h 7→ h ⋆ 0.

Since G acts regularly, ϕ is a bijection. We now define (A, ◦) by transferring the group structure of G to A,
explicitly:

a ◦ b = ϕ(ϕ−1(a)ϕ−1(b)) = ϕ−1(a) ⋆ b.

In order to see that these two groups satisfy (B), note that the map

λa : A→ A : b 7→ a−1 · (a ◦ b),
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which corresponds to the element (a−1, 0)ϕ−1(a), is contained in StabHol(A,·)(0) = {0}⋊ Aut(A, ·). For
a, b, c ∈ A we find

a−1 · (a ◦ (b · c)) = ((a−1, 0)ϕ−1(a)) ⋆ (b · c)
= (((a−1, 0)ϕ−1(a)) ⋆ b) · (((a−1, 0)ϕ−1(a)) ⋆ c)

= a−1 · (a ◦ b) · a−1 · (a ◦ c),

from which (B) follows.

Lemma 1.1.10 ([39, Theorem 2.2]). Let (A, ·) be a group and λ : A → Aut(A, ·) a map. Then (A, ·, ◦)
with a ◦ b := a · λa(b) is a skew brace if and only if

λa·λa(b) = λaλb, (1.1)

for all a, b ∈ A.

Proof. One implication is trivial since we know that the λ-map yields an action of (A, ◦) on (A, ·). Let
λ : A→ Aut(A, ·) satisfying (1.1). By Proposition 1.1.9 it suffices to prove that, the set

G = {(a, λa) | a ∈ A},

is a regular subgroup of Hol(A, ·). Note that as soon as H is a subgroup, it is automatically regular, so we
really only need to prove that G is a subgroup. From (1.1) we find

(a, λa)(b, λb) = (a · λa(b), λaλb) = (a · λa(b), λa·λa(b)) ∈ G,

so G is a subsemigroup of Hol(A, ·). Moreover, (0, λ0)(0, λ0) = (0, λ20) ∈ H , which forces λ0 = id and
thus G is a submonoid of Hol(A, ·). At last, note that for all a ∈ A we find

(a, λa)(λ
−1(a−1), λλ−1

a (a−1)) = (0, λaλλ−1
a (a−1)) = (0, λ0) = (0, id),

from which we conclude that G is a subgroup.

Remark 1.1.11. A map λ : A → Aut(A, ·) satisfying (1.1) is by some authors called a gamma function on
(A, ·), see [39, 41].

1.1.2 Two-sided skew braces
Definition 1.1.12. A ring A is Jacobson radical if for all a ∈ A there exists an element b ∈ A such that
a + b + ab = 0. Equivalently, this happens precisely when A coincides with its Jacobson radical, see for
example [110] for more on this topic.

One easily verifies that for any given ring A, the operation a ◦ b := a + b + ab yields a monoid with
neutral element 0, such that moreover (B) is satisfied. We find that A is Jacobson radical if and only if
(A,+, ◦) is a brace. The braces that can be obtained in this way can be characterized in a precise way.

Definition 1.1.13. A skew brace A is two-sided if also

(a · b) ◦ c = (a ◦ c) · c−1 · (b ◦ c), (B’)

is satisfied for all a, b, c ∈ A.
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Proposition 1.1.14 ([132]). The following data are equivalent on an abelian group (A,+):

1. An operation ◦ such that (A,+, ◦) is a two-sided brace.

2. An operation ∗ such that (A,+, ∗) is a Jacobson radical ring.

One direction of the correspondence in Proposition 1.1.14 is precisely as described earlier. Conversely, if
(A,+, ◦) is a two-sided skew brace, then, in order to obtain an inverse construction, we define the operation
∗ as

a ∗ b = −a+ a ◦ b− b.

The following result is proved for left braces in [51, Remark 5.2] and one implication is proved for skew left
braces in [123, Lemma 4.1]. The proof of the other implication is the same as for left braces.

Proposition 1.1.15. A skew brace A is two-sided if and only if all inner automorphisms of (A, ◦) are skew
brace automorphisms of A.

Corollary 1.1.16 ([123]). Let A be a two-sided skew brace and I a characteristic subgroup of (A, ·). Then
I is an ideal of A.

Following the construction for braces given in Proposition 1.1.14, for an arbitrary skew brace (A, ·, ◦)
and a, b ∈ A we define

a ∗ b = a−1 · (a ◦ b) · b−1.

Surprisingly, a result by Lau states that, among braces, two-sided braces can be characterized completely in
terms of the associativity of ∗, without explicitly requiring it to be right distributive.

Proposition 1.1.17 ([111]). A brace A is two-sided if and only if a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ A.

We note that Proposition 1.1.17 can not be extended to skew braces, see [107, Section 1]. Also, for
braces, ∗ is left distributive with respect to the additive operation. This follows from the following lemma,
which can be derived directly from (B).

Lemma 1.1.18. Let A be a skew left brace. Then for all a, b, c ∈ A, the following equalities hold:

a ∗ (b · c) = (a ∗ b) · b · (a ∗ c) · b−1,

(a ◦ b) ∗ c = (a ∗ (b ∗ c)) · (b ∗ c) · (a ∗ c).

Even though ∗ is usually not associative nor distributive, this operation is indispensable in the study
of skew braces. For example, we can define left ideals, strong left ideals and ideals using ∗ instead. This
highlights the similarity with the corresponding notions in ring theory.

Lemma 1.1.19. Let A be a skew brace and L a subgroup of (A, ·). Then L is

1. a left ideal if and only if a ∗ x ∈ L for all a ∈ A, x ∈ L.

2. an ideal if and only if L is normal in (A, ·) and also a ∗ x, x ∗ a ∈ L for all a ∈ A, x ∈ L.

Example 1.1.20. Let A be a skew brace. Then A2, the subgroup of (A, ·) generated by all elements of the
form a ∗ b, is an ideal of A. It is easily seen that for I an ideal of A, A/I is trivial if and only if A2 ⊆ I .
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Example 1.1.21. Let A be a skew brace. Then A2
op, the subgroup of (A, ·) generated by all elements of

the form a ∗op b, is an ideal of A. By ∗op we mean the ∗-operation in the opposite skew brace Aop, thus
a ∗op b = b−1 · (a ◦ b) · a−1. Clearly, for any ideal I of A, the quotient A/I is an almost trivial skew brace
if and only if A2

op ⊆ I .

Example 1.1.22. Let A be a skew brace, then A′ = A2 · A2
op is an ideal of A see [116, Proposition 2.2],

called the commutator ofA. It is the smallest ideal ofA such that the quotient is a trivial brace. Alternatively,
we can define A′ as the ideal generated by A2 and the commutator subgroup of (A, ·).

1.1.3 Nilpotency
Since in any skew brace A we have a ∗ b = 0 if and only if a · b = a ◦ b, the operation ∗ should be seen as
a measure of how similar both group operations are, or equivalently, how close A is to being a trivial skew
brace. IfA is an almost trivial skew brace, then we find a∗b = b◦a◦b◦a, which is precisely the commutator
of b and a in the group (A, ◦). Also, within the context of two-sided braces, the operation ∗ is precisely the
ring operation of the associated Jacobson radical ring. With this in mind, it is natural to use this operation
to define nilpotency of a skew brace. However, ∗ is not associative, so there are multiple variations to be
distinguished.

For X,Y ⊆ A we define X ∗ Y as the additive subgroup of A generated by the set

{x ∗ y | x ∈ X, y ∈ Y }.

Definition 1.1.23. For a skew brace A we define A1 = A and An+1 = A ∗ An for n ≥ 1. The descending
series of strong left ideals

A1 ⊇ A2 ⊇ A3 ⊇ . . .

is called the left series of A. If there exists some n ≥ 1 such that An = {0}, we say that A is left nilpotent.
In this case, the smallest n ≥ 0 such that An+1 = {0} is called the left nilpotency class of A.

Left nilpotency has direct implications on the structure of the additive and multiplicative group of a
skew brace, see [55, Theorem 4.6], and under some extra conditions it coincides with nilpotency of the
multiplicative group.

Theorem 1.1.24 ([55, Theorem 4.8, Corollary 4.9]). Let A be a finite skew brace with (A, ·) a nilpotent
group. Then A is left nilpotent if and only if (A, ◦) is nilpotent. In particular, skew braces of prime power
size are left nilpotent.

In the finite setting, skew braces of prime power size are the archetypal example of left nilpotent skew
braces with nilpotent additive group, as the following result shows.

Proposition 1.1.25 ([55, Corollary 4.3]). Let A be a finite left nilpotent skew brace such that (A, ·) is
nilpotent. Then A is isomorphic to a direct product of skew braces of prime power size.

Definition 1.1.26. For a skew brace A we define A(1) = A and A(n+1) = A(n) ∗ A for n ≥ 1. The
descending series of ideals

A = A(1) ⊇ A(2) ⊇ A(3) ⊇ . . .

is called the right series of A. We say that A is right nilpotent if the right series reaches the zero skew brace.
In this case, the smallest n ≥ 0 such that A(n+1) = {0} is called its right nilpotency class.
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Definition 1.1.27 ([55, 132]). Let A be a skew brace. We set Soc0(A) = {0} and we inductively define
Socn+1(A) as the ideal of A corresponding to Soc(A/Socn(A)). The resulting ascending series of ideals

{0} = Soc0(A) ⊆ Soc1(A) = Soc(A) ⊆ Soc2(A) ⊆ . . .

is called the socle series of A. The skew brace A has finite multipermutation level (or simply, A is multi-
permutation) if there exists n such that Socn(A) = A. In this case, the smallest such n ≥ 0 is called the
multipermutation level of A, which we denote by mpl(A).

A brace A is right nilpotent if and only if it has finite multipermutation level, and moreover, the right
nilpotency class and multipermutation level coincide. In the more general setting, this is not true.

Proposition 1.1.28 ([55, Theorem 2.20]). A skew brace A has finite multipermutation level if and only if it
is right nilpotent and the group (A, ·) is nilpotent.

Definition 1.1.29 ([55, 145]). For a skew brace A we define A[1] = A and, for n ≥ 1, A[n+1] is the additive
subgroup generated by

⋃n
i=1A

[i] ∗A[n+1−i]. We say that A is strongly nilpotent if there exists some n ≥ 1
such that A[n] = {0}. In this case, the smallest n ≥ 0 such that A[n+1] = {0} is called its strong nilpotency
class.

Theorem 1.1.30 ([55, Theorem 2.30]). A skew brace is strongly nilpotent if and only if it is both left and
right nilpotent.

For two-sided braces, the notions of left, right and strong nilpotency coincide with nilpotency of the
associated Jacobson radical ring. Similarly, for almost trivial skew braces, left, right and strong nilpotency
coincide with nilpotency of the underlying group.

For completeness sake, we also mention that a skew braceA is annihilator nilpotent or centrally nilpotent
if there exists some n such that Annn(A) = A, where the annihilator series Annn(A) is defined in a similar
way as the socle series. A skew brace A is annihilator nilpotent precisely when it is strongly nilpotent and
(A, ·) is a nilpotent group. Within the setting of universal algebra, this is the correct notion of nilpotency,
see [21, 93].

Definition 1.1.31. For a skew brace A we define A(1) = A and A(n+1) = A(n) ∗ A(n) for n ≥ 0. We say
that A is solvable if there exists some n ≥ 1 such that A(n) = {0} and the smallest n such that An+1 = {0}
is called its derived length.

Remark 1.1.32. We follow here the convention of [13] in order to define solvable skew braces. There also
exist different notions of solvability of skew braces, see for example [16].

1.1.4 Bi-skew braces
A skew brace (A, ·, ◦) is a bi-skew brace if also (A, ◦, ·) is a skew brace. In this case, when no confusion
is possible, we will refer to the starting skew brace (A, ·, ◦) as A and to the skew brace with exchanged
operations (A, ◦, ·) asA↔. WhenA is a bi-skew brace, the λ-map ofA↔, denoted by λ↔, is directly related
to that of A since

λ↔a (b) = a ◦ (a · b) = λ−1
a (b).

In particular, this implies that λa is an automorphism (A, ◦), and thus of (A, ·, ◦), since it is the additive
group of A↔. The following lemma completely characterizes when λa is a skew brace automorphism of A.
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Lemma 1.1.33. Let A be a skew brace and a ∈ A. Then λa ∈ Aut(A, ·, ◦) if and only if λa·b = λb◦a for
all b ∈ A.

Proof. Let a ∈ A. Since λa is always an automorphism of the group (A, ·), it suffices to characterize when
it is an automorphism of (A, ◦). For b, c ∈ A we find

λa(b ◦ c) = λa(b · λb(c)) = λa(b) · λaλb(c) = λa(b) ◦ λ−1
λa(b)

λaλb(c),

so this expression equals λa(b) ◦λa(c) whenever λa = λ−1
λa(b)

λaλb. After bringing λ−1
λa(b)

over to the left an
substituting b by λ−1

a (b) we find the equation λb◦a = λa◦λ−1
a (b) = λa·b.

The following characterization of bi-skew braces using the λ-function is an extended version of a result
by Caranti [41, Theorem 3.1].

Theorem 1.1.34. Let A be a skew brace. Then the following are equivalent:

1. A is a bi-skew brace.

2. λa is a skew brace automorphism for all a ∈ A.

3. λ : (A, ·)→ Aut(A, ·) is a group antihomomorphism.

4. A2
op is contained in kerλ.

5. A2
op ∗A = {0}.

Proof. The implication from 1 to 2 is contained in the discussion preceding Lemma 1.1.33. Conversely, note
that if λa is a skew brace automorphism for all a ∈ A, then we can use Lemma 1.1.33 to find

λ−1

a◦λ−1
a (b)

= λ−1
a·b = λ−1

b◦a = λ−1
a λ−1

b .

This implies that the map
A→ (A, ◦) : a 7→ λ−1

a ,

satisfies the condition of Lemma 1.1.10 and thus (A, ◦, ·) is a skew brace since a · b = a ◦ λ−1
a (b).

The equivalence of 2 and 3 follows directly from Lemma 1.1.33.
To see that 3 implies 4, note that from 3 it follows that λ : (A, ·, ◦) → opTriv(Aut(A, ·)) is a skew

brace homomorphism. Since the image λ(A) ∼= A/ kerλ is almost trivial, this implies that A2
op ⊆ kerλ.

Conversely, if A2
op is contained in kerλ then kerλ is an ideal of A, since ideals of A/A2

op correspond
to normal subgroups of its multiplicative group. Since kerλ is an ideal and a ∗op b ∈ kerλ, we find
b · a · kerλ = (a ◦ b) · kerλ and thus λb·a = λa◦b.

The equivalence of 4 and 5 is clear since an element a ∈ A is contained in kerλ if and only if a ∗ b = 0
for all b ∈ A.

Let (A, ·, ◦) be a skew brace. Then (A, ·, ◦) is λ-homomorphic if λa·b = λaλb for all a, b ∈ A. The class
of λ-homomorphic skew braces was first defined and studied by Bardakov, Neshchadim and Yadav in [18].
Combined with Theorem 1.1.34 we recover the following result.

Lemma 1.1.35 ([41, Lemma 3.7]). Let A be a skew brace. Then any two of the following statements imply
the third:
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1. A is λ-homomorphic.

2. A is a bi-skew brace.

3. λ(A) is abelian.

If one pushes the idea of a bi-skew brace further in order to allow more than two group structures, the
definition of a brace block arises naturally. In particular, every non-trivial bi-skew brace gives rise to a brace
block with two distinct operations.

Definition 1.1.36. Let A be a set. A brace block, denoted by (A, ◦i)i∈I , consists of a family of group
operations (◦i)i∈I on A such that (A, ◦i, ◦j) is a bi-skew brace for all i, j ∈ I .

1.1.5 Skew braces on Lie groups
In [15], Bai, Guo, Sheng and Tang introduce the notion of a post-group and prove that this coincides with
that of a skew brace.

Definition 1.1.37. A post-group is a group (A, ·) equipped with a map λ : A → Aut(A, ·) satisfying
λa·λa(b) = λaλb for all a, b ∈ A.

Remark 1.1.38. Note that the original definition of post groups is defined in terms of the binary oper-
ation (a, b) 7→ λa(b), but we freely use the fact that binary operations on A are equivalent to maps
A→ Fun(A,A) where Fun(A,A) denotes the set of maps A→ A.

It is an immediate consequence of Lemma 1.1.10 that post-groups on (A, ·) are equivalent to skew brace
structures (A, ·, ◦), where the relation is given by the usual expression a ◦ b = a · λa(b). In the same paper,
the authors also introduce post-Lie groups.

Definition 1.1.39. A post-Lie group is a Lie group (A, ·) equipped with a map λ : A→ Aut(A, ·) satisfying
λa·λa(b) = λaλb for all a, b ∈ A and such that A×A→ A : (a, b) 7→ λa(b) is a smooth map.

Proposition 1.1.40. Let A be a differentiable manifold and let (A, ·, ◦) be a skew brace structure on A such
that (A, ·) is a Lie group. Then (A, ◦) is a Lie group if and only if its associated post-group is a post-Lie
group.

Proof. Let A be a differentiable manifold and let (A, ·, ◦) be a skew brace structure on A such that (A, ·) is
a Lie group. Then the map

A×A→ A : (a, b) 7→ λa(b) = a−1 · (a ◦ b) (1.2)

is smooth. Conversely, if (1.2) is smooth, then multiplication in (A, ◦) is also smooth since a◦ b = a ·λa(b).
Also, note that the assumption implies that λa is smooth for all a, so also λa = λ−1

a is smooth and thus λa is
an automorphism of the Lie group (A, ·). Since the automorphism group of a Lie group is itself a Lie group,
we find that a 7→ λ−1

a is smooth. Combined with the fact that inversion is smooth in (A, ·), we conclude that
the inversion map of (A, ◦) is smooth since a = λ−1

a (a−1).

The following definition is now natural. When (A, ·) is a Lie group, we denote its group of Lie group
automorphisms by Aut∞(A, ·) and Hol∞(A, ·) := (A, ·)⋊Aut∞(A, ·). Note that both are Lie groups.

Definition 1.1.41. A skew Lie brace is a skew brace (A, ·, ◦) withA a differentiable manifold and (A, ·) and
(A, ◦) Lie groups.
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Proposition 1.1.42. Let A be a differentiable manifold and let (A, ·) be a Lie group. Then the following
data are equivalent:

1. An operation (A, ◦) such that (A, ·, ◦) is a skew Lie brace.

2. A map λ : A→ Aut(A, ·) such that (A, ·, λ) is a post-Lie group.

3. A regular Lie subgroup of Hol∞(A, ·).

Proof. The equivalence between 1 and 2 is precisely the content of Proposition 1.1.40. We now prove the
equivalence of 1 and 3. We claim that the correspondence described in Proposition 1.1.9 restricts to this
specific case. Indeed, assume that (A, ·, ◦) is a skew Lie brace, then we know from Proposition 1.1.40 that
λ : A→ Aut∞(A, ·) is smooth, hence

(A, ◦)→ Hol∞(A, ·) : a 7→ (a, λa),

is an injective homomorphism of Lie groups, with image precisely the associated regular subgroup.
Conversely, let G be a regular Lie subgroup of Hol∞(A, ·). Then we know that there exists a Lie group

H and an injective homomorphism of Lie groups f : H → Hol∞(A, ·) such that f(H) = G, thus we obtain
a regular smooth action of G on A. The smooth map

ϕ : H → G : h 7→ fh(1G),

then has constant rank. Indeed, if we let Lh : H → H denote left multiplication by h ∈ H , then ϕLh = fhϕ
and thus

dϕ|h ◦ dLh|1H = dfh|1G ◦ dϕ|1H .

Since both Lh and fh are diffeomorphisms, we find that ϕ has constant rank. Since it is moreover a smooth
bijection, it follows that it is a diffeomorphism. Recall that the operation ◦ associated to G is given by

a ◦ b = ϕ(ϕ−1(a)ϕ−1(b)),

so we conclude that (A, ◦) is a Lie group. We remark that the precise choice of H and f does not affect
the construction. Indeed, the group (A, ◦) is determined by G, we only needed H and f to conclude that
multiplication and inversion in (A, ◦) are smooth.

1.2 Set-theoretical solutions of the Yang–Baxter equation
Braces and skew braces were originally introduced as algebraic tools to study set-theoretical solutions of the
Yang–Baxter equation. Although their utility and importance are by now much broader than this original
motivation, the majority of research on skew braces so far has focused on (or was motivated by) this connec-
tion. We cannot do full justice to the full history and importance of the Yang–Baxter equation, so we content
ourselves with a short motivation coming from representations of braid groups, which we also hope gives
some additional insight into notions like non-degeneracy or the derived solution. For the interested reader,
we refer to Chapter 1 of the PhD thesis of Verwimp [166], which touches upon multiple topics where the
Yang–Baxter equation appears.

A pair (V,R), with V a vector space and R : V ⊗ V → V ⊗ V a linear map, is a solution of the
Yang–Baxter equation if it satisfies

R12R23R12 = R23R12R23, (YBE)
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Figure 1.1: From left to right: the first, second and third Reidemeister move.

on V ⊗3, where Rij denotes the map V ⊗3 → V ⊗3 acting as R on the (i, j) tensor factor and as the identity
of the remaining factor. This equation can be understood as the third Reidemeister move, one of the three
local moves that suffice to relate any two knot diagrams belonging to the same knot, as independently
demonstrated by Reidemeister [129] and Alexander and Garland [3], see Fig. 1.1.

An algebraic interpretation of n-braids, for n ≥ 2, is given by the braid group

Bn = ⟨bi, 1 ≤ i < n | bibj = bjbi for |i− j| > 1, bibi+1bi = bi+1bibi+1 for 1 ≤ i < n⟩.

Here, the generator bi corresponds to swapping the strand at position i+1 over that at position i. The second
relation in the definition corresponds to the third Reidemeister move; the other relation relates to the fact
that if two disjoint pairs of strands are swapped, then these operations do not affect each other and thus they
commute. Note that, if we further impose the relations that b2i = 1 for all 1 ≤ i ≤ n, then the obtained group
is isomorphic to the symmetric group Sn, where bi corresponds to the transposition (i i+1). The following
proposition follows directly from the relations on Bn.

Proposition 1.2.1. Let V be a vector space and R : V ⊗ V → V ⊗ V a bijective linear map. For n ≥ 3,
the assignment bi 7→ Ri,i+1, extends to an action of Bn on V ⊗n if and only if R is a solution of the YBE. In
the same manner it extends to an action of Sn on V ⊗n if and only if moreover R2 = idV ⊗2 .

If one fixes a basis X of V and imposes the restriction that r should map the associated basis

{x⊗ y | x, y ∈ X},

into itself then we find that r, interpreted as a map r : X2 → X2, satisfies

r12r23r12 = r23r12r23, (SYBE)

where similar as before rij : X3 → X3 acts as r on coordinates (i, j) and as the identity on the remaining
coordinate. A pair (X, r) whereX is a non-empty set and r : X2 → X2 is a map satisfying (SYBE) is a set-
theoretical solution of the Yang–Baxter equation. A solution (X, r) is bijective if r is bijective, finite ifX is a
finite set and involutive if r2 = idX2 . Given two set-theoretical solutions of the Yang–Baxter equation (X, r)
and (Y, s), a map f : X → Y is a homomorphism if s(f × f) = (f × f)r. Moreover, f is an isomorphism
of solutions if it is also bijective. We obtain the following obvious variation of Proposition 1.2.1.
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Proposition 1.2.2 ([73, Proposition 1.1]). Let X be a non-empty set and r : X2 → X2 a map. For n ≥ 3,
the assignment bi 7→ ri,i+1 extends to an action of Bn on Xn if and only if (X, r) is a bijective solution of
the YBE. In the same manner, it extends to an action of Sn onXn if and only if moreover (X, r) is involutive.

In the proceedings of a workshop on quantum groups held at the Euler International Mathematical Insti-
tute in 1990, while discussing some open problems in quantum group theory [72], Drinfeld wrote: “Maybe
it would be interesting to study set-theoretical solutions of the Yang–Baxter equation.” He also included the
following two examples and stated that they are the only thing he knows about set-theoretical solutions of the
YBE, accrediting them to Lyubashenko and Venkov respectively. In this way, he arguably, single-handedly
and with only a single paragraph, initiated a completely new field of mathematics.

Example 1.2.3 (Lyubashenko). Let X be a non-empty set and σ, τ : X → X maps. Then r(x, y) =
(σ(y), τ(x)) satisfies (SYBE) if and only if στ = τσ. It is involutive if and only if σ = τ−1.

Example 1.2.4 (Venkov). LetX be a non-empty set and ▷ a binary operation onX . Then r(x, y) = (y, y▷x)
satisfies (SYBE) if and only if

x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z),

for all x, y, z ∈ X . Moreover, r is involutive only if x ▷ y = y for all x, y ∈ X .

For (X, r) a set-theoretical solution of the Yang–Baxter equation, we introduce the notation

r(x, y) = (σx(y), τy(x)),

where x, y ∈ X . Hence, we obtain maps σx, τx : X → X for all x ∈ X and we say that (X, r) is non-
degenerate if all the maps σx, τx are bijective for all x ∈ X . We can express (SYBE) in terms of the maps
σx, τx.

Lemma 1.2.5 ([73, Proposition 2.1]). Let X be a set and {σx, τx : X → X | x ∈ X} a collection of maps.
Then (X, r) with r given by

r : X2 → X2 : (x, y) 7→ (σx(y), τy(x)),

is a set-theoretical solution of the Yang–Baxter equation if and only if the equations

σxσy(z) = σσx(y)στy(x)(z), (1.3)

τxτy(z) = ττx(y)τσy(x)(z), (1.4)

τστy(x)(z)σx(y) = στσy(z)(x)τz(y), (1.5)

hold for all x, y, z ∈ X . Moreover, (X, r) is involutive if and only if also

τy(x) = σ−1
σx(y)

(x) (1.6)

holds for all x, y ∈ X .

Example 1.2.6. Let X be a non-empty set, then (X, idX2) is an involutive set-theoretical solution of the
Yang–Baxter equation which is degenerate since σx(y) = x and τx(y) = x for all x, y ∈ X .

Example 1.2.7. Let X be a non-empty set and define r(x, y) = (y, x), for all x, y ∈ X . Then (X, r) is
an involutive non-degenerate solution since σx = τx = idX for all x ∈ X . This is a particular case of
Example 1.2.3. We call this the trivial solution on X . Note that some authors use the term trivial solution
only if additionally |X| = 1.
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Figure 1.2: From left to right: the braid diagrams corresponding to 1, b2 and b−1
2 in B3.

Figure 1.3: The braid diagrams corresponding to the elements b31 ∈ B2
∼= Z (left) and b22b

−1
1 ∈ B3 (right).

Example 1.2.8. For set-theoretical solutions as described in Example 1.2.3, an easy verification shows that
both bijectivity and non-degeneracy coincide with the maps σ and τ being invertible. In this case, we call
(X, r) a permutation solution.

Example 1.2.9. For set-theoretical solutions coming from a self-distributive operation (X, ▷) as described
in Example 1.2.4, bijectivity and non-degeneracy also coincide. Moreover, these properties are satisfied if
and only for each x ∈ X , the left multiplication map X → X : y 7→ x ▷ y is bijective. In that case, (X, ▷)
is a rack.

1.2.1 Braid diagrams
Let us discuss a graphical way of interpreting the non-degeneracy condition. We solely provide this in order
to gain some intuition; this discussion is not essential for the continuation of the thesis. We first define the
braid diagram associated with an element of Bn. For the identity 1 ∈ Bn, its associated braid diagram
is the trivial braid diagram which consists of n upwards oriented strands. For a generator bi ∈ Bn, its
associated braid diagram consists of n upwards pointing strands where the i + 1-th strand moves over the
i-th strand, as illustrated in Fig. 1.2. The braid diagram associated with b−1

i is the same, except that the
i+1-th strand passes under the i-th one. Now let g be any element of Bn, fix some word w in the generators
b1, . . . , bn−1 which represents the element g. Then, we obtain the braid diagram of g by composing the
braid diagram of the generators appearing in w. Here we read w from right to left, and the composition of
braid diagrams is performed upwards. Note that this construction is dependent on the choice of w. We say
that two braid diagrams are equivalent if they can be obtained from words w,w′ both representing the same
element g ∈ Bn. From the defining relations of Bn, it follows that braid diagrams are equivalent if and only
if they can be transformed one into another using only the second and third Reidemeister move.

Let (X, r) be a bijective set-theoretical solution of the YBE and let D be a braid diagram. A segment of
D is a connected piece of a strand whose delimiting points are either a crossing or the start or end of a strand.
We denote the set of all segments ofD by Segm(D). An (X, r)-coloring ofD is a map C : Segm(D)→ X ,
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x y

σ̂x(y) τ̂y(x)

x y

σx(y) τy(x)

x y z

σx(y)

τy(x)

σzτy(x)στy(x)(z)

Figure 1.4: Left: the required conditions for a (X, r)-coloring of a braid diagram. Right: an example of
a coloring, which can also be interpreted as graphical way of calculating of b2b1 ∈ B3 acting on a triple
(x, y, z) ∈ X3, the result is then recovered from the top segments as (σx(y), στy(x)(z), σzτy(x)).

assigning to each segment s its color C(s), such that each crossing looks like illustrated in Fig. 1.4. Hereby,
we mean that when we have a crossing where the right hand strand passes over the left hand one, and the
bottom left segment has color x and the bottom right segment has color y, then the upper left segment
has color σx(y) and the upper right segment has color τy(x). Conversely, if we have a crossing where the
left-hand strand passes over the right-hand one, and the bottom left and right segments have colors x and y
respectively, then the upper left and right segments have colors σ̂x(y) and τ̂y(x) respectively. Here the maps
σ̂x, τ̂x : X → X are defined by

r−1(x, y) = (σ̂x(y), τ̂y(x)).

It follows directly from the defining conditions that an (X, r)-coloring of a braid diagram is determined
completely by the colors of the bottom segments, or more generally by the colors of all segments intersected
by a horizontal line. If D and D′ are equivalent braid diagrams, then any coloring on D uniquely determines
a coloring onD′ since r satisfies the braid equation. The following lemma now gives an interpretation of the
non-degeneracy condition in terms of colorings.

Lemma 1.2.10. Let (X, r) be a bijective set-theoretical solution of the Yang–Baxter equation and letD be a
non-trivial braid diagram on n strands. Then r is non-degenerate if and only if for any (X, r)-coloring of a
braid diagram, the colors of any two adjacent segments of a crossing determine the colors of the remaining
segments.

1.2.2 The structure skew brace
For the rest of this section, let (X, r) be a non-degenerate bijective set-theoretical solution of the Yang–
Baxter equation. From now on, we will refer to a non-degenerate bijective set-theoretical solution of the
Yang–Baxter equation as a solution of the YBE, or simply as a solution. This subsection is dedicated to the
construction of a universal skew brace associated to (X, r), the structure skew brace. See [115] for a more
extensive discussion of this topic.

The structure group of (X, r) is defined as

(G(X, r), ◦) = ⟨x ∈ X | x ◦ y = σx(y) ◦ τy(x) for all x, y ∈ X⟩.

It is a direct consequence of (1.3) that the map sending a generator x ∈ G(X, r) to σx defines a group
homomorphism

σ : (G(X, r), ◦)→ SX ,
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x

y

x ▷r y

σ̂−1
x (y)

Figure 1.5: The definition of the operation ▷r in terms of coloring of a braid diagram.

and thus σ defines an action of (G(X, r), ◦) on X . We also associate to (X, r) its (left) derived solution
(X, r′) with r′(x, y) = (y, y ▷r x) with y ▷r x = σyσ̂

−1
y (x). In terms of colorings of a diagram, this says that

if we have two consecutive crossings and we look at the three consecutive segments on the left then reading
from the bottom up, if the first two segments have colors y and x, the third segment has color x ▷r y. See
also Fig. 1.5. The following statement follows trivially.

Lemma 1.2.11. Let (X, r) be a solution. Then its derived solution (X, r′) is trivial if and only if (X, r) is
involutive.

For any x ∈ X , the permutation σx is an automorphism of the rack (X, ▷r), meaning that

σx(y ▷r z) = σx(y) ▷r σx(z),

for all y, z ∈ X . The (left) derived structure group of (X, r) is defined as

(A(X, r), ·) = ⟨x ∈ X | x · y = y · (y ▷r x) for all x, y ∈ X⟩.

Equivalently,A(X, r) is the structure group of the derived solution (X, r′). Since the permutations σx are au-
tomorphisms of (X, ▷r), we find that the earlier constructed action σ in fact yields an action of (G(X, r), ◦)
on the rack (X, ▷r). In particular, we obtain a corresponding action of (G(X, r), ◦) on (A(X, r), ·).

Example 1.2.12. Consider the trivial solution (X, r) on a non-empty set X . Then (G(X, r), ◦) is the free
abelian group on the set X .

Example 1.2.13. Let n, a ∈ Z and set X = Z/n. We consider the permutation solution (X, r) with

r(i, j) = (j, i+ a).

Then in G(X, r) we find, where we for readability represent the generator corresponding to i ∈ Z/n by xi:

xi ◦ xj = xj ◦ xi+a.

In particular, from i = j, we find xi = xi+a which also implies xi ◦ xj = xj ◦ xi+a = xj ◦ xi. We find that
(G(X, r), ◦) is isomorphic to the free abelian group on the set Z/(nZ + aZ). In particular, the canonical
map X → G(X, r) is injective only if (X, r) is trivial. Note also that the derived solution coincides with
(X, r) since r−1(i, j) = (j − a, i) and thus i ▷r j = σiσ̂

−1
i (j) = σi(j + a) = j + a. This holds more

generally for all solutions coming from a rack, as in Example 1.2.4.

We are now ready to formulate the first half of [152, Theorem 2.6] and [117, Theorem 4], which were
independently proved and state the same result in terms of bijective 1-cocycles and braiding operators re-
spectively.
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Theorem 1.2.14. Let (X, r) be a solution. Then there exists a group structure (G(X, r), ·), completely de-
termined by the property x ·y = x◦σ−1

x (y), such that (G(X, r), ·, ◦) is a skew brace. Moreover, (G(X, r), ·)
is isomorphic to (A(X, r), ·), where the isomorphism maps a generator x ∈ G(X, r) to the corresponding
generator of A(X, r).

Remark 1.2.15. As seen in Example 1.2.13, the canonical map ι : X → G(X, r), mapping an element
x ∈ X to its corresponding generator of (G(X, r), ◦), is not always injective. Solutions for which ι is
injective are called injective solutions. Note that the group isomorphism (G(X, r), ·) → (A(X, r), ·) in
Theorem 1.2.14 is the unique one such that

X

G(X, r) A(X, r)

ι ι′

commutes. Here, ι′ is the canonical map from X to A(X, r). If we remark that A(X, r) is isomorphic to
the structure group of the derived solution, then we immediately find that (X, r) is injective if and only if
(X, r′) is injective. In particular, we get from Lemma 1.2.11 that involutive solutions are always involutive
since A(X, r) is the free abelian group on X .

We call the obtained skew brace (G(X, r), ·, ◦) the structure skew brace of (X, r).

Example 1.2.16. Let (X, r) be a solution coming from a rack (X, ▷). Then since (X, r) coincides with its
derived solution, and also the action σ : (G(X, r), ◦) → SX is trivial, we find that g · h = g ◦ h for all
g, h ∈ G(X, r). We conclude that (G(X, r), ·, ◦) is a trivial skew brace.

The second part of the main results of [117, 152] concerns a universal property satisfied by the structure
skew brace. Before we can formulate this we need to introduce another construction, this time starting from
a skew brace and yielding a solution.

Proposition 1.2.17 ([83, Theorem 3.1]). Let A be a skew brace and define

r : A2 → A2 : (a, b) 7→ (λa(b), λa(b) ◦ a ◦ b), (1.7)

then (A, rA) is a solution of the YBE.

Proof. We only show that (1.3) holds. Note that this happens precisely if

λaλb = λλa(b) ◦ λλa(b)◦a◦b,

for all a, b ∈ A, which is satisfied since the right hand side equals

λ
λa(b)◦λa(b)◦a◦b = λa◦b.

Example 1.2.18. LetG be a group and letA be the trivial skew brace Triv(G), then rA(g, h) = (h, h−1gh).
Note that these are of the same form as the ones in Example 1.2.4. If conversely, A is the almost trivial skew
brace opTriv(G), then we find rA(g, h) = (ghg−1, g).

Example 1.2.19. Let (X, r) be a solution and let x, y ∈ X . Then, working in the skew brace G(X, r), we
find that λx(y) = σx(y) and thus λx(y) ◦ x ◦ y = τy(x) since

λx(y) ◦ (λx(y) ◦ x ◦ y) = x ◦ y = σx(y) ◦ τy(x).

We deduce that the canonical map ι : (X, r)→ (G(X, r), rG(X,r)) is a homomorphism of solutions.
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Example 1.2.20. Let A be a skew brace, let (A, rA) be the solution on A and let (A, rAop) be the solution
on its opposite skew brace. Then we find that the first component of rAoprA(a, b) is

λopλa(b)(λa(b) ◦ a ◦ b) = (λa(b) ◦ λa(b) ◦ a ◦ b) · λa(b−1)

= (a ◦ b) · a−1 · (a ◦ b−1)

= a ◦ (b · b−1)

= a.

Since applying rA or rAop
on (a, b) leaves the ◦-product of the pair invariant, we conclude that rAop

rA =

idA2 and thus rAop = r−1
A . In particular, (A, rA) is involutive if and only if A is a brace.

Theorem 1.2.21. Let (X, r) be a solution, let A be a skew brace and let f : (X, r) → (A, rA) be a
homomorphism of solutions. Then there exists a unique skew brace homomorphism

f̃ : (G(X, r), ·, ◦)→ (A, ·, ◦)

such that f = f̃ ι.

Remark 1.2.22. It is easily seen that in fact the construction (X, r) 7→ (G(X, r), ·, ◦) is functorial, and so
is the construction A 7→ (A, rA). Therefore, Theorem 1.2.21 states precisely that the first functor is left
adjoint to the second one. The analogy with Lie algebras should not go unnoticed. The structure skew brace
G(X, r) is, in a sense, the best skew brace we can hope to embed (X, r) into, its “universal enveloping skew
brace”. Just like in the case of Lie algebras, this injectivity sometimes fails, but this doesn’t imply that this
enveloping algebraic structure loses its utility, as for example the representations of a Lie algebra correspond
to those of its universal enveloping algebra.

1.2.3 The permutation skew brace

The structure skew brace of a solution (X, r) exhibits a somewhat rigid structure, especially in the case
where (X, r) is involutive and thus the additive group is free abelian. From a practical viewpoint, however,
one can argue that these are deemed too big since they are infinite even when |X| < ∞. We will now
introduce a quotient of the skew brace G(X, r), which is often more practical to work with.

Let us consider, using the notation from Section 1.2.2, the action

σ : (G(X, r), ◦)→ SX : x 7→ σx,

and let K denote its kernel. Since σ induces an action of (G(X, r), ◦) on (G(X, r), ·) which, under the
isomorphism described in Theorem 1.2.14, is precisely the λ-action of the skew brace (G(X, r), ·, ◦), we
find that K ⊆ kerλ. We can apply a similar procedure to the derived solution (X, r′). By (1.4) we find
a right action of (G(X, r′), ◦) ∼= (A(X, r), ·) on X , where a generator x ∈ X acts by the permutation
y 7→ x ▷r y. Let us denote the kernel of this action by L, which we easily see to be contained in the center
of the group (G(X, r), ·). We claim that K ∩ L is an ideal of (G(X, r), ·, ◦). For this, we first note that L
is a strong left ideal. Indeed, the normality in the additive group is clear. Let l ∈ L and write it as a word
l = xϵ11 · x

ϵ2
2 · . . . · xϵrr in the generators X , where ϵi ∈ {1,−1}. We then find for any y ∈ X

y = xr ▷
ϵr
r (xr−1 ▷

ϵr−1
r (. . . ▷ϵ2r (x1 ▷

ϵ1
r (y)))),
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where by abuse of notation x ▷ϵr y equals x ▷r y when ϵ = 1 and y′, with y′ the unique element such that
x ▷r y

′ = y, when ϵ = −1. Let z ∈ X , then we know that σz is an automorphism of (X, ▷r), hence

σz(y) = σz(xr) ▷
ϵr
r (σz(xr−1) ▷

ϵr−1
r (. . . ▷ϵ2r (σz(x1) ▷

ϵ1
r (σz(y))))),

but the latter equality expresses precisely that λz(l) = σz(x1)
ϵ1 ·σz(x2)ϵ2 · . . . ·σz(xr)ϵr acts trivially on y,

hence λz(l) ∈ L. Since X is a generating set of (G(X, r), ◦), we find that λg(L) ⊆ L for any g ∈ G(X, r)
and thus L is a strong left ideal of G(X, r).

Since K ⊆ kerλ and L ⊆ Z(G(X, r), ·), we find that K ∩ L ⊆ Soc(G(X, r)). Now recall from
the comment in Example 1.1.5 that the λ-action on any element in the socle coincides with the action by
multiplicative conjugation. For any g ∈ G(X, r) we find

λg(K ∩ L) ⊆ λg(K) ∩ λg(L) = (g ◦K ◦ g) ∩ L = K ∩ L.

This proves simultaneously that K ∩ L is a left ideal and that it is normal in the multiplicative group.
Moreover, normality in the additive group is trivial since K ∩ L is contained in the additive center. The
quotient skew brace

G(X, r) := G(X, r)/(K ∩ L),

is the permutation skew brace. The name is justified by the fact that K ∩ L is precisely the kernel of the
group homomorphism (G(X, r), ◦) → SX × SX that maps a generator x to (σx, σ̂x). We can therefore
identify G(X, r) with its image in SX × SX . If (X, r) is involutive, then σx = σ̂x so K ∩ L is the kernel
of the homomorphism σ : (G(X, r), ◦) → SX sending x to σx. When working with involutive solutions,
we will always identify G(X, r) with its image in SX . In particular, by the permutation group of (X, r) we
mean the subgroup of SX generated by all σx, x ∈ X . We remark that if the solution (X, r) is finite, then
also its permutation skew brace G(X, r) is finite.

Conversely, any (finite) skew brace is isomorphic to the permutation skew brace of some (finite) solution
(X, r). This subject is treated in full generality in [11, 12], we only give a specific statement which will
suffice for our purposes.

Definition 1.2.23. Let (X, r) be a solution. A set Y ⊆ X is an orbit of (X, r) if it is an orbit of the
subgroup ⟨σx, τx | x ∈ X⟩ ⊆ SX . A solution (X, r) is decomposable if (X, r) has more than one orbit. It
is indecomposable if it has a unique orbit. If (X, r) is involutive, then by (1.6) it is indecomposable if and
only if its permutation group G(X, r) acts transitively on X .

Proposition 1.2.24 ([12]). Let (A,+, ◦) be a brace, let x ∈ A and let K be a subgroup of (A, ◦) such that

1. {λa(x) | a ∈ A} generates (A,+),

2. K fixes x under the λ-action,

3. the intersection
⋂
a∈A a ◦K ◦ a equals {0}.

Then we obtain an indecomposable solution on the left cosets X = (A, ◦)/K given by

r : X2 → X2 : (a ◦K, b ◦K) 7→ (λa(x) ◦ b ◦K,λλa(x)◦b(x) ◦ a ◦K).

Conversely, any indecomposable involutive solution (X, r) is isomorphic to the solution obtained through
the above process starting from the brace G(X, r) with the element σx ∈ G(X, r) and the subgroup
StabG(X,r)(x), for any choice of x ∈ X . Under this isomorphism, a coset σ ◦ Stab(G(X,r),◦)(x) is mapped
to σ(x).
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Proposition 1.2.25 ([12]). Let A be a brace, let (x,K) and (y, L) be pairs satisfying the conditions of
Proposition 1.2.24 and let (X, r) and (Y, s) be the associated solutions. If z ∈ A and ψ is a skew brace
automorphism of A such that ψ(x) = λz(y) and ψ(K) = z ◦ L ◦ z, then

Φ : (X, r)→ (Y, s) : a ◦K 7→ ψ(a) ◦ z ◦ L,

is an isomorphism of solutions. Moreover, every isomorphism between (X, r) and (Y, s) is of this form.

The following example shows that the construction of the permutation skew brace is in general not
functorial.

Example 1.2.26. Let (X, r) be the trivial solution on X = {1}. Also, let (Y, s) be the permutation solution
s(x, y) = (σ(y), σ(x)) on the set Y = {1, 2, 3} with σ = (2 3). The map

f : X → Y : 1 7→ 1,

is a homomorphism of solutions. We find that |G(Y, s)| = 2, hence G(Y, s) ∼= Triv(Z/2) as there exist no
non-trivial skew braces of size 2. Also note that the canonical image Y → G(Y, s) sends every element of
Y to σ. As G(X, r) = {idX}, there is no homomorphism f̃ : G(X, r)→ G(Y, s) such that

X Y

G(X, r) G(Y, s)

f

f̃

commutes, where the vertical maps are the canonical ones.

Functoriality of the permutation skew brace does hold in certain cases; any surjective homomorphism of
solutions (X, r)→ (Y, s) yields a surjective skew brace homomorphism G(X, r)→ G(Y, s) in a canonical
way. From this, the following result of Cedó and Okniński follows.

Proposition 1.2.27 ([54, Lemma 3.3]). Let f : (X, r) → (Y, s) be a surjective homomorphism of finite
solutions. If (X, r) is indecomposable, then also (Y, s) is indecomposable and the fibres f−1(y) all have
the same cardinality. In particular, |Y | divides |X|.

Definition 1.2.28. Let p : (X, r) → (Y, s) be a surjective homomorphism of indecomposable solutions. If
the induced skew brace homomorphism G(X, r)→ G(Y, s) is an isomorphism, we say that p is a covering.
A covering p̃ : (X̃, r̃) → (X, r) is universal if it factors through any other covering (Y, s) → (X, r). A
solution (X, r) is uniconnected if any covering (Y, s)→ (X, r) is invertible.

Let A be a brace and let x ∈ A such that {λa(x) | a ∈ A} generates (A,+). If we let K = {0}, then the
second and third conditions of Proposition 1.2.24 are trivially satisfied, and we obtain a solution (X, r) with
G(X, r) ∼= A and such that its permutation group acts regularly on X = A. Moreover, if K is any subgroup
of (A, ◦) satisfying the second and third condition of Proposition 1.2.24 and (Y, s) is the associated solution,
then we find a canonical surjective homomorphism of solutions p̃ : (X, r) → (Y, s) mapping an element
a ∈ A to the coset a ◦ K. Moreover, the induced homomorphism G(X, r) → G(Y, s) is an isomorphism
since both are isomorphic to A, so p̃ is a covering.

Proposition 1.2.29 ([135, Theorem 3.3]). With the notation as above, p̃ : (X, r) → (Y, s) is a universal
covering and (X, r) is uniconnected.
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1.2.4 Cycle bases
Definition 1.2.30. Let (X, r) be a solution. Then Y ⊆ X is a subsolution of (X, r) if r(Y 2) ⊆ Y 2 and
(Y, r|Y 2), where r|Y 2 denotes the restriction r|Y 2 : Y 2 → Y 2, is a solution.

Remark 1.2.31. It is clear that if (X, r) is a solution, then for any Y ⊆ X such that r(Y 2) ⊆ Y 2, the
pair (Y, r|Y 2) is a set-theoretical solution of the YBE, but it is not necessarily bijective and non-degenerate.
Therefore, the requirement that (Y, r|Y 2) is a non-degenerate bijective solution of the YBE (hence in our
terminology, a solution) is equivalent to requiring that r(Y 2) = Y 2 and σx(Y ) = τx(Y ) = Y for all x ∈ Y .
In particular, if X is finite, then these requirements are trivially satisfied and a subsolution of (X, r) is really
the same as a subset Y such that σx(y), τx(y) ∈ Y for all x, y ∈ Y .

Let A be a skew brace. Although the solution (A, rA) plays an interesting role in Theorem 1.2.21, its
properties are often undesirable. Note for example that {0} is always an orbit of (A, rA) hence (A, rA) is
decomposable if |A| > 1. Therefore, it is often interesting to look at subsolutions of (A, rA) that still retain
some information on A itself. The correct such notion turns out to be that of a cycle base, originally defined
by Rump for braces in [132]. We extend here Rump’s definition to skew braces.

Lemma 1.2.32. Let A be a skew brace. Then

θ : (A, ·)⋊λ (A, ◦)→ Aut(A, ·) : (a, b) 7→ θ(a,b),

with
θ(a,b)(c) = a · λb(c) · a−1,

is a group homomorphism.

Proof. Let a, b, c, d, e ∈ A, then clearly θ(a,b) ∈ Aut(A, ·). Moreover,

θ(a,b)θ(c,d)(e) = a · λb(c · λd(e) · c−1) · a−1 = a · λb(c) · λbλd(e) · λb(c)−1 · a−1 = θ(a·λb(c),b◦d)(e),

which concludes the proof.

We call this action of (A, ·) ⋊λ (A, ◦) the θ-action of A. We remark that the λ-action of Aop is also
hidden in the θ-action since θ(a,a) = a · a−1 · (a ◦ b) · a−1 = λopa (b). More precisely, for the same reason
that (A, ◦) embeds as a regular subgroup of Hol(A, ·), we can see that the diagonal

∆ = {(a, a) | a ∈ A} ⊆ (A, ·)⋊λ (A, ◦),

is an isomorphic copy of (A, ◦) such that moreover the subgroups {0} ⋊ (A, ◦) and ∆ yield an exact fac-
torization of (A, ·)⋊λ (A, ◦). In fact, we have recovered a matched pair of groups, see [151, Remark 3.15].
This also implies that orbits of the θ-action of A coincide with orbits of the θ-action of Aop. Also, if A is
a brace, then we find that invariant subsets under the θ-action are the same as invariant subsets under the
λ-action.

Definition 1.2.33. A subset X of a skew brace A is a cycle base if it is invariant under the θ-action of A and
moreover X generates the group (A, ·). A cycle base is transitive if the θ-action is transitive on X .

Note that the first condition of Proposition 1.2.24 states precisely that {λa(x) | a ∈ A} is a transitive
cycle base ofA. Also, in the more general construction [11, Theorem 3.19], the starting point of constructing
a solution (X, r) such that G(X, r) ∼= A for a given skew brace A starts from a cycle base of A.
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Lemma 1.2.34. Let X be a cycle base of a skew brace A. Then X is a subsolution of (A, rA) and or-
bits of the solution X coincide with the orbits of the θ-action restricted to the set X . In particular, X is
indecomposable if and only if X is a transitive cycle base of A.

Proof. Recall that the solution (A, rA) is given by rA(a, b) = (λa(b), τb(a)) with τb(a) = λa(b) ◦a ◦ b. For
any a, b ∈ A we find

λop
λa(b)

(a) = λa(b) ◦ (a · λa(b)) = λa(b) ◦ a ◦ b = τb(a). (1.8)

Also,

τcτb(a) = µc(λa(b) ◦ a ◦ b)

= λ
λa(b)◦a◦b(c) ◦ λa(b) ◦ a ◦ b ◦ c

= λa(b) ◦ λ−1
λa(b)

λaλb(c) ◦ a ◦ b ◦ c

= λa(b+ λb(c)) ◦ a ◦ b ◦ c

= λa(b ◦ c) ◦ a ◦ b ◦ c
= τb◦c(a).

which implies in particular that τ−1
b = τb. Let X be a cycle base of A, then it follows from (1.8) and the

fact that θ(0,a) = λa and θ(a,a) = λopa that rA(X2) ⊆ X2. Since X is also a cycle base of Aop, we find that
r−1
A (X2) ⊆ X2, see Example 1.2.20. Similarly, we find that λx(X), λ−1

x (X), τx(X) and τ−1
x (X) are all

contained in X for all x ∈ X . We conclude that X is a subsolution of (A, rA).
By the discussion preceding Definition 1.2.33, we find that the subgroup

θ(A×A) = {θ(a,b) | a, b ∈ A} ⊆ SX ,

is generated by the set {λa, λopa | a ∈ A}. Although the definition of a cycle base X of A only requires
that X generates (A, ·), its invariance under the λ-action also implies that it generates (A, ◦). Therefore
θ(A× A) is also generated by the set {λx, λopx | x ∈ X}. Together with (1.8) this implies that θ(A× A) is
generated by the set {λa, τa | a ∈ A}. The second part of the statement now follows.

Remark 1.2.35. If we say that a solution (X, r) is a cycle base of A, we mean that the set X is a cycle base
and moreover the restriction of (A, rA) to X is precisely (X, r).

Let (X, r) be a solution. Since we know that ι : (X, r) → (G(X, r), rG(X,r)) is a homomorphism of
solutions, we know that the image ι(X) is a subsolution. However, since the λ-map and additive conjugation
inG(X, r) come from the maps σx and the operation ▷r respectively, we find that ι(X) is invariant under the
θ-map and thus a cycle base of G(X, r). Trivially, surjective skew brace homomorphisms f : A → B map
cycle bases of A to cycle bases of B. Therefore, we find that also the canonical image of X in G(X, r) is a
cycle base. For an involutive solution (X, r), this cycle base corresponds precisely to the set {σx | x ∈ X}.
This cycle base is called the retract of (X, r) and is denoted by Ret(X, r). Concretely, this can be realized
as (X/∼, s). Here, X/∼ denotes the equivalence classes of X with respect to the relation

x ∼ y ⇔ σx = σy and τx = τy, (1.9)

and s([x], [y]) = ([σx(y)], [τy(x)]), where [x] denotes the equivalence class of x. It is non-trivial that s is
indeed well-defined, but this follows precisely by the discussion.
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Example 1.2.36. Let (X, r) be a solution such that |Ret(X, r)| = 1. This happens precisely if x ∼ y for
all x, y ∈ Y , meaning σx = σy and τx = τy . We conclude that the imposed condition is equivalent to (X, r)
being a permutation solution.

We can also iterate this retraction procedure. Set Ret0(X, r) = (X, r) and

Reti+1(X, r) = Ret(Reti(X, r)).

In this way, we obtain a chain of surjective homomorphisms of solutions

(X, r)→ Ret(X, r)→ Ret2(X, r)→ Ret3(X, r)→ . . .

If X is finite, this chain becomes stationary at some point. We distinguish two cases. Either we reach the
trivial one-element solution, meaning that there exists some n ≥ 0 such that |Retn(X, r)| = 1. In this
case, (X, r) is a multipermutation solution, readily motivated by Example 1.2.36, and the smallest such n
is the multipermutation level of (X, r), denoted mpl(X, r). The other possibility is that this chain becomes
stationary at a solution (Y, s) of size > 1 with the property Ret(Y, s) = (Y, s), we call such a solution
irretractable. Note that these solutions embed into their permutation skew brace.

Example 1.2.37. Let A be a skew brace, then the equivalence relation ∼ states that a ∼ b if and only if
λa = λb and τa = τb, where τa(c) = λc(a) ◦ c ◦ a. By the observations made in the proof of Lemma 1.2.34,
we find that this happens precisely if λa = λb and λopa = λopb , which in turn is equivalent to a ◦ b ∈ Soc(A)
since Soc(A) = kerλ ∩ kerλop. In other words, the retract of the solution associated to A is the solution
associated to A/Soc(A). We call A/ Soc(A) the retract of A, and since the retract of A/ Soc(A) can
be identified with A/ Soc2(A), this justifies the notion of multipermutation skew braces as introduced in
Section 1.1.3.

We conclude by discussing cabling for involutive solutions [66, 114]. Let (X, r) be an involutive so-
lution. We know that the canonical map ι : X → G(X, r) is injective and ι(X) is a cycle base of
(G(X, r),+, ◦). Let k ∈ Z and consider the set

Y = kι(X) = {kι(x) | x ∈ X},

where kι(x) denotes the sum of k copies of ι(x) in (G(X, r),+). When k /∈ {1,−1} this no longer is a
cycle base of A, since Y does not generate (G(X, r),+), but it is nonetheless invariant under the θ-action.
From Lemma 1.2.34 we find that Y is a subsolution of (A, rA), indeed, note that the proof of this fact uses
only the invariance under the θ-action. Since (G(X, r),+) is the free abelian group on X , we find that the
map

X → Y : x 7→ kι(x)

is bijective, so we can transfer the solution on Y to the setX . We call this the k-cabled solution and denote it
by (X, r(k)). Alternatively, note that, if we introduce the notation r(k)(x, y) = (σ

(k)
x (y), τ

(k)
y (x)), then σ(k)

x

is precisely kσx, the k-th power of σx in (G(X, r),+). The functoriality of the construction of the structure
brace also implies the functoriality of cabling.

It is a direct consequence of its definition that the permutation group of (X, r(k)) is contained in that of
(X, r). We claim that it is even a subbrace. Let us denote the λ-map of G(X, r(k)) by λ(k) and the λ-map of
G(X, r) simply by λ, then by definition we have

λ(k)σx (σy) = σ(kσx)(y) = λkσx(σy).
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We find that the addition +k in G(X, r(k)) is given by

σ(k)
x +k σ

(k)
y = σ(k)

x ◦
(
λ(k)σx

)−1

σ(k)
y

= (kσx) ◦ λ−1
kσx

(kσy)

= (kσx) + (kσy) = σ(k)
x + σ(k)

y .

1.2.5 Cycle sets
Let (X, r) be an involutive solution, then as a direct consequence of (1.6) we find that the maps τx are
completely determined if we know all of the maps σx. So in a certain sense, the second component of the
map r is redundant; everything should be expressible in terms of the maps σx. Indeed, one can axiomatize
these properties in terms of structures with only one binary operation, called cycle sets, as proved by Rump
[131].

Definition 1.2.38. A cycle set (X, ·) is a non-empty set with a binary operation such that

1. (x · y) · (x · z) = (y · x) · (y · z) for all x, y, z ∈ X ,

2. the map X → X : y 7→ x · y is a bijection for all x ∈ X ,

3. the square map Sq : X → X : x 7→ x · x is bijective.

A map f : (X, ·)→ (Y, ·) between cycle sets is a homomorphism if f(x · y) = f(x) · f(y) for all x, y ∈ X .

Remark 1.2.39. In fact, Definition 1.2.38 defines a non-degenerate cycle set, but we will omit the predicate
non-degenerate, as we also do for solutions. Also, regarding the possible clash of notation with the additive
operation of a skew brace; we will only make use of cycle sets in Chapter 5, where all the skew braces
that appear are braces, whose additive group operation we will denote by +. This means that throughout
Chapter 5 one can safely assume that · denotes the operation of a cycle set.

Proposition 1.2.40. Let X be a non-empty set. Then the following data are equivalent:

1. A map r : X2 → X2 such that (X, r) is an involutive solution.

2. A binary operation on X such that (X, ·) is a cycle set.

Moreover, this correspondence is functorial.

Proof. We only give the constructions. Let (X, r) be an involutive solution, then x · y = σ−1
x (y) yields a

cycle set structure (X, ·). Conversely, assume that we are given a cycle set (X, ·). Define σx as the inverse
of the map y 7→ x · y and

r : X2 → X2 : (x, y) 7→ (σx(y), σx(y) · x).
Then (X, r) is an involutive solution.

Let (X, ·) be a cycle set. As in the proof of Proposition 1.2.40, we define σx(y) by x · σx(y) = y. This
means that σx is the inverse of the map y 7→ x · y. We should remark that this conflicts with the more
usual notation for cycle sets where σx(y) = x · y, but our definition is more consistent with the established
notation for solutions.

All notions that we have introduced for involutive solutions, like the structure brace, permutation brace,
retract, multipermutation level, indecomposability, cabling, etc. also make sense for cycle sets through the
correspondence given in Proposition 1.2.40. We will freely use this in Chapter 5.
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1.3 Post-Lie algebras
Throughout the entire section, unless specified otherwise, R denotes a commutative ring.

Definition 1.3.1. A Lie algebra over R consists of an R-module g together with a bilinear map,

g2 → g : (x, y) 7→ [x, y],

called the (Lie) bracket of g, that satisfies

[x, x] = 0,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0,

for all x, y, z ∈ g. If R = Z, then a is a Lie ring. A homomorphism of Lie algebras f : g → h is a linear
map preserving the Lie bracket and an isomorphism is a bijective homomorphism.

Remark 1.3.2. Most of the time, we will simply talk about Lie algebras, thereby meaning Lie algebras over
R. If the ring R is not specified, then it can be any commutative ring. Similarly, whenever talking about
linear maps and modules, this always means R-linear maps and R-modules.

Example 1.3.3. Let a be a Lie algebra. Recall that a linear map δ : a→ a is a derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)],

holds for all x, y ∈ a. The set of derivations of a is denoted der(g) and forms itself a Lie algebra for the
commutator Lie bracket [δ, χ] = δχ− χδ.

Example 1.3.4. Let A be an algebra, then the commutator Lie bracket [a, b] = ab− ba makes A into a Lie
algebra. If a is a Lie algebra and we say that a map f : a → A is a Lie algebra homomorphism, we will
always consider A as a Lie algebra with the commutator Lie bracket. Explicitly, this means that we demand
that f([a, b]) = f(a)f(b)− f(b)f(a) for all a, b ∈ A.

A post-Lie algebra over R is a Lie algebra a, whose Lie bracket we will always assume to be given by
[−,−], together with a bilinear map

▷ : a× a→ a : (x, y) 7→ x ▷ y

satisfying

x ▷ [y, z] = [x ▷ y, z] + [y, x ▷ z], (P1)
[x, y] ▷ z = (x, y, z)▷ − (y, x, z)▷, (P2)

for all x, y, z ∈ a, with (x, y, z)▷ defined as the associator x ▷ (y ▷ z) − (x ▷ y) ▷ z. If the bracket on a is
trivial, then (a, ▷) is a pre-Lie algebra. A post-Lie algebra or pre-Lie algebra over Z is called a post-Lie ring
or pre-Lie ring respectively. A map f : (a, ▷) → (b, ▷) between post-Lie algebras is a homomorphism if it
is a homomorphism of the underlying Lie algebras and it also respects the operation ▷.

Pre-Lie algebras, also called left-symmetric algebras, arose as early as 1881 in the work of Cayley [47],
only to resurface again 80 years later in the works of Vinberg [167] and Koszul [108]. One of the motivations
to study pre-Lie algebras comes from regular actions of Lie groups by affine transformations on Rn, see for
example [98]. By the discussion in Section 1.1.5, we know that there is a close relation between such actions
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and skew braces. The motivation to study such actions can be traced back to the study of crystallographic
groups, see [8, 76, 121]. More recently, the notion of a post-Lie algebra was introduced in the works of
Vallette [163], see also [68].

The following lemma follows from [30] for R a field of characteristic 0, but the general proof proceeds
by the exact same steps.

Lemma 1.3.5. Let a be a Lie algebra and ▷ an operation satisfying (P1). Then (a, ▷) is a post-Lie algebra
if and only if

{a, b} := [a, b] + a ▷ b− b ▷ a, (1.10)

defines a Lie bracket on the module a. We call this the sub-adjacent Lie algebra and denote it by a◦.

Let (a, ▷) be a post-Lie algebra and x ∈ a. From now onward we denote left ▷-multiplication by x as

Lx : a→ a : y 7→ x ▷ y,

It is a direct consequence of (P1) that Lx is a derivation of the Lie algebra a. Moreover, from (P2) we find

L{x,y}(z) = [x, y] ▷ z + (x ▷ y) ▷ z − (y ▷ x) ▷ z

= x ▷ (y ▷ z)− y ▷ (x ▷ z)
= [Lx,Ly](z),

meaning that
L : a◦ → der(a) : x 7→ Lx,

is a Lie algebra homomorphism.

Example 1.3.6. Let A be a (possibly non-unital) algebra and consider it as a Lie algebra with the trivial
commutator bracket. Then (A, ▷) with x ▷ y = xy is a pre-Lie algebra since the associator (x, y, z)▷ is 0 for
all x, y, z ∈ A.

Example 1.3.7. Let a be a Lie algebra and let x ▷ y = 0 for all x, y ∈ a. Then we obtain the trivial post-Lie
algebra on a.

Example 1.3.8. For a a Lie algebra with Lie bracket [−,−], we can consider its opposite Lie algebra aop,
which has the same underlying module but its Lie bracket is given by

[x, y]op = [y, x] = −[x, y].

Then (aop, ▷) with x ▷ y = [x, y] is the almost trivial post-Lie algebra on a. Indeed, both (P1) and (P2)
reduce to the Jacobi identity.

Definition 1.3.9. Let (a, ▷) be a post-Lie algebra and L ⊆ a. Then L is

1. a post-Lie subalgebra if L is a Lie subalgebra of a and also L ▷ L ⊆ L.

2. a left ideal if L is a Lie subalgebra of a and also a ▷ L ⊆ L.

3. a strong left ideal if L is an ideal of the Lie algebra a and also a ▷ L ⊆ L.

4. an ideal if it is an ideal of the Lie algebras a and a◦, and also a ▷ L ⊆ L.
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Remark 1.3.10. Equivalently, L is an ideal of a post-Lie algebra (a, ▷) if and only if it is a strong left ideal
of (a, ▷) such that also L ▷ a ⊆ L. This is a direct consequence of (1.10).

If L is an ideal of a post-Lie algebra (a, ▷), then both

[x+ L, y + L] := [x, y] + L, (x+ L) ▷ (y + L) := (x ▷ y) + L

are well-defined operations on the quotient module a/L. We obtain the quotient post-Lie algebra (a/L, ▷).
Let us consider some examples. We remark that the names and notations here are chosen to correspond

to their skew brace theoretic counterparts and are not the common ones that appear in literature on post-Lie
algebras.

Example 1.3.11. Let (a, ▷) be a post-Lie algebra. The fix of (a, ▷) is defined as

Fix(a, ▷) = {x ∈ a | y ▷ x = 0 for all y ∈ a},

and is a left ideal of (a, ▷).

Example 1.3.12. Let (a, ▷) be a post-Lie algebra. The socle of (a, ▷) is defined as

Soc(a, ▷) = {x ∈ a | x ▷ y = [x, y] = 0 for all y ∈ a},

and is an ideal of (a, ▷). Indeed, it is an ideal of a since it is contained in its center. Also, for any x ∈ a,
y ∈ Soc(a, ▷) we find

x ▷ y = {x, y} − [x, y] + y ▷ x = {x, y} ∈ kerL.

Moreover, x▷y ∈ Z(a) since any derivation mapsZ(a) to itself. Hence, x▷y ∈ kerL∩Z(a) = Soc(a, ▷) and
thus Soc(a, ▷) is a strong left ideal. Since Soc(a, ▷)▷a = {0} ⊆ Soc(a, ▷), we conclude from Remark 1.3.10
that Soc(a, ▷) is an ideal. The quotient (a, ▷)/ Soc(a, ▷) is the retract of (a, ▷).

Example 1.3.13. Let (a, ▷) be a post-Lie algebra. Then

kerL = {x ∈ a | x ▷ y = 0 for all y ∈ a},

is a post-Lie subalgebra of (a, ▷). Indeed, it clearly is an ideal of a◦ and also [x, y] = {x, y} for all
x, y ∈ kerL. If a is a trivial Lie algebra, then kerL = Soc(a, ▷) and thus kerL is an ideal, but in general
this is not always the case.

Example 1.3.14. Let (a, ▷) be a post-Lie algebra. The annihilator of (a, ▷) is defined as

Ann(a, ▷) = {x ∈ a | x ▷ y = y ▷ x = [x, y] = 0 for all y ∈ a},

and is an ideal of (a, ▷).

Example 1.3.15. Let (a, ▷) be a post-Lie algebra. Then every characteristic ideal of a is a strong left ideal
of (a, ▷).

Example 1.3.16. Let (a, ▷) be a post-Lie algebra and r ∈ R. Then ra and {x ∈ a | rx = 0} are ideals of
(a, ▷).

As for skew braces, we can also define the opposite post-Lie algebra. A particular example of this
appeared in Examples 1.3.7 and 1.3.8
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Proposition 1.3.17. Let (a, ▷) be a post-Lie algebra. Then (aop, ▷op) with

x ▷op y = x ▷ y + [x, y],

is a post-Lie algebra whose sub-adjacent Lie algebra coincides with that of (a, ▷).

Proof. Let x, y, z ∈ a, then

[x ▷op y, z]op + [y, x ▷op z]op = −[x ▷ y, z]− [[x, y], z]− [y, x ▷ y]− [y, [x, z]]

= −x ▷ [y, z]− [x, [y, z]]

= x ▷op [y, z]op.

The sub-adjacent Lie algebra of (aop, ▷op) coincides with that of (a, ▷) since

[x, y]op + x ▷op y − y ▷op x = −[x, y] + x ▷ y + [x, y]− y ▷ x− [y, x]

= [x, y] + x ▷ y − y ▷ x
= {x, y}.

The statement now follows from Lemma 1.3.5.

1.3.1 The affine Lie algebra
Let g, a be Lie algebras and let

δ : g→ der(a),

be a homomorphism of Lie algebras. We define the semidirect sum of g and a, denoted a⊕δ g, as the direct
sum of the underlying modules a and g and

[(a, x), (b, y)] = ([a, b] + δx(b)− δy(a), [x, y]),

for a, b ∈ a, x, y ∈ g.

Proposition 1.3.18. Let g, a be Lie algebras and let

δ : g→ der(a),

be a Lie algebra homomorphism. Then a⊕δ g, as defined above, is a Lie algebra.

We will particularly be interested in the semidirect sum

aff(a) := a⊕δ der(a),

where δ = idder(a). We call this the affine Lie algebra on a.

Example 1.3.19. Let a be a Lie algebra and assume that a can be embedded in an algebra A (seen as a Lie
algebra with its canonical Lie bracket) such that every derivation of a extends uniquely to a derivation of
the algebra A. This is, for example, the case if R is a field and A is the universal enveloping algebra U(a).
Recall that a linear map δ : A→ A is a derivation of the algebraA if δ(ab) = δ(a)b+aδ(b) for all a, b ∈ A.
Define

ρ : aff(a)→ End(A,+) : (x, δ) 7→ ρ(x,δ),



1.3. POST-LIE ALGEBRAS 37

where ρ(x,δ)(y) = xy + δ(y) and where End(A,+) is the algebra of module endomorphisms of (A,+).
Here, for δ ∈ der(a), we also denote its unique extension to a derivation of A by δ. For x, y ∈ a and
δ, χ ∈ der(a) we find(

ρ(x,δ)ρ(y,χ) − ρ(y,χ)ρ(x,δ)
)
(z) = ρ(x,δ)(yz + χ(z))− ρ(y,χ)(xz + δ(z))

= x(yz + χ(z)) + δ(yz + χ(z))− y(xz + δ(z))− χ(xz + δ(z))

= xyz − yxz + xχ(z)− χ(xz) + δ(yz)− yδ(z) + δχ(z)− χδ(z)
= [x, y]z − χ(x)z + δ(y)z + [δ, χ](z)

= ρ([x,y]+δ(y)−χ(x),[δ,χ])(z)

= ρ[(x,δ),(y,χ)](z).

We conclude that ρ is an injective Lie algebra homomorphism. Although not every Lie algebra a admits
such an embedding, this is a nice interpretation of aff(a) to keep in mind, as a natural counterpart of the
action of the holomorph of a group on itself.

Example 1.3.20. Let us discuss a special case of Example 1.3.19 for a pre-Lie algebra (a, ▷) over R. Con-
sider A = R⊕ a with multiplication

(r, x)(s, y) = (rs, ry + sx),

then A is an algebra with unit (1, 0). Moreover, a embeds into A since

(0, x)(0, y) = (0, 0),

for any x, y ∈ a. Moreover, given a linear map δ : a → a we can uniquely extend δ to a derivation of A by
setting δ(r, x) = (0, δ(x)). Here, it is crucial to note that the derivation of an algebra always maps 1 to 0.
We find that A satisfies the properties of Example 1.3.19. If R = K is a field and a is of finite dimension n,
then we can identify a = Kn and find that ρ maps aff(a) to the ring of (n + 1) × (n + 1)-matrices with 0
on the bottom row. More precisely, for x ∈ Kn and δ and n× n-matrix,

ρ(x,δ) =

(
δ x
0 0

)
,

where we interpret δ as a n× n-matrix, x as a column vector and the bottom left 0 should be interpreted as
a zero row vector of length n.

Definition 1.3.21. Let a be a Lie algebra and let pra : aff(a) → a denote the projection onto the first
component. A Lie subalgebra g of aff(a) is

1. t-bijective if pra restricts to a bijection g → a : (x, δ) 7→ x. Equivalently, for every element x ∈ a
there exists a unique δ ∈ der(a) such that (x, δ) ∈ g.

2. t-injective if pra is injective on g. Equivalently, for every element x ∈ a there exists at most one
δ ∈ der(a) such that (x, δ) ∈ g.

3. t-surjective if the restriction of pra to g is surjective. Equivalently, for every element x ∈ a there
exists at least one δ ∈ der(a) such that (x, δ) ∈ g.

Proposition 1.3.22 ([30, Proposition 2.12]). Let a be a Lie algebra. There exists a bijective correspondence
between operations ▷ such that (a, ▷) is a post-Lie algebra and t-bijective Lie subalgebras of aff(a).
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Proof. Assume that we are given an operation ▷ such that (a, ▷) is a post-Lie algebra. Then (P1) is satisfied
if and only if Lx : y 7→ x ▷ y is a derivation of a for all x ∈ a. Consider the following submodule of aff(a)

g := {(x,Lx) | x ∈ a}.

We claim that g is a t-bijective Lie subalgebra of aff(a). It suffices to show that it is a Lie subalgebra; the
t-bijectivity follows trivially. For x, y ∈ a, we find

[(x,Lx), (y,Ly)] = ([x, y] + x ▷ y − y ▷ x, [Lx,Ly]),

this element is contained in g if and only if L[x,y]+x▷y−y▷x = [Lx,Ly]. Evaluating this equality in an
element z ∈ a, we obtain

[x, y] ▷ z + (x ▷ y) ▷ z − (y ▷ x) ▷ z = x ▷ (y ▷ z)− y ▷ (x ▷ z),

which is precisely (P2). We conclude that g is a t-bijective Lie subalgebra of aff(a).
Conversely, assume that we are given a t-bijective Lie subalgebra g of aff(a). For x ∈ g we define

Lx ∈ der(a) as the unique derivation such that (x,Lx) ∈ g. By exactly the same argument as before, we
find that (a, ▷), with x ▷ y := Lx(y), is a post-Lie algebra.

Note that the sub-adjacent Lie bracket of a post-Lie algebra (a, ▷) is precisely the Lie bracket such that

a◦ → aff(a) : x 7→ (x,Lx),

is a Lie algebra homomorphism. Assume moreover that R is a field and that a is finite dimensional. By the
above homomorphism, combined with Example 1.3.20, the following result follows.

Proposition 1.3.23. Let (a, ▷) be a pre-Lie algebra of dimension n over a field K. Then the sub-adjacent
Lie algebra a◦ has a representation of dimension n+ 1.

1.3.2 Nilpotency
One can define multiple notions of nilpotency for post-Lie algebras. We decide to name them similarly to
what is common for skew braces.

Definition 1.3.24. Let (a, ▷) be a post-Lie algebra. We define a1 = a and an+1 = a ▷ an for n ≥ 1. The
descending series of strong left ideals

a1 ⊇ a2 ⊇ . . . ,

is called the left series of (a, ▷). If there exists some n ≥ 1 such that an = {0}, then (a, ▷) is left nilpotent.
In this case, the smallest n ≥ 0 such that An+1 = {0} is called the left nilpotency class of (a, ▷).

Definition 1.3.25. A post-Lie algebra (a, ▷) is left nil if for any x ∈ a the map Lx is nilpotent.

Proposition 1.3.26. Let (a, ▷) be a finite dimensional post-Lie algebra over a field K. Then (a, ▷) is left nil
if and only if (a, ▷) is left nilpotent.

Proof. One implication is trivial. The other implication is a direct consequence of Engel’s theorem since the
Lie algebra a◦ acts on the vector space a by nilpotent endomorphisms.

Corollary 1.3.27. Let (a, ▷) be a post-Lie algebra of finite size. Then (a, ▷) is left nil if and only if (a, ▷) is
left nilpotent.
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Proof. One implication is trivial. For the other implication, assume that (a, ▷) is left nil and let p be a prime
dividing the order of a. Then the quotient (a, ▷)/(pa) is finite dimensional over the field Fp of order p. By
Proposition 1.3.26 there exists some np ≥ 1 such that anp ⊆ pa. In particular, we find anp+1 ⊆ pa2 and
continuing in this way we find a2np ⊆ p2a and more generally arnp ⊆ pra for r ≥ 1. Let pr11 . . . prnn be the
prime decomposition of |a|, then for m = max{npiri | 1 ≤ i ≤ n} we find am ⊆

⋂n
i=1 p

ri
i a = {0}.

Definition 1.3.28. For a post-Lie algebra (a, ▷) we define a(1) = A and a(n+1) = a(n) ▷ a for n ≥ 1. The
descending series of ideals

a = a(1) ⊇ a(2) ⊇ a(3) ⊇ . . .
is called the right series of (a, ▷). We say that (a, ▷) is right nilpotent if the right series reaches {0}. The
smallest integer n such that a(n+1) = {0} is called its right nilpotency class.

A post-Lie algebra (a, ▷) is transitive if the map x 7→ x ▷ y + x is a bijection for all x ∈ a. If the right
multiplication

x 7→ x ▷ y,

is nilpotent for all y ∈ a, then clearly (a, ▷) is transitive. A post-Lie algebra satisfying this property is right
nil. The following theorem combines results of Scheuneman, Helmstetter and Segal.

Theorem 1.3.29 ([85, 141, 142]). Let (a, ▷) be a finite dimensional pre-Lie algebra over the field R or C.
Then the following statements hold:

1. (a, ▷) is transitive if and only if it is right nil,

2. if (a, ▷) is left nilpotent, then it is right nil,

3. if (a, ▷) is right nil and a◦ is nilpotent, then (a, ▷) is left nilpotent.

Remark 1.3.30. One can also define right nil skew braces in a similar way using the operation ∗, but not
much is known about them, see [164]. For left nil braces, a similar result to Proposition 1.3.26 was proved
by Smoktunowicz [144].

Auslander [8] conjectured that the socle of any transitive finite dimensional pre-Lie algebra over R is
non-trivial. The following counterexample of dimension 4 was provided by Fried [75]. For left nilpotent
pre-Lie algebras of dimension at most 3, Kim proved that the conjecture holds [98, Corollary 2.7].

Example 1.3.31. Consider (a, ▷) where a is the trivial Lie algebra on R4 and define
x1
y1
z1
t1

 ▷


x2
y2
z2
t2

 =


0

t1x2
t1y2

−x1z2 + y1y2 − z1x2

 ,

Then 
x1
y1
z1
t1

 ▷



x2
y2
z2
t2

 ▷


x3
y3
z3
t3


 =


x1
y1
z1
t1

 ▷


0

t2x3
t2y3

−x2z3 + y2y3 − z2x3



=


0
0

t1t2x3
−x1t2y3 + y1t2x3

 ,
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and 

x1
y1
z1
t1

 ▷


x2
y2
z2
t2


 ▷


x3
y3
z3
t3

 =


0

t1x2
t1y2

−x1z2 + y1y2 − z1x2

 ▷


x3
y3
z3
t3



=


0

(−x1z2 + y1y2 − z1x2)x3
(−x1z2 + y1y2 − z1x2)y3

t1x2y3 − t1y2x3

 ,

hence 
x1
y1
z1
t1

 ▷



x2
y2
z2
t2

 ▷


x3
y3
z3
t3


−



x1
y1
z1
t1

 ▷


x2
y2
z2
t2


 ▷


x3
y3
z3
t3



=


0

x1z2x3 − y1y2x3 + z1x2x3
t1t2x3 + x1z2y3 − y1y2y3 + z1x2y3
−x1t2y3 + y1t2x3 − t1x2y3 + t1y2x3



=


0

(x1z2 + z1x2)x3 − y1y2x3
t1t2x3 + (x1z2 + z1x2)y3 − y1y2y3
(t1x2 + x1t2)y3 − (t1y2 + y1t2)x3

 ,

which is invariant under changing the indices 1 and 2, so (a, ▷) is indeed a pre-Lie algebra. The pre-Lie
algebra (a, ▷) is left nilpotent hence transitive, but Soc(a, ▷) = {0}.

1.4 Filtered algebraic structures
The Lazard correspondence [112] is an intriguing display of how an idea from differential geometry leads to
strong results when mimicked in a purely algebraic context. The objects of interest in this correspondence
are filtered Lie rings and filtered groups. In this section, we first treat such filtered structures. We then
discuss how these can be interpreted as metric spaces, which leads to a natural notion of a completion
in this context, which we see from a category theoretical perspective. At last, we introduce the Lazard
correspondence starting from a differential-geometric point of view.

1.4.1 Filtrations on algebraic structures
Definition 1.4.1. A filtered group is a group G together with a descending chain of normal subgroups

G = G1 ⊇ G2 ⊇ . . .

such that [Gi, Gj ] ⊆ Gi+j . Such a chain is a filtration on G. A filtration is finite if there exists some i ≥ 1
such that Gi = {1}. Any subgroup H of a filtered group G has a natural filtration given by Hi = H ∩Gi.
A homomorphism of filtered groups f : G → H is a group homomorphism such that f(Gi) ⊆ Hi for all
i ≥ 1.
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The following statement is a well-known consequence of the three subgroup lemma and shows that the
lower central series of a group is a filtration.

Lemma 1.4.2. LetG be a group. Set γ1(G) = G and γi+1(G) = [G, γi(G)] for i ≥ 1. Then [γi(G), γj(G)] ⊆
γi+j(G) for all i, j ≥ 1.

Definition 1.4.3. A filtered Lie algebra is a Lie algebra a with a descending chain of ideals

a = a1 ⊇ a2 ⊇ . . .

such that [ai, aj ] ⊆ ai+j for all i, j ≥ 1. Such a chain is a filtration on a. A filtration is finite if there
exists some i ≥ 1 such that gi = {0}. A homomorphism of filtered Lie algebra f : a → b is a Lie algebra
homomorphism such that f(ai) ⊆ bi for all i ≥ 1.

The following lemma is a well-known consequence of the Jacobi identity and proves that the lower
central series of a Lie algebra is a filtration.

Lemma 1.4.4. Let g be a Lie algebra. Set γ1(g) = g and γi+1(g) = [g, γi(g)] for i ≥ 1, then [γi(g), γj(g)] ⊆
γi+j(g) for all i, j ≥ 1.

Definition 1.4.5. A filtered algebra is an algebra A together with a descending chain of ideals

A = A0 ⊇ A1 ⊇ A2 ⊇ . . .

such that AiAj ⊆ Ai+j . Such a chain is a filtration on A. A filtration is finite if there exists some i ≥ 0
such that Ai = {0}. A homomorphism of filtered algebras f : A → B is an algebra homomorphism such
that f(Ai) ⊆ Bi for all i ≥ 0.

Remark 1.4.6. Contrary to groups and Lie algebras, we start the filtration of an algebra at index 0 instead of
1. This is because otherwise the presence of a unit would imply x = 1nx ∈ An for all x ∈ A and n ≥ 1.

Example 1.4.7. Let A be a algebra and I an ideal of A, then we have a natural filtration where A0 = A and
A1 = I and Ai+1 = IAi. This filtration is finite if and only if I is a nilpotent ideal.

Example 1.4.8. Let M be a filtered abelian group and consider the algebra Endf (M) of all group endo-
morphisms f :M →M such that f(Mi) ⊆Mi. Then Endf (M) has a canonical filtration given by

Endf (M)i = {f ∈ Endf (M) | f(Mj) ⊆Mi+j for all j ≥ 1}.

Note in particular that if Md+1 = {0}, then Endf (M)d = {0}.

Example 1.4.9. Let R be a commutative ring and X a set, then R[X], the polynomial ring over R with
variables X , has a natural filtration given by

R[X]i = {f ∈ R[X] | f is a linear combination of monomials of degree at least i}.

Example 1.4.10. Let R be a commutative ring and X a set. Recall that R[[X]], the R-algebra of formal
power series over R with variables X , is the set{ ∞∑

i=0

fi | fi is a linear combination of monomials of degree i in R[X]

}
,
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with addition and multiplication

∞∑
i=0

fi

∞∑
i=0

gi =

∞∑
i=0

(fi + gi),

( ∞∑
i=0

fi

)( ∞∑
i=0

gi

)
=

∞∑
i=0

 i∑
j=0

fjgi−j

 .

Then R[[X]] has a natural filtration given by

R[[X]]j =


∞∑
i=j

fi ∈ R[[X]]

 .

Example 1.4.11. Let A be a filtered algebra, then a = A1 has a filtered Lie algebra structure where the Lie
bracket is the commutator bracket and the filtration is given by ai = Ai.

Example 1.4.12. Let g be a filtered Lie algebra over a field K. Then the universal enveloping algebra U(g)
has a natural filtration given by

U(g)i := span{x1 · · ·xr | r ≥ 1, xj ∈ gnj with n1 + · · ·+ nr ≥ i},

for i ≥ 1, see [33, Section 3].

Example 1.4.13. LetA be a filtered algebra. Then for any i ≥ 1, the set 1+Ai is closed under multiplication.
Let G be a subgroup of the multiplicative monoid 1 + A1. Then G has a natural filtration given by Gi =
G ∩ (1 +Ai). Indeed, if we take an element 1 + x ∈ Gi and consider its inverse 1 + x′ ∈ G, then

1 = (1 + x)(1 + x′) = 1 + x+ x′ + xx′, (1.11)

hence (1+x)x′ = −x ∈ Ai and thus (1+x′)(1+x)x′ = x′ ∈ Ai. This implies that Gi is a subgroup of G.
Also, let (1 + x) ∈ Gi, (1 + y) ∈ Gj with respective inverses 1 + x′ ∈ Gi and 1 + y′ ∈ Gj . Then, working
in the quotient A/Ai+j we find

(1 + x)(1 + y)(1 + x′)(1 + y′) +Ai+j = (1 + x+ y)(1 + x′ + y′) +Ai+j

= 1 + x+ y + x′ + xx′ + yx′ + y′ + xy′ + yy′ +Ai+j

= 1 + x+ y + x′ + xx′ + y′ + yy′ +Ai+j

= 1 +Ai+j ,

where we used (1.11) to obtain the last equality. We conclude that G is indeed a filtered group for the given
filtration.

1.4.2 Complete algebraic structures
We now discuss the notion of completeness for filtered groups. Mutatis mutandi, the same definitions also
work for filtered Lie algebras and filtered algebras.

Let G be a filtered group. The limit of the diagram

. . . G/G3 G/G2 G/G1
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in the category of filtered groups exists and can be explicitly constructed as

lim←−G/Gi = {(giGi)i≥1 | gi+1Gi = giGi for all i ≥ 1},

with the filtration given by

(lim←−G/Gi)j = {(giGi)i≥1 ∈ lim←−G/Gi | gi ∈ Gj for all i ≥ 1},

for j ≥ 1, and the homomorphisms

lim←−G/Gi → G/Gk : (giGi)i≥1 7→ gkGk.

Definition 1.4.14. A filtered group G is complete if the canonical homomorphism G → lim←−G/Gi is an
isomorphism.

We shortly discuss why the term completeness is justified here. For any a, b ∈ G, the set

{i ≥ 1 | aGi = bGi}

is non-empty since it definitely contains 1. Therefore, the map

d : G2 → G : (a, b) 7→ inf{2−i | aGi = bGi}

is well-defined and it is symmetric and subadditive, hence it defines a pseudometric onG. This pseudometric
is non-degenerate if and only if for any a ̸= b ∈ G there exists some i such that aGi ̸= bGi, or equivalently
if
⋂
i≥1Gi = {1}.

Proposition 1.4.15. A filtered group G is complete if and only if (G, d) is a complete metric space.

Proof. First of all, note that the kernel of the canonical homomorphism f : G → lim←−G/Gi is precisely⋂
i≥1Gi, hence f is injective if and only if d defines a metric on G. Also, since f−1((lim←−G/Gi)k) = Gk

we find d(f(a), f(b)) = d(a, b) for all a, b ∈ G. Moreover, f(G) is dense in lim←−G/Gi since for any
(aiGi)i≥1 ∈ lim←−G/Gi and k ≥ 1 we find

d(f(ak), (aiGi)i≥1) ≤ 2−k.

We therefore find that G is complete if and only if f(G) is complete. It is left as an exercise to verify that
lim←−G/Gi is complete. Since f(G) is dense in lim←−G/Gi we find that G is complete precisely when f is
bijective. At last, if f is bijective, then since f−1((lim←−G/Gi)k) = Gk it follows that f is an isomorphism.

Example 1.4.16. If G is a filtered group with a finite filtration, say Gd = {1}, then d(a, b) < 2−d if and
only if a = b. It follows that G is a discrete space, which in particular implies that it is complete.

Example 1.4.17. Let R be a commutative ring and X a set. Then R[X], with the filtration as in Exam-
ple 1.4.9, is a metric space since

⋂∞
i=0R[X] = {0} but it is not complete since for example the sequence

1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3, . . .

is Cauchy, but it does not have a limit in R[X]. However, this sequence does have a limit in R[[X]], namely
the element

∑∞
i=0 x

i. More generally, one sees thatR[[X]] is complete andR[X] is a dense subset ofR[[X]]
since

∞∑
i=0

fi = lim
k→∞

k∑
i=0

fi,

for any
∑∞
i=0 fi ∈ R[[X]].
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Example 1.4.18. Let A be a complete filtered algebra, then the filtered Lie algebra structure on A1 as in
Example 1.4.11 is also complete.

Example 1.4.19. Let A be a complete filtered algebra, then 1 + x ∈ 1 + A1 has a multiplicative inverse
given by

∑∞
i=0(−1)ixi. Moreover, the group G = 1 + A1, seen as a filtered group as in Example 1.4.13,

is complete since the inclusion map G→ A is an isometry (with the metric on both structures coming from
their filtration) and 1 +A1 is closed in R.

1.4.3 The Lazard correspondence
Although we use slightly different terminology, all of the statements in this section are contained in or are a
direct consequence of [96, 112].

Let us consider Q[[x, y]] := Q[[{x, y}]] as a complete filtered ring as in Example 1.4.10. Then we can
define the exponential of any f ∈ Q[[x, y]]1 using its usual power series. The sequence

1, 1 + f, 1 + f +
1

2
f2, . . . ,

i∑
k=0

1

k!
fk, . . .

is a Cauchy series since fk ∈ Q[[x, y]]k. We define the exponential of f as

exp(f) =

∞∑
k=0

1

k!
fk = lim

i→∞

i∑
k=0

1

k!
fk.

Clearly, exp(f) ∈ 1 +Q[[x, y]]1. Conversely, if we let f ∈ 1 +Q[[x, y]]1, then we can define its logarithm
as

log(f) =

∞∑
k=1

(−1)k+1 1

k
(f − 1)k = lim

i→∞

i∑
k=1

(−1)k+1 1

k
(f − 1)k.

Note that this limit exists since (f − 1)k ∈ Q[[x, y]]k.
The Baker–Campbell–Hausdorff formula is the element of Q[[x, y]], so a formal series in two variables,

defined by
BCH(x, y) = log(exp(x) exp(y)), (1.12)

and its remarkable property is that it can be expressed using only the elements x, y and the commutator Lie
bracket. Its first terms are given by

BCH(x, y) = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]])− 1

24
[y, [x, [x, y]]] + . . . , (1.13)

where higher terms are of order at least 5. Recall that the origin of the Baker–Campbell–Hausdorff formula
lies in Lie theory. If G is a Lie group with associated Lie algebra g, then the exponential map exp : g→ G
can always be restricted to a diffeomorphism exp : U → V for 0 ∈ U an open subset of g and 1 ∈ V
an open subset of G. Moreover, U and V can always be chosen such that (1.13) converges on U2 and
exp(BCH(x, y)) = exp(x) exp(y) for all x, y ∈ U . So the BCH formula locally transfers the group
structure onto the Lie algebra. The underlying idea of the Lazard correspondence is to exploit this behavior
in a, as general as possible, purely algebraic setting. The two obstacles to overcome here are that the BCH
formula is, in general, an infinite series and that we need to be able to divide by certain integers.
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Let us more carefully study which denominators can appear. For P a set of primes, we define

QP =
{ n
m
∈ Q | the prime factors of m are contained in P

}
.

For i ≥ 0, we define Pi as the set of all prime numbers less than or equal to i. We now define

Q =

{ ∞∑
i=0

αifi ∈ Q[[x, y]] | αi ∈ QPi , fi is a sum of monomials of degree i

}
.

Since the rings QPi form an ascending chain, it follows that Q is a closed subring of Q[[x, y]]. Also, if∑∞
i=j αifi ∈ Qj , then β(

∑∞
i=j αifi) ∈ Qj for all β ∈ QPj . In particular, we find that the exponential and

logarithmic maps restrict to a bijection between 1 +Q1 and Q1. As the elements x, y are contained in Q1

it follows that BCH(x, y) ∈ Q1. Since an iterated Lie bracket of order n (meaning, involving n − 1 Lie
brackets and thus n arguments) in the elements x and y is clearly contained in Qn \ Qn−1, we find that the
coefficients of order n in (1.13) are contained in QPn .

Definition 1.4.20. Let G be a group and P a set of prime numbers. Then G is P-divisible if for every
element g ∈ G and every n whose prime divisors are contained in P , there exists a unique h ∈ G such that
hn = g. This unique element is denoted g

1
n . If G is an abelian group and its group operation is denoted by

+, then we use the notation 1
ng.

Definition 1.4.21. A Lazard Lie algebra is a Lie algebra g together with a finite filtration such that (gi,+)
is Pi-divisible for all i ≥ 1.

Note that in a Lazard Lie algebra g the a priori infinite series BCH(x, y) terminates at some point for all
x, y ∈ g since the term of order i is contained in gi. Moreover, since any term of order i is contained in gi
and we have the earlier observation that the denominators of coefficients of order i only involve primes at
most i, we can also give sense to these denominators in a unique way. We thus obtain the first construction
in the Lazard correspondence.

Theorem 1.4.22. Let g be a Lazard Lie algebra. Then the operation

BCH : g2 → g : (x, y) 7→ BCH(x, y),

defines a group operation on g and the gi form a filtration on this group. We denote this filtered group by
Laz(g).

Clearly, if g is a Lazard Lie algebra, then 0 is the identity element of Laz(g). Also, if x, y ∈ g are such
that [x, y] = 0, then BCH(x, y) = x+ y. In particular, the n-th power of x in Laz(g) is nx.

Definition 1.4.23. A Lazard algebra is an algebra together with a finite filtration such that (Ai,+) is Pi-
divisible for all i ≥ 0.

Let A be a Lazard algebra. Similar to as in Q as above, we can define mutually inverse maps exp :
R1 → 1 +R1 and log : 1 +R1 → R1 by

exp(a) =

∞∑
k=0

1

k!
ak,

log(a) =

∞∑
k=1

(−1)k+1 1

k
(a− 1)k.
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and thus we also obtain map

BCH : A2
1 → A1 : (a, b) 7→ log(exp(a) exp(b)).

Since A is Lazard, for any a, b ∈ A1 there exists a unique filtered ring homomorphism ψ : Q → A
mapping x to a and y to b and thus we can really interpret BCH(a, b) as evaluating the expression (1.13)
in the elements a, b. This implies that if a Lazard Lie algebra embeds into a Lazard algebra, then we can
explicitly calculate the BCH formula on the Lie algebra by using the logarithmic and exponential maps in
the enveloping algebra.

Proposition 1.4.24. Let g be a Lazard Lie algebra and let A be a Lazard algebra. If f : g → A is a
homomorphism of filtered Lie algebras, then

Laz(g)→ exp(f(g)) : x 7→ exp(f(x)),

is a group homomorphism, where the group operation on exp(f(g)) is the ring multiplication in A.

Once again working in the filtered ring Q, set g = exp(x) and h = exp(y) and define

P (g, h) = exp(log(g) + log(h)), (1.14)
Q(g, h) = exp(log(g) log(h)− log(g) log(h)). (1.15)

Let G = 1 +Q1, which we consider as a complete filtered group as in Example 1.4.13. Then P (g, h) can
be expressed as an infinite product in G, more precisely P (g, h) = limi→∞

∏i
k=1 Pi, where Pi ∈ Gi and

each Pi can be expressed as a product of rational powers of group commutators of order i in the elements g
and h. More precisely,

P (g, h) = gh[g, h]−
1
2 [g, [g, h]]

1
12 [g, [g, [g, h]]]−

1
24 [h, [h, [g, h]]]

1
24 · · · , (1.16)

where in this case [g, h] is the group theoretic commutator in G and further factors are of order at least 5.
The same is true for Q(g, h) and

Q(g, h) = [g, h][g, [g, h]]
1
2 [h, [g, h]]

1
2 [g, [g, [g, h]]]

1
3 [h, [g, [g, h]]]

1
4 [h, [h, [g, h]]]

1
3 · · · , (1.17)

where further factors are of order at least 5. Note that the roots in the above expressions make sense since
log(xn) = n log(x) for all i ≥ 1, x ∈ 1 + Qi and n ∈ Z, hence exp( 1n log(x)) ∈ 1 + Qi is the unique
element in 1 +Q1 that satisfies (exp( 1n log(x)))n = x. In other words, Gi is Pi-divisible.

Definition 1.4.25. A Lazard group is a group G with a finite filtration such that Gi is Pi-divisible for every
i ≥ 1.

If H is a Lazard group and g, h ∈ H , then P (g, h) and Q(g, h) are well-defined elements in H since the
infinite product becomes a finite one and all of the rational powers are well-defined.

Theorem 1.4.26. Let G be a Lazard group. Then the operations

g + h = P (g, h),

[g, h]s = Q(g, h),

make G into a Lie ring and the Gi form a filtration on this Lie ring. We denote this Lazard Lie ring by
Laz−1(G).
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Theorem 1.4.27 (Lazard correspondence). The constructions Laz and Laz−1 are functorial and mutually
inverse, therefore yielding an isomorphism between the categories of Lazard Lie rings and Lazard groups.

Lemma 1.4.28. Let (M,+) be an abelian group and P a set of primes. Then G is P-divisible if and only if
G can be given the structure of a QP -module.

Corollary 1.4.29. Let a be a filtered Lie algebra over a field K of characteristic 0. Then a is Lazard if and
only if the filtration is finite.

Lemma 1.4.30. Let (M,+) be an abelian Lazard group. Then also the filtered ring Endf (M) is Lazard.

Proof. Let f ∈ Endf (M)i. Since then f(M) ⊆Mi+1 we can define for all r ∈ QPi the endomorphism

rδ : g→ g : x 7→ rδ(x),

which is also contained in Endf (M)i. This gives Endf (M)i the structure of a QPi -module, hence the result
follows from Lemma 1.4.28.

Note that for an element x of a Lazard Lie algebra g, the adjoint map

adx : g→ g : y 7→ [x, y],

is contained in Endf (g,+)1. Here, Endf (g,+) is as in Example 1.4.8, where we consider g simply as a
filtered abelian group. By Lemma 1.4.30 we find that exp(adx) is well-defined in Endf (g). The following
lemma relates conjugation in Laz(g,+) to the Lie bracket in g.

Lemma 1.4.31. Let g be a Lazard Lie algebra. Then

BCH(x,BCH(y,−x)) = exp(adx)(y),

for all x, y ∈ g.

Lemma 1.4.32. Let G be a p-group for some prime p and let P be a set of prime numbers. Then G is
P-divisible if and only if p /∈ P .

Proof. Let g ∈ G and let n ∈ Z be coprime to p. Since |g|, the order of g, is a power of p, there exist
some r, s ∈ Z such that rn + s|g| = 1. It follows that (gr)n = grn+s|g| = g, hence g has an n-th root.
Moreover, if h ∈ G is such that hn = g, then |h| = |g| hence gr = (hn)r = hrn+s|g| = h which proves the
uniqueness.

As a direct consequence of Lemma 1.4.28 we obtain a concrete characterization of Lazard p-groups and
thus a specific case of the Lazard correspondence for groups and Lie rings of prime power cardinality.

Proposition 1.4.33. Let p be a prime and let G be a filtered p-group. Then G is Lazard if and only if
Gp = {1}.

Theorem 1.4.34. Let pn be a prime power and k < p. The Lazard correspondence restricts to nilpotent Lie
rings of order pn and nilpotency class k, and groups of order pn and nilpotency class k, where we consider
all structures with the filtration coming from their lower central series.

Corollary 1.4.35. Let p be a prime and n < p. The Lazard correspondence restricts to nilpotent Lie rings
of order pn and groups of order pn, where we consider all structures with the filtration coming from their
lower central series.
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Example 1.4.36. Let p > 2 be a prime. Recall that the Heisenberg Lie algebra over a field K is the Lie
algebra on the vector space K3 with Lie bracketx1y1

z1

 ,

x2y2
z2

 =

 0
0

x1y2 − y1x2

 .

When the characteristic of K is not 2, then a is a Lazard Lie algebra for the filtration coming from its lower
central series. The group Laz(a) is the Heisenberg group whose multiplication is given by

BCH

x1y1
z1

 ,

x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 +
1
2 (x1y2 − y1x2)

 .

If K = Fp for p > 2, then the obtained group is the extraspecial group of order p3 and exponent p.

Example 1.4.37. Let p be a prime. Then a = Z/p× Z/p2 with Lie bracket[(
x1
y1

)
,

(
x2
y2

)]
=

(
0

p(x1y2 − y1x2)

)
,

is a nilpotent Lie ring of class 2. Therefore, for p > 2 we find that a is Lazard for the filtration coming from
its lower central series. We find that the group operation in Laz(a) is given by

BCH

((
x1
y1

)
,

(
x2
y2

))
=

(
x1 + x2

y1 + y2 +
1
2p(x1y2 − y1x2)

)
,

which is easily seen to be the unique extraspecial group of order p3 and exponent p2. We therefore say that
a is the extraspecial Lie ring of order p3 and characteristic p2.

As a particular case of the Lazard correspondence, we obtain the Malcev correspondence, proved prior
to the Lazard correspondence in [119]. A group is Q-powered if it is P-divisible, where P is the set of all
primes.

Theorem 1.4.38 (Malcev correspondence). The Lazard correspondence restricts to a correspondence be-
tween nilpotent rational Lie algebras and nilpotent Q-powered groups, where we consider all structures
with the filtration coming from their lower central series.

Let g be a finite dimensional nilpotent Lie algebra over R, which we equip with the filtration given by
its lower central series. Since in particular g is a finite dimensional vector space, it has a natural differential
manifold structure, and the map BCH : g2 → g is polynomial, hence smooth, with respect to this manifold
structure. Therefore, Laz(g) is a Lie group. Since it is homeomorphic to a vector space, it is connected and
simply connected.

Proposition 1.4.39. Let g be a nilpotent finite dimensional Lie algebra over R. Then Laz(g) is a connected,
simply connected Lie group such that its associated Lie algebra is isomorphic to g in such a way that
g→ Laz(g) is the Lie theoretic exponential map.

Proof. Let U(g) be the universal enveloping algebra of g, with its filtration as in Example 1.4.12 and let
A = U(g)/U(g)n+1 where n is the dimension of g. Note that A has finite dimension, bounded above by
1 + n+ n2 + . . .+ nn. Since gn = {0}, we find that the canonical map

ι : g→ A : x 7→ x+ U(g)n+1,
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is injective and ι([x, y]) = ι(x)ι(y)− ι(y)ι(x). In particular, it follows from Proposition 1.4.24 that Laz(g)
is isomorphic to exp(ι(g)). SinceA is finite dimensional we can see it as a matrix ring and thus the statement
now follows directly from classical Lie theory.

At last, let us formulate the Lazard correspondence in its general form as it was stated in [112]. Let g be
a complete filtered Lie ring such that g/gi is Lazard for all i ≥ 1 and identify g with

lim←− g/gi = {(xi + gi)i≥1 | xi+1 + gi = xi + gi for all i ≥ 1}.

Then for (xi + gi)i≥1, (yi + gi)i≥1 ∈ g we define

BCH((xi + gi)i≥1, (yi + gi)i≥1) = (BCH(xi, yi) + gi)i≥1,

and this makes g together with operation BCH into a filtered group for the filtration given by the gi. We
denote this group by Laz(g), which is justified since if g is Lazard then it coincides with the earlier con-
struction. The newly obtained filtered group Laz(g) is complete and Laz(g)/gi = Laz(g/gi). Similarly, if
G is a complete filtered group such that G/Gi is Lazard for all i ≥ 1, then we can define a Lie ring structure
Laz−1(G) on the set G such that Laz−1(G) ∼= lim←−Laz−1(G/Gi).

Theorem 1.4.40. The constructions Laz and Laz−1 provide a functorial bijective correspondence between
complete filtered Lie rings g such that g/gi is Lazard for all i ≥ 1, and complete filtered groups G such that
G/Gi is Lazard for all i ≥ 1.

1.5 Hopf theory
In this last preliminary section, we discuss Hopf–Galois structures. These were initially introduced in the
context of purely inseparable extensions by Chase and Sweedler [56], but after that they were mainly studied
for separable extensions, providing a generalization of classical Galois theory. Our main interest lies in
Galois field extensions, for which Greither and Pareigis proved a strong characterization in group theoretic
terms. In order to formulate their result, we need the theory of Galois descent.

We will not give the definition of a Hopf algebra; instead, we refer the reader to a standard reference, for
example [95]. Our notation will be standard: the maps ∆, ϵ, η and S denote the comultiplication, counit, unit
and antipode respectively. For the comultiplication, we use Sweedler notation. All of the field extensions in
this section are assumed to be finite.

1.5.1 Hopf–Galois structures
Let K be a field and H a K-Hopf algebra. A H-module algebra is a K-algebra A which is moreover a
module of the algebra H , whose action we usually denote byw ⋆, such that

h ⋆ 1A = ϵ(h)1A, h ⋆ (ab) = (h1 ⋆ a)(h2 ⋆ b),

are satisfied for all a, b ∈ A, h ∈ H .

Example 1.5.1. Let H be a Hopf algebra and let A be an H-module algebra. Recall that g ∈ H is grouplike
if ∆(g) = g ⊗ g. In that case, we find g ⋆ 1A = 1A and g ⋆ (ab) = (g ⋆ a)(g ⋆ b) for all a, b ∈ A. We
conclude that grouplike elements of H act by algebra automorphisms. In particular, if we consider a group
algebra K[G] with its canonical Hopf algebra structure, then a K[G]-module algebra A is the same as an
algebra A together with an action of G on A by algebra automorphisms.
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Example 1.5.2. Let H be a Hopf algebra and let A be an H-module algebra. Recall that x ∈ H is primitive
if ∆(g) = x⊗ 1 + 1⊗ x. In that case, x ⋆ 1A = 0 and x ⋆ (ab) = (x ⋆ a)b+ a(x ⋆ b), meaning that x acts
by algebra derivations. In particular, if we consider the universal enveloping algebra U(g) of a Lie algebra
with its canonical Hopf algebra structure, then a U(g)-module algebra A is the same as an algebra A and a
representation of g on A by algebra derivations.

Let L/K be an extension of fields. A Hopf–Galois structure on L/K consists of a K-Hopf algebra H
together with an action ⋆ of H on L such that L is an H-module algebra and the K-linear map

L⊗K H → EndK(L), x⊗ h 7→ (y 7→ x(h ⋆ y)) (1.18)

is bijective. Let there be given two Hopf–Galois structures on L/K, with Hopf algebras H and H ′. Then
we consider these structures as equal if there exists an isomorphism betweenH andH ′ such that their action
on L respects this isomorphism. For more insights on the definition, we refer to [58].

Example 1.5.3. Assume that L/K is Galois with Galois group G. Then we have a canonical K[G]-module
algebra structure on L coming from the action of G on L. Then the map (1.18) is bijective since G is an
L-basis of EndK(L). We call this the classical structure.

Example 1.5.4. The following example is given in [82]. Consider the field extension Q(ω)/Q with ω = 3
√
2.

This extension is separable but not normal. Define Q-linear maps s, c : Q(ω)→ Q(ω) by:

c(1) = 1, c(ω) = −1

2
ω, c(ω2) = −1

2
ω2,

s(1) = 0, s(ω) =
1

2
ω, s(ω2) = −1

2
ω2.

Then x ∈ Q(ω) is in Q if and only if c(x) = x and s(x) = 0. The maps c and s are not automorphisms
of Q(ω) but satisfy c(xy) = c(x)c(y) − 3s(x)s(y) and s(xy) = c(x)s(y) + s(x)c(y) for all x, y ∈ Q(ω).
We claim that idQ(ω), c, s are linearly independent over Q(ω). Indeed, let x1, x2, x3 ∈ Q(ω) be such that
x1 idQ(ω) +x2c + x3s = 0. Evaluating this expression in 1 yields x1 + x2 = 0, evaluating in ω yields
1
2 (2x1 − x2 + x3)ω = 0 and evaluating in ω2 we find 1

2 (2x1 − x2 − x3)ω
2 = 0. From the second and third

equations we get x3 = 0, this then implies that 2x1 − x2 = 0, which, together with the first equation, then
implies that x1 = x2 = 0.

One verifies that

H = Q[c, s]/(3s2 + c2 − 1, (2c+ 1)s, (2c+ 1)(c− 1)),

with

∆(c) = c⊗ c− 3s⊗ s, ∆(s) = c⊗ s+ s⊗ c, ϵ(c) = 1, ϵ(s) = 0,

defines a Q-Hopf algebra with an action Q(ω) which makes into a H-module algebra. Since the maps
idQ(ω), c, s are L-linearly independent, we obtain a Hopf–Galois structure on Q(ω)/Q.

Following [56], given a Hopf–Galois structure on L/K with K-Hopf algebra H , we can attach to each
K-sub Hopf algebra H ′ of H an intermediate field F of L/K, as follows:

F = LH
′
= {x ∈ L | h′ ⋆ x = ε(h′)x for all h′ ∈ H ′},
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We obtain in this way the Hopf–Galois correspondence, which is always injective. We remark that the F -
Hopf algebra F ⊗K H ′ acts on L naturally and gives a Hopf–Galois structure on L/F , and in particular,
[L : F ] equals the dimension of H ′ as K-vector space; see also [63, section 7] for more details.

A K-sub Hopf algebra H ′ of H is normal if for all h ∈ H and h′ ∈ H ′,

h(1)h
′S(h(2)) ∈ H ′, S(h(1))h

′h(2) ∈ H ′.

If H ′ is a normal K-sub Hopf algebra of H , then by [122, Lemma 3.4.2 and Proposition 3.4.3] there exists
a short exact sequence

K → H ′ → H → H → K

of K-Hopf algebras, in the sense of [7, Proposition 1.2.3]. Moreover, if F = LH
′
, then the action of H on

L yields an action of H on F which gives a Hopf–Galois structure on F/K; see [35, Lemma 4.1].

1.5.2 Galois Descent
We give only a brief summary of Galois descent and refer the interested reader to [58, section 2.12] for a
more extensive treatment of the subject. Suppose that L/K is Galois with Galois group G. An action ⋆ of
G on an L-vector space V is L-semilinear if

σ ⋆ (xv) = σ(x)(σ ⋆ v),

for all σ ∈ G, x ∈ L and v ∈ V . Given an L-Hopf algebra M on which G acts semilinearly, we say that M
is G-compatible if all the maps defining the structure of M as an L-Hopf algebra are G-equivariant. Here G
acts on L via the Galois action and on M ⊗LM diagonally.

Denote by HopfK the category of K-Hopf algebras, where morphisms are K-Hopf algebra homomor-
phisms, and by HopfGL the category ofG-compatible L-Hopf algebras, where morphisms areG-equivariant
L-Hopf algebra homomorphisms. Then there exists an equivalence of categories between HopfK and
HopfGL , as follows:

• IfH ∈ HopfK , then L⊗KH ∈ HopfGL , whereG acts on the first factor of the tensor product; given
a morphism φ : H1 → H2 in HopfK , we have that id⊗φ : L⊗K H1 → L⊗K H2 is a morphism in
HopfGL .

• If M ∈ HopfGL , then

MG = {m ∈M | m is fixed under the action of G},

is K-Hopf algebra. Given a morphism ψ : M1 → M2 in HopfGL , the restriction of ψ to MG
1 is a

morphism MG
1 →MG

2 .

• If H ∈ HopfK , then
H → (L⊗K H)G, h 7→ 1⊗ h

is an isomorphism in HopfK , and if M ∈ HopfGL , then

L⊗K MG →M, l ⊗m 7→ lm

is an isomorphism in HopfGL .

We immediately derive some consequences:
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• Let M ∈ HopfGL . Then there exists a bijective correspondence between K-Hopf subalgebra of MG

and L-Hopf subalgebra of M that are invariant under the action of G on M . Explicitly, given such an
L-sub Hopf algebra M ′, the corresponding K-sub Hopf algebra is (M ′)G, and M ′ is normal in M if
and only if (M ′)G is normal in MG.

• Let
L→ A→M → B → L

be a short exact sequence of L-Hopf algebras. If all the L-Hopf algebras are G-compatible and all the
L-Hopf algebra homomorphisms are G-equivariant, then

K → AG →MG → BG → K

is a short exact sequence of K-Hopf algebras.

• For all M1,M2 ∈ HopfGL , we have that (M1⊗LM2)
G and MG

1 ⊗KMG
2 are isomorphic as K-Hopf

algebras.

• Let M ∈ HopfGL , and take h ∈ MG. Then h is a grouplike element of MG if and only if h is a
grouplike element of M .

Example 1.5.5. As before, let L/K be a Galois field extension with Galois groupG. LetN be a finite group
on which G acts via automorphisms, and extend this to an action of G on L[N ], where G acts on L via the
Galois action. Then L[N ] is a G-compatible L-Hopf algebra. Here the L-Hopf subalgebras of L[N ] are the
group algebras L[N ′] for subgroups N ′ of N (see [67, Proposition 2.1]), and almost by definition, L[N ′]
is normal in L[N ] if and only if N ′ is normal in N . We deduce that the K-Hopf subalgebras of L[N ]G

are of the form L[N ′]G for subgroups N ′ of N invariant under the action of G, and L[N ′]G is normal in
L[N ]G if and only if N ′ is normal in N . Note that moreover, the lattices of K-Hopf subalgebra of L[N ]G

and subgroups of N invariant under the action of G are isomorphic.
If N ′ is a normal subgroup of N invariant under the action of G, then, by [58, Proposition 4.14],

L→ L[N ′]→ L[N ]→ L[N/N ′]→ L,

is a short exact sequence of L-Hopf algebras which are G-compatible, where all the L-Hopf algebra homo-
morphisms are G-equivariant, so

K → L[N ′]G → L[N ]G → L[N/N ′]G → K,

is a short exact sequence of K-Hopf algebras.
Finally, as the grouplike elements of L[N ] are the elements of N , we find that the grouplike elements of

L[N ]G are the elements of N on which G acts trivially.

1.5.3 Greither–Pareigis theory
Let L/K be a separable field extension and let L̃ be the normal closure of L/K. Also, let G = Aut(L̃/K)
and G′ = Aut(L̃/L). For σ ∈ G, we let Lσ ∈ SG/G′ denote the left regular permutation τG′ 7→ στG′.
Since the kernel of the induced action of G on G/G′ is the normal core of G′ (which is trivial since L̃ is the
normal closure of L/K), we find that this induces an embedding L : G→ SG/G′

Theorem 1.5.6 ([82, Theorem 2.1]). Let L/K be a separable field extension. With the notation as above,
there exists a bijective correspondence between:
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1. Hopf–Galois structures on L/K.

2. Regular subgroups of SG/G′ normalized by L(G).

The type of a Hopf–Galois structure is defined as the isomorphism class of the corresponding regular sub-
group of SG/G′ .

If L/K is Galois, then L̃ = L and G′ = {id}, so the above theorem specializes to a bijective correspon-
dence between Hopf–Galois structures on L/K and regular subgroups of SG normalized by L(G). Let us
explicitly describe one direction of this correspondence in this setting.

Let N be a regular subgroup of SG normalized by L(G). In order to obtain its associated Hopf–Galois
structure, we first consider the L-Hopf algebra L[N ], where G acts on L via the Galois action and on N
via conjugation by L(G). Recall that this is precisely the setting that appeared in Example 1.5.5. Then
via Galois descent take the K-Hopf algebra L[N ]G, which gives a Hopf–Galois structure on L/K with the
following action on L: ∑

η∈N
ℓηη

 ⋆ x =
∑
η∈N

ℓη(η
−1(1))(x).

Example 1.5.7. Let L/K be a Galois and for σ ∈ G let Rσ ∈ SG denote the right translation by g. The
resulting subgroupR(G) of SG clearly is regular and centralizes, thus normalizes, the subgroupL(G). Since
the conjugation action of L(G) onR(G) is trivial, G acts on L[R(G)] by

τ ·

(∑
σ∈G

ℓσRσ

)
=
∑
σ∈G

τ(ℓσ)Rσ.

As a result, we find that the K-Hopf algebra H = L[R(G)]G = K[R(G)] is the group K-Hopf algebra on
R(G) and its action is given by(∑

σ∈G
ℓσRσ

)
⋆ x =

∑
σ∈G

ℓσ(R−1
σ (1))(x) =

∑
σ∈G

ℓgσ
−1(x).

After identifying K[G] with K[R(G)] through the K-algebra isomorphism∑
σ∈G

ℓσσ 7→
∑
σ∈G

ℓσRσ−1 ,

we recover the classical Hopf–Galois structure as described in Example 1.5.3.

Example 1.5.8. Let L/K be a Galois field extension. Since L(G) normalizes itself, we can construct its
associated Hopf–Galois structure. First of all, the action of G on L[L(G)] is given by

τ ·

(∑
σ∈G

ℓσLσ

)
=
∑
σ∈G

τ(ℓσ)Lτστ−1 .

As a result, we find that the K-Hopf algebra H = L[L(G)]G consist of all
∑
σ∈G ℓσLσ ∈ L[R(G)] such

that τ(ℓσ) = ℓτστ−1 for all τ ∈ G. The action of H on L/K is given by(∑
σ∈G

ℓσLσ

)
⋆ x =

∑
σ∈G

ℓσ(L−1
σ (1))(x) =

∑
σ∈G

ℓgσ
−1(x).
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After identifying K[G] with K[L(G)] through the K-algebra isomorphism∑
σ∈G

ℓσσ 7→
∑
σ∈G

ℓσLσ,

we obtain the canonical non-classical Hopf–Galois structure.

We now go back to the setting where L/K is separable but not necessarily Galois. Let N be a regular
subgroup of SG/G′ normalized by L(G). Since N acts regularly, the map

N → G/G′ : η 7→ η(G′),

is a bijection, which we can use to identify the groups SN and SG/G′ . Explicitly, the subgroup N of SG/G′

then corresponds to the subgroup of left translations L(N) ⊆ SN . Since L(G) normalizes N , we find that
the corresponding subgroup in SN normalizes L(N). The normalizer of L(N) in SN is precisely Hol(N).
We recover [57, Proposition 1].

Proposition 1.5.9. Let N be a regular subgroup of SG/G′ and identify N with G/G′ through the bijection

N → G/G′ : η 7→ η(G′).

Then N normalizes L(G) if and only if L(G) is a subgroup of Hol(N).

In particular, questions like "Does there exist a Hopf–Galois structure of typeN on a separable extension
L/K?" get reduced to "Can one embed G into Hol(N) such that G′ is the stabilizer of 1?"



Chapter 2
Bi-skew braces and brace blocks

Motivated by the connection between skew braces and Hopf–Galois theory, Childs introduced bi-skew braces
in [61]. Caranti subsequently studied different characterizations of bi-skew braces and gave various construc-
tions in [41]. These characterizations were formulated both using gamma functions and from the point of
view of regular subgroups of the holomorph. Bi-skew braces were further studied by Koch in [100], where
a construction for bi-skew braces is given starting from group endomorphisms with abelian image. An iter-
ative version of this construction was then obtained in [101], where the notion of a brace block also appears
for the first time. The constructions by Koch and a construction of Caranti [40] were subsequently gener-
alized by Caranti and Stefanello in [42, 43]. In [19], Bardakov, Neshchadim and Yadav give an iterative
construction to obtain a brace block from a given bi-skew brace satisfying a certain property.

The main objective of this chapter is to obtain a better theoretical understanding of bi-skew braces, λ-
homomorphic skew braces and brace blocks. We subsequently use this to construct new families of examples
and to solve a classification problem proposed by Vendramin [164].

This chapter is organized as follows. In Section 2.1 we state several structural results of bi-skew braces.
We relate structural properties of a bi-skew brace to those of its associated skew brace with swapped op-
erations and also to properties of a suitable group associated with the skew brace. In Section 2.2, we state
a characterization of λ-homomorphic skew braces. This characterization bears a strong resemblance to a
characterization of bi-skew braces by Caranti. This resemblance is further emphasized when we discuss two
slightly different constructions. One yields a new construction of λ-homomorphic skew braces and the other
is a new way to obtain examples of bi-skew braces described by Childs. Section 2.3 contains two classifi-
cation results. We first prove an upper bound on the nilpotency class of braces whose multiplicative group
is isomorphic to Zn. In particular, we recover the known result that such a brace is trivial if n = 1 and the
new result that it is a bi-skew brace if n = 2. Secondly, in Theorem 2.3.6 we use bi-skew braces to solve an
open problem posed by Vendramin concerning the classification of skew braces with a multiplicative group
isomorphic to Z. At last, in Section 2.4 we investigate brace blocks. We start with a general characteri-
zation of brace blocks on a given group in Theorem 2.4.1. It is only when we add an extra condition that
we obtain a more manageable characterization in Theorem 2.4.5, from which we then construct new brace
blocks. Nonetheless, we illustrate that this more restrictive characterization still covers all known construc-
tions of brace blocks in the literature. Moreover, from Theorem 2.4.5 we obtain brace blocks starting from
abelian groups, a case where most known constructions only yield trivial examples. We further give two
new concrete constructions of brace blocks using rings and semidirect products.

All results in this chapter for which no external reference is given were obtained in collaboration with

55
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Lorenzo Stefanello and have been published in [154].

2.1 Bi-skew braces
Recall that for a bi-skew brace (A, ·, ◦), we use the notation A↔ = (A, ◦, ·). The λ-maps associated to A↔
are denoted by λ↔a and its ∗-operation by ∗↔, so explicitly

λ↔a (b) = a ◦ (a · b),

and
a ∗↔ b = a ◦ (a · b) ◦ b,

where a, b ∈ A. We start by relating the structure of a bi-skew brace A with that of A↔.

Lemma 2.1.1. Let A be a bi-skew brace. Then the (left) ideals of A and A↔ coincide.

Proof. Let I be a skew subbrace of A. As λ↔a = λ−1
a = λa, we have that I is mapped to itself by λa for all

a ∈ A if and only if I is mapped to itself by λ↔a for all a ∈ A.

Lemma 2.1.2. Let A be a bi-skew brace, and let I be a left ideal of A. Then A∗ I = A∗↔ I . If furthermore
I is an ideal, then I ∗A = I ∗↔ A.

Proof. Suppose that I is a left ideal of A. Take a ∈ A and b ∈ I . We have

a ∗ b = λa(b) · b−1

= (λa(b) ◦ b ◦ b) · b−1

= (λa(b) ◦ b) · λλa(b)◦b(b) · b
−1

= (a ∗↔ b) · ((a ∗↔ b) ∗ b). (2.1)

Hence a ∗↔ b = (a ∗ b) · ((a ∗↔ b) ∗ b)−1 ∈ A ∗ I , and thus A ∗↔ I ⊆ A ∗ I . By a symmetric argument and
Lemma 2.1.1, we also obtain A ∗ I ⊆ A ∗↔ I .

Suppose now that I is an ideal. By (2.1) with a ∈ I and b ∈ A and Lemma 2.1.1, we get that I ∗↔ A ⊆
I ∗A. Therefore, the result follows by a symmetric argument.

As a consequence, we derive the following propositions.

Proposition 2.1.3. Let A be a bi-skew brace. Then A is solvable of class n if and only if A↔ is solvable of
class n.

Proposition 2.1.4. Let A be a bi-skew brace. Then A is left nilpotent, respectively right nilpotent, strongly
nilpotent, of class n if and only if A↔ is left nilpotent, respectively right nilpotent, strongly nilpotent, of
class n.

We show now that we can check whether a bi-skew brace is right nilpotent or solvable just by looking at
a suitable group. A prominent role is played by Theorem 1.1.34. Also, we freely use the fact that if A is a
bi-skew brace, then kerλ is an ideal of A. This follows directly from the proof of Theorem 1.1.34.

Theorem 2.1.5. Let A ̸= {1} be a bi-skew brace. Then A is right nilpotent of class n + 1 if and only if
λ(A) is a nilpotent group of class n.
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Proof. Since A is a bi-skew brace, we know that kerλ is an ideal. Because A ̸= {1}, it is clear that A is
right nilpotent of class n+ 1 if and only if A/ kerλ is right nilpotent of class n.

As A2
op ⊆ kerλ, we know that A/ kerλ is an almost trivial skew brace. In particular, A/ kerλ is right

nilpotent of class n if and only if the group (A/ kerλ, ◦) is nilpotent of class n. The group (A/ kerλ, ◦) is
clearly isomorphic to λ(A).

Corollary 2.1.6. Let A be a bi-skew brace such that (A, ·) or (A, ◦) is nilpotent. Then A is right nilpotent.

Proof. It suffices to note that λ(A) is a quotient of both (A, ·) and (A, ◦), and then to apply Theorem 2.1.5.

Corollary 2.1.7. Let A be a bi-skew brace. Then A is left nilpotent if and only if A is strongly nilpotent.

Proof. By Theorem 1.1.30, it suffices to show that in this case left nilpotency implies right nilpotency. If
A is left nilpotent, then so is the skew brace A/ kerλ. But as A/ kerλ is almost trivial, we find that this is
equivalent to the group (A/ kerλ, ◦) ∼= λ(A) being nilpotent. The result then follows from Theorem 2.1.5.

Proposition 2.1.8. Let A be a bi-skew brace. Then A is a solvable skew brace if and only if λ(A) is a
solvable group.

Proof. As A is a bi-skew brace, kerλ is an ideal, trivial as a skew brace. Therefore, A is solvable if and
only if A/ kerλ is solvable.

Now, as A2
op ⊆ kerλ, we know that A/ kerλ is an almost trivial skew brace. In particular, A/ kerλ

is solvable if and only if the group (A/ kerλ, ◦) is solvable, and (A/ kerλ, ◦) is clearly isomorphic to
λ(A).

We conclude this section by proving that Byott’s conjecture holds for bi-skew braces.

Theorem 2.1.9. LetA be a bi-skew brace. Then (A, ·) is solvable if and only if (A, ◦) is solvable. Moreover,
in this case, A is also solvable as a skew brace.

Proof. Assume that (A, ·) is solvable. As A/A2
op is an almost trivial skew brace, its multiplicative and

additive groups are isomorphic. In particular, it follows from the assumption that both are solvable. Since
A2

op is a trivial skew brace, clearly (A2
op, ·) ∼= (A2

op, ◦). It once again follows from the assumption that both
groups are solvable. We conclude that (A/A2

op, ◦) and (A2
op, ◦) are solvable, so (A, ◦) is also solvable. The

exact same argument proves the other implication.
To prove that in this case A is also solvable as a skew brace, it suffices to note that λ(A) is a solvable

group as it is a quotient of (A, ◦). The solubility of A then follows by Proposition 2.1.8.

Remark 2.1.10. The same idea can be used to prove that Byott’s conjecture holds for skew braces with a
composition series where the factors are trivial or almost trivial skew braces, so in particular for solvable
skew braces.

2.2 λ-homomorphic skew braces
We start with a theorem for λ-homomorphic skew braces similar to Theorem 1.1.34.

Theorem 2.2.1. Let A be a skew brace. Then the following are equivalent:
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1. A is λ-homomorphic.

2. A2 is contained in kerλ.

3. A is right nilpotent of class at most 2.

Proof. Assume that A is λ-homomorphic. Then for all a, b ∈ A,

λa∗b = λ−1
a λaλbλ

−1
b = 1.

It follows that A2 ⊆ kerλ. Conversely, assume that kerλ contains A2. As A/A2 is a trivial skew brace it
follows for all a, b ∈ A that (a · b) ◦A2 = (a ◦ b) ◦A2. The assumption then implies

λa·b = λa◦b = λaλb.

The equivalence of the second and third condition follows directly since A2 ∗A = {0} if and only if A2

is contained in kerλ.

Recall that a skew brace A is metatrivial if it is solvable of class at most 2, which by definition means
that A2 is a trivial skew brace. As a consequence of Theorem 2.2.1, we find a short proof of [18, Theorem
2.12], as follows.

Corollary 2.2.2. Every λ-homomorphic skew brace is metatrivial.

Proof. LetA be a λ-homomorphic skew brace. Then by Theorem 2.2.1,A(3) = {1}, and this clearly implies
that A2 ∗A2 ⊆ A2 ∗A = {1}.

Note that the converse does not hold.

Example 2.2.3. Let A = opTriv(S3), with S3 the symmetric group on 3 elements. Then A is metatrivial
because S3 is metabelian. As S3 is not nilpotent, it follows that A is not right nilpotent and in particular not
λ-homomorphic.

Example 2.2.4. Let A be a Jacobson radical ring. By Theorem 1.1.34 (or equivalently, Theorem 2.2.1),
we find that the corresponding two-sided brace is a bi-skew brace (or equivalently, a λ-homomorphic skew
brace) if and only if A(3) = A3 = {1}, as already shown in [61, Proposition 4.1] when A is finite or
nilpotent.

We conclude the section by showing that one can use the semidirect product of skew braces to obtain two
slightly different constructions, one yielding λ-homomorphic skew braces and one yielding bi-skew braces.
For bi-skew braces, it turns out that we find a different construction for examples that were already described
by Childs.

Example 2.2.5. Let G and H be groups, and let H act by automorphisms on G, with the action denoted by
α. This induces an action of the trivial skew brace B = Triv(H) on the trivial skew brace A = Triv(G).
By the semidirect product construction, we find a skew brace A⋊B. Explicitly,

(g, h) · (g′, h′) = (gg′, hh′),

(g, h) ◦ (g′, h′) = (gαh(g
′), hh′).

We have recovered in this way [83, Example 1.4]. Note that here the λ-action is given by

λ(g,h)(g
′, h′) = (αh(g

′), h′).

In particular, A⋊B is a λ-homomorphic skew brace, and it is a bi-skew brace if and only if the commutator
subgroup [H,H] is contained in the kernel of α, as an immediate computation shows.
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Example 2.2.6. Let G and H be groups, and let H act by automorphisms on G, with the action denoted
by α. This induces an action of the almost trivial skew brace B = opTriv(H) on the trivial skew brace
A = Triv(G). By the semidirect product construction, we find a skew brace A⋊B. Explicitly,

(g, h) · (g′, h′) = (gg′, hh′),

(g, h) ◦ (g′, h′) = (gαh(g
′), hh′).

The λ-action of the skew brace A⋉B is given by

λ(g,h)(g
′, h′) = (αh(g

′), ϕh(h
′)),

where ϕh denotes conjugation by h. This immediately implies thatA⋊B is a bi-skew brace, already obtained
in [61, Proposition 7.1] from the semidirect product of the groups G and H . Moreover it is λ-homomorphic
if and only if [H,H] ⊆ kerα ∩ Z(H). Note that when H is abelian, this construction coincides with the
one in Example 2.2.5.

2.3 Skew braces with a free abelian multiplicative group
We begin this section by showing that all the braces with a multiplicative group isomorphic to Z2 are in fact
bi-skew braces. We need the following result.

Theorem 2.3.1. Let (A, ·, ◦) be a two-sided brace such that (A, ◦) is finitely generated abelian of rank n.
Then (A, ·) is finitely generated abelian of rank n.

Proof. By [168, Theorem 3], if (A, ◦) is finitely generated abelian, then (A, ·) is finitely generated. By [4,
Theorem B], the ranks of (A, ◦) and (A, ·) coincide.

Proposition 2.3.2. Let A be a brace whose multiplicative group is isomorphic to Zn. Then A is right
nilpotent of class at most n.

Proof. By Theorem 2.3.1, (A, ·) is finitely generated of rank n. Let T be the (necessarily finite) torsion
subgroup of (A, ·). As T is a characteristic subgroup of (A, ·), it is a left ideal of A, so also a finite subgroup
of (A, ◦), and thus T is trivial. It follows that (A, ·) ∼= Zn.

Now, for a prime p, let Ip be the characteristic subgroup of (A, ·) generated by all p-powers of elements.
Then A/Ip has order pn, and therefore it is left nilpotent of class at most n by Theorem 1.1.24. As A/Ip is a
two-sided brace, it is also right nilpotent of class at most n, or equivalently, A(n+1) ⊆ Ip. We conclude that

A(n+1) ⊆
⋂

p prime

Ip = {1}.

We immediately recover [55, Theorem 5.5], and we find the result we have claimed.

Corollary 2.3.3. Let A be a brace with a multiplicative group isomorphic to Z. Then A is a trivial skew
brace.

Corollary 2.3.4. Let A be a brace with a multiplicative group isomorphic to Z2. Then A is a bi-skew brace.

Proof. It follows from Proposition 2.3.2 that A is right nilpotent of degree at most 2. The statement then
follows from Theorem 1.1.34 and the fact that Aop = A.
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Motivated by Corollary 2.3.3, we now want to classify all the skew braces with a multiplicative group
isomorphic to Z, as asked in [164, Problem 2.27]. Let (A, ·) be an infinite cyclic group with generator x.
We can define the following operation on A:

xi ◦ xj = xi+(−1)ij .

Then, as shown in the proof of [133, Proposition 6], the operation ◦ is the unique one such that (A, ·, ◦) is a
non-trivial brace, and (A, ◦) is isomorphic to the infinite dihedral group

⟨x, y | y2 = 1, yxy = x−1⟩ ∼= Z ⋊ C2.

Also, (A, ·, ◦) is a bi-skew brace since

xi ∗ xj = x−i · xi+(−1)ij · x−j = x((−1)i−1)j ∈ kerλ.

Moreover, there are just two group automorphisms of (A, ·), namely the identity and the inversion, and they
both are also automorphisms of the skew brace (A, ·, ◦) and therefore also of (A, ◦, ·). Indeed, for all i, j ∈ Z
we have that

x−i ◦ x−j = x−i+(−1)−i(−j) = x−(i+(−1)ij) = (xi ◦ xj)−1.

We claim that (A, ◦, ·) is not isomorphic to its opposite skew brace. They are clearly not equal, as (A, ◦)
is not abelian. Therefore, the only candidate for an isomorphism is given by the inversion automorphism of
(A, ·), which also induces an automorphism of (A, ◦). If this yields an isomorphism of skew braces, then
it would be both an automorphism and an antiautomorphism of (A, ◦), which implies that (A, ◦) is abelian.
As (A, ◦) is isomorphic to the infinite dihedral group, this is a contradiction.

In the remainder of this section, we prove that the two non-isomorphic skew braces with infinite cyclic
multiplicative group as described above are, in fact, the only non-trivial ones.

Lemma 2.3.5. Let A be a skew brace with an abelian multiplicative group. Then for all X,Y ⊆ A, the
equality X ∗ Y = Y ∗op X holds.

Proof. It suffices to note that for all a, b ∈ A,

a ∗ b = a−1 · (a ◦ b) · b−1 = a−1 · (b ◦ a) · b−1 = b ∗op a.

Theorem 2.3.6. Let (A, ◦) = {x◦i | i ∈ Z} be an infinite cyclic group. If A = (A, ·, ◦) is a skew brace,
then the additive operation is given by one of the following equalities:

x◦i · x◦j = x◦(i+j), (2.2)

x◦i · x◦j = x◦(i+(−1)ij), (2.3)

x◦i · x◦j = x◦(j+(−1)ji). (2.4)

Proof. If (A, ·) is abelian, then · is given by (2.2) by Corollary 2.3.3.
From now on, we assume that (A, ·) is not abelian. As A is a two-sided skew brace, it follows from

[123, Lemma 4.5] that (A2, ·) is abelian. In particular, A2 ̸= A. Moreover, note that A2 ̸= {1}, otherwise
A would be trivial, so (A, ·) would be abelian. We deduce that there exists n ≥ 2 such that

A2 = {x◦nk | k ∈ Z}.
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As A2 is a brace with multiplicative group isomorphic to Z, it follows from Corollary 2.3.3 that A2 is a
trivial skew brace. Because (A/A2, ◦) ∼= Cn, we find that A/A2 ∼= Triv(Cn).

Since x generates (A, ◦), its equivalence class in A/A2 generates (A/A2, ◦), and therefore it also gen-
erates (A/A2, ·). If we take a ∈ A2 to be a generator of (A2, ·), then (A, ·) is generated by a and x. Denote
by ψ the inner automorphism on (A2, ·) induced by x in (A, ·). As (A, ·) is not abelian, ψ is not trivial, so
necessarily ψ is the inversion automorphism. Likewise, λx restricts to an automorphism of (A2, ·), which is
either the identity or equals ψ.

1. If λx is the identity on A2, then using Lemma 2.3.5 we find A2 ∗op A = A ∗ A2 = {1}, so Aop is a
bi-skew brace. This means that (A, ◦, ·op) is a non-trivial skew brace, so the operation · is necessarily
given by (2.4).

2. If λx restricts to the inversion automorphism on (A2, ·), and therefore is equal to ψ on A2, then λopx
equals ψ2 = id on A2. Using Lemma 2.3.5 we find A2

op ∗ A = A ∗op A2
op = {1}. So (A, ◦, ·) is a

non-trivial skew brace, which implies that · is given by (2.3).

2.4 Brace blocks
In order to give a characterization of brace blocks, we begin with a result on the transitivity of bi-skew
braces.

Theorem 2.4.1. Let (A, ·, ◦1) and (A, ·, ◦2) be bi-skew braces with λ-maps λ1 and λ2, respectively. Then
(A, ◦1, ◦2) is a bi-skew brace if and only if the following conditions hold: for all a, b ∈ A and i, j ∈ {1, 2}
with i ̸= j,

λi,aλj,bλ
−1
i,a = λj,λi,a(b).

Proof. By symmetry, we can just look at when (A, ◦1, ◦2) is a skew brace. As

a ◦2 b = a · λ2,a(b) = a ◦1 λ−1
1,aλ2,a(b),

we need to find under which conditions the map

λ : A→ SA : a 7→ λa = λ−1
1,aλ2,a,

satisfies the conditions of Lemma 1.1.10 on (A, ◦1).
The first condition to check is whether for all a ∈ A, we have λa ∈ Aut(A, ◦1), or equivalently,

λ2,a ∈ Aut(A, ◦1). Here we have

λ2,a(b ◦1 c) = λ2,a(b · λ1,b(c)) = λ2,a(b) · λ2,aλ1,b(c),

and

λ2,a(b) ◦1 λ2,a(c) = λ2,a(b) · λ1,λ2,a(b)λ2,a(c).

We find that λa ∈ Aut(A, ◦1) if and only if for all a, b ∈ A,

λ2,aλ1,bλ
−1
2,a = λ1,λ2,a(b). (2.5)
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Now suppose that (2.5) holds. We claim that this is enough to deduce that λ : (A, ◦2) → Aut(A, ◦1) is a
group homomorphism. For all a, b ∈ A,

λa◦2b = λ−1
1,a◦2b

λ2,a◦2b

= λ−1
1,a·λ2,a(b)

λ2,a◦2b

= λ−1
1,aλ

−1
1,λ2,a(b)

λ2,aλ2,b

= λ−1
1,aλ2,aλ

−1
1,bλ2,a.

Definition 2.4.2. Let (A, ·) be a group. A brace block on (A, ·) is a brace block (A, ◦i)i∈I such that
(A, ◦k) = (A, ·) for some k ∈ I .

We deduce the following characterization for brace blocks on a given group.

Theorem 2.4.3. Let (A, ·) be a group. Then the following data are equivalent:

1. A brace block on (A, ·).

2. A family of maps (λi)i∈I such that the following conditions hold:

• λi : (A, ·)→ Aut(A, ·) is an antihomomorphism for all i ∈ I .

• There exists k ∈ I such that λk,a = id for all a ∈ A.

• For all i, j ∈ I and a, b ∈ A,
λi,aλj,bλ

−1
i,a = λj,λi,a(b).

Proof. For all i ∈ I , we find that (A, ·, ◦i) is a bi-skew brace because λi is a group antihomomorphism and
the last condition for i = j implies that

λi,a·λi,a(b) = λi,aλi,b.

Now apply Theorem 2.4.1.

Remark 2.4.4. A similar condition was found in a particular case in [153, Theorem 4.30], where the problem
of finding mutually normalizing regular subgroups in the holomorph of a cyclic group of prime order was
dealt with. This problem is equivalent to looking for brace blocks; see [43, section 7] for more details.

Since the obtained characterization in Theorem 2.4.3 is quite technical, we propose a more restrictive
but also more straightforward construction of brace blocks, which can already provide several examples.

Theorem 2.4.5. Let (A, ·) be a group, let M be an abelian subgroup of Aut(A, ·), and let S be the set of
group homomorphisms λ : A → M such that λψ(a) = λa for all a ∈ A and ψ ∈ M . Then (A, ◦λ)λ∈S is a
brace block, where

a ◦λ b = a · λa(b).

Moreover, (A, ◦λ1
, ◦λ2

) is λ-homomorphic for all λ1, λ2 ∈ S.

Proof. The first part is immediate from Theorem 2.4.3. To conclude the second part, recall that the λ-map
λ1,2 of (A, ◦λ1

, ◦λ2
) is given by λ1,2,a = λ−1

1,aλ2,a. As λ1,2(A) ⊆ M , so in particular it is abelian, we find
that (A, ◦λ1 , ◦λ2) is λ-homomorphic by Lemma 1.1.35.
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Example 2.4.6. Let R be a ring. For each x ∈ R, define the following map:

λx : (R2,+)→ Aut(R2,+) :

(
r
s

)
7→
(

1 0
xr 1

)
,

where R2 denotes the cartesian product R×R. Then for all x ∈ R,

λx(R
2) ⊆M =

{(
1 0
y 1

)
| y ∈ R

}
,

Since multiplication of two elements in M is the same as adding the bottom left entries, we find that M is
isomorphic to (R,+) and that λx is a group homomorphism. Also, for all x ∈ R, a ∈ R2, and ψ ∈ M , we
have λx,ψ(a) = λx,a. We conclude that (R2, ◦x)x∈R is a brace block, where(

r
s

)
◦x
(
r′

s′

)
=

(
r + r′

s+ s′ + xrr′

)
.

Moreover, all the operations are distinct, because for all x ∈ R,(
r
s

)
◦x
(
1
0

)
=

(
r + 1
s+ xr

)
.

Assume that R is commutative and that for all r ∈ R there exists a unique r′ ∈ R such that 2r′ = r2 − r
(by abuse of notation, we say r′ = r2−r

2 ), which is for example the case if R is Z or a ring of characteristic
coprime to 2. In that case,

f : (R2,+)→ (R2, ◦λx) :
(
r
s

)
7→

(
r

s+ x(r2−r)
2

)
,

is a group homomorphism since for all r, r′, s, s′ ∈ R we have that

f

(
r + r′

s+ s′

)
=

(
r + r′

s+ s′ + x((r+r′)2−(r+r′))
2

)

=

(
r + r′

s+ s′ + x(r2+2rr′+(r′)2−(r+r′))
2

)

=

(
r

s+ x r
2−r
2

)
+

(
r′

s′ + x((r′)2−r′)
2 + xrr′

)

=

(
r

s+ x r
2−r
2

)
◦x

(
r′

s′ + x((r′)2−r′)
2

)

= f

(
r
s

)
◦x f

(
r′

s′

)
.

Example 2.4.7. In the previous example, take R = Z and x, y ∈ Z. If x ̸= ±y then the braces (Z2,+, ◦x)
and (Z2,+, ◦y) are non-isomorphic. Indeed,(

r
s

)
∗
(
r′

s′

)
=

(
0

xrr′

)
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and therefore (Z2,+, ◦x)/(Z2,+, ◦x)2 ∼= Triv(Z×C|x|). This nicely contrasts the case where the additive
group is Z, where only 2 distinct group operations ◦ giving a skew brace (Z,+, ◦) are possible. One can
show that the skew braces (Z2,+, ◦x) are isomorphic to the λ-cyclic skew braces with infinite cyclic image
constructed in [18, Section 4].

Example 2.4.8. Let us reconsider Example 2.4.6 with R a field of characteristic not 2. As explained above,
we obtain a brace block (R2, ◦x)x∈R, where (R2,+) ∼= (R2, ◦x) for all x ∈ R. In this case all bi-skew
braces of the form (R2, ◦x, ◦y), where x, y ∈ R and x ̸= y, are isomorphic. An explicit isomorphism of
skew braces is given by

f : (R2,+, ◦λ1)→ (R2, ◦λx , ◦λy ) :
(
r
s

)
7→

(
r

(y − x)s+ x(r2−r)
2

)
.

Indeed, a similar calculation as in Example 2.4.6 shows that f is a skew brace homomorphism. Since we
assume that R is a field, the element x− y has an inverse, from which it follows that ker f is trivial. Also,

f

(
r

(y − x)−1
(
s− x(r2−r)

2

))
=

(
r
s

)
,

so f is surjective.

Let nowG andH be groups. We have seen in Section 2.1 that semidirect products of the form Triv(G)⋊
Triv(H), respectively Triv(G) ⋊ opTriv(H), are an easy way to construct λ-homomorphic skew braces,
respectively bi-skew braces. It is therefore natural to try to generalize this construction in order to obtain
brace blocks.

For a group homomorphism α : H → Aut(G), we write ◦α for the group operation on G×H given by
the semidirect product of G and H .

Proposition 2.4.9. Let G and H be groups, let M be an abelian subgroup of Aut(G), and let S be the set
of group homomorphisms α : H →M . Then (G×H, ◦α)α∈S is a brace block.

Proof. For α ∈ S, let λα be the λ-map associated with (G×H, ·, ◦α):

λα : G×H → Aut(G)×Aut(H) ⊆ Aut(G×H) : (g, h) 7→ (αh, id).

These images are all contained in the abelian subgroup M × {id} of Aut(G × H). In order to apply
Theorem 2.4.5, it suffices to check that λα,ψ(g,h) = λα,(g,h) for all α ∈ S , ψ = (ψ′, id) ∈ {id} ×M , and
(g, h) ∈ G×H . We find

λα,ψ(g,h) = λα,(ψ′(g),h) = (αh, id) = λα,(g,h),

from which the statement follows.

Example 2.4.10. For all n ≥ 0, define the group homomorphism

αn : Z→ GL2(Z) : x 7→
(

1 0
nx 1

)
.

As

B =

{(
1 0
x 1

)
| x ∈ Z

}
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is an abelian subgroup of GL2(Z), from Proposition 2.4.9 we obtain a brace block (Z× Z2, ◦n)n≥0 withxy
z

 ◦n
x′y′
z′

 =

 x+ x′

y + y′

z + z′ + nxy′

 .

In particular, if n ̸= m, then (Z × Z2, ◦αn) and (Z × Z2, ◦αm) are non-isomorphic, as the abelianization
of (Z × Z2, ◦αn) is isomorphic to Z2 × Cn. We have thus obtained a brace block with countably many
non-isomorphic groups.

Example 2.4.11. Let (A, ·) be a group, and let B be a subgroup of A. Assume that the group of inner
automorphisms of (A, ·) induced by B, which we denote by InnB(A), is abelian. It is easy to check that this
is equivalent to [B,B] ⊆ Z(A).

For all group homomorphisms λ : (A, ·)→ InnB(A) and a ∈ A, b ∈ B we find

λb·a·b−1 = λbλaλ
−1
b = λa,

This means that if we denote by S the set of group homomorphisms from A to InnB(A), we obtain a brace
block (A, ◦λ)λ∈S with

a ◦λ b = a · λa(b).

Note that the groups homomorphisms A → InnB(A) correspond precisely to the group homomorphisms
A → B/(B ∩ Z(A)), because InnB(A) ∼= B/(B ∩ Z(A)). For example, every group homomorphism
ψ : A → B yields a group homomorphism A → B/(B ∩ Z(A)), which we can use for our construction.
Moreover, we have ψ[A,A] ⊆ [B,B] ⊆ Z(A), so we find precisely the condition described in [42, Theorem
1.2]. In particular, when B is abelian, we recover [100, 101]. Indeed, all the bi-skew braces found in these
works are associated with λ-maps which act by conjugation and have a common abelian codomain; see also
Remark 2.4.14.

Example 2.4.12. We show now how the main construction of [43] follows from Theorem 2.4.5. Let (A, ·)
be a group, let B be a subgroup of (A, ·) such that [B,B] is contained in Z(A) (so that InnB(A), defined as
before, is abelian), and let K be a subgroup of B contained in Z(A). Note that we do not require that B/K
is abelian. Define

A = {ψ : A/K → B/K group homomorphism},
B = {α : A×A→ K | α is bilinear and α(A,K) = α(K,A) = {1}}.

For ψ ∈ A and α ∈ B, define

a ◦ψ,α b = a · ψ(aK) · b · ψ(aK)−1 · α(a, b),

where ψ(aK) · b · ψ(aK)−1 is to be interpreted as the conjugation of b by any element in the coset ψ(aK).
In [43] it is shown that (A, ◦ψ,α)(ψ,α)∈A×B is a brace block. We can write

a ◦ψ,α b = a · λ1,aλ2,a(b),

where λ1,a denotes conjugation by any element of ψ(a) and

λ2,a : b 7→ b · α(a, b).
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Consider now the following subgroup of central automorphisms of (A, ·):

L = {β ∈ Aut(A, ·) | β(b) · b−1 ∈ K and β(k) = k for all b ∈ A and k ∈ K}.

The group L is abelian and it centralizes the subgroup of inner automorphisms of Aut(A, ·), so that M =
InnB(A)L is abelian. Now define S as in Theorem 2.4.5, with respect to M . Clearly, λ1,a ∈ InnB(A) and
λ2,a ∈ L for all a ∈ A, hence the map a 7→ λ1,aλ2,a is an element of S, so we apply Theorem 2.4.5 to
derive our claim.

Note that in fact there is no need for the codomain of the maps in A to be B/K. We could just consider
group homomorphisms from A/K to B/(B ∩ Z(A)) and find that the construction still works. This means
that we do not require any relation between K and B; in this way, we find a further generalization of the
original construction.

We now use Theorem 2.4.5 to obtain an iterative construction of brace blocks.

Corollary 2.4.13. Let (A, ·, ◦) be a λ-homomorphic bi-skew brace, and for all n ∈ Z and a ∈ A, let
λn,a = λan = λna . Then (A, ◦n)n∈Z is a brace block, where

a ◦n b = a · λn,a(b).

Proof. Apply Theorem 2.4.5 with M = λ(A), which is abelian by Lemma 1.1.35.

Remark 2.4.14. This construction presents some similarities with Koch’s construction [101] (or more pre-
cisely, the variation presented in [43, Example 5.2]), but the operations we find are different. Indeed, let
(A, ·) be a group, and let ψ be an abelian endomorphism. Then (A, ·, ◦) is a λ-homomorphic bi-skew
brace, where λa is conjugation by ψ(a). Both Corollary 2.4.13 and [43, Example 5.2] yield a brace block
(A, ◦n)n∈Z, where

a ◦n b = a · ψn(a) · b · ψn(a)−1.

for some maps ψn : A→ A. In Koch’s case,

ψn(a) =

n∏
i=1

ψi
(
a(
n
i)
)
,

while in our case, ψn(a) = ψ(an).

Remark 2.4.15. Corollary 2.4.13, which is a natural application of Theorem 2.4.5, also appears in [19,
Theorem 4.12], where the approach followed is significantly different.

Example 2.4.16. Let

λ : Z2 → GL2(Z) :
(
a
b

)
7→
(
1 0
a 1

)
.

This yields a λ-homomorphic bi-skew brace, and applying Corollary 2.4.13 we find precisely the λn, n ≥ 0,
as in Example 2.4.7. In particular, this iterative construction yields a brace block containing countably many
non-isomorphic skew braces.

It is natural to ask whether a similar construction as Corollary 2.4.13 is still possible when we are not
necessarily starting from a λ-homomorphic bi-skew brace. The following proposition shows that this is
indeed the case.



2.4. BRACE BLOCKS 67

Proposition 2.4.17. Let A be a skew brace, and let ψ be a group endomorphism of (A, ·) such that for all
a, b ∈ A, the equation

ψ(λψ(a)(b)) = λψ(a)(ψ(b)),

holds. Then (A, ·, ◦ψ) is a skew brace, where

a ◦ψ b = a · λψ(a)(b).

Proof. It suffices to prove that the map

A→ Aut(A, ·) : a 7→ λψ(a),

satisfies the conditions of Lemma 1.1.10. For all a, b ∈ A, we find that

λψ(a·λψ(a)(b)) = λψ(a)·ψ(λψ(a)(b))

= λψ(a)·λψ(a)ψ(b)

= λψ(a)◦ψ(b)

= λψ(a)λψ(b).

The relation with Corollary 2.4.13 is especially clear when we look at the following straightforward
corollary, which in particular applies to Jacobson radical rings.

Corollary 2.4.18. Let (A,+, ◦) be a (two-sided) brace. Then (A,+, ◦n) is a (two-sided) brace for all k ∈ Z,
where

a ◦k b = a+ λka(b).

Proof. The fact that (A, ·, ◦n) is a brace follows by applying Proposition 2.4.17, with

ψ : (A,+)→ (A,+) : a 7→ ka.

Note that a ∗k b = (ka) ∗ b, where we ∗k denotes the ∗-operation in (A,+, ◦k). Therefore, if (A,+, ◦) is
two-sided then

a ∗k (b ∗k c) = (ka) ∗ ((kb) ∗ c) = k2(a ∗ (b ∗ c)) = k2((a ∗ b) ∗ c) = (k((ka) ∗ b) ∗ c = (a ∗k b) ∗k c,

so we conclude from Proposition 1.1.17 that also (A,+, ◦k) is two-sided.

Remark 2.4.19. Note the similarity with cabling of involutive solutions, as described in Section 1.2.5. Let
(X, r) be an involutive solution and identify X with its image in G(X, r). We know then that (X, r)
is precisely the restriction of the solution (G(X, r), RG(X,r)) to X . The k-cabled solution (X, r(k)) is
precisely the solution one obtains by restricting the solution on (G(X, r),+, ◦k) to X .

Similarly, given a brace A, the solution (A, r(A,·,◦k)) is precisely the k-cabling of the solution (A, rA).
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Chapter 3
Two-sided skew braces

Recall that left braces were introduced by Rump as a generalization of Jacobson radical rings in [132]. More
precisely, he established a correspondence between Jacobson radical rings and two-sided braces, as recalled
in Proposition 1.1.14. Since the Jacobson radical of a ring is indispensable in ring theory, Jacobson radical
rings have been extensively studied; see for example [5, 6, 157, 168]. The notion of two-sidedness equally
makes sense for skew braces. However, results on two-sided skew braces are scarce in the literature, with
most results due to Nasybullov [123].

In this chapter, we build further upon some ideas by Nasybullov and combine them with novel techniques
in order to obtain the main result that every two-sided skew brace is an extension of a weakly trivial skew
brace by a two-sided brace, and use this to obtain structural results on two-sided skew braces.

The chapter is organized as follows. In Section 3.1, we introduce the new notion of weakly trivial
skew braces and we prove that they are the subdirect products of a trivial and an almost trivial skew brace.
After adapting Goursat’s lemma to skew braces, we obtain a precise characterization of weakly trivial skew
braces through pairs of groups with isomorphic abelianizations in Theorem 3.1.12. In Section 3.2, we then
obtain our main results. For example, in Theorem 3.2.7 we show that aside from trivial and almost trivial
skew braces on simple groups, the only simple two-sided skew braces are infinite two-sided braces. Also,
we generalize some results of Jacobson radical rings to two-sided skew braces and improve some of the
results obtained in [123] on the connection between the additive and multiplicative groups of two-sided
skew braces. In [107], prime and semiprime skew braces were introduced by Konovalov, Smoktunowicz
and Vendramin. Subsequently, in [149] strongly prime and strongly semiprime skew braces were introduced
by Smoktunowicz. For two-sided braces, both variations coincide with the usual notions for rings. It is not
clear from the discussion in [149] whether they are in fact different. In Theorems 3.3.5 and 3.3.6, we answer
this question in the negative for two-sided skew braces. Note that in [16] an example appears of a brace of
size 32 that is prime but not strongly prime, therefore affirmatively answering the more general question.

All results in this chapter for which no external reference is given are the author’s own work and are
published in [158].

3.1 Weakly trivial skew braces
In this section, we introduce the new notion of weakly trivial skew braces. Other than being a generalization
of both trivial and almost trivial skew braces, the real motivation for this definition will become clear in

69
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Section 3.2.

Definition 3.1.1. A skew left brace A is weakly trivial if A2 ∩A2
op = {0}.

Example 3.1.2. All trivial and almost trivial skew braces are weakly trivial. Also, direct products and skew
subbraces of weakly trivial skew braces are weakly trivial.

Definition 3.1.3. Let G and H be groups. A subdirect product of G and H is a subgroup F of G×H such
that prG(F ) = G and prH(F ) = H , where prG, respectively prH , is the canonical projection of G × H
onto G, respectively H . A subdirect product of skew braces is defined analogously.

Proposition 3.1.4. A skew brace A is weakly trivial if and only if it embeds into a product of a trivial and
almost trivial skew brace. In particular, it embeds as a subdirect product into A/A2 ×A/A2

op.

Proof. One implication is trivial. For the converse implication, consider the canonical surjections π1 : A→
A/A2 and π2 : A→ A/A2

op. The skew brace homomorphism

ι : A→ A/A2 ×A/A2
op : a 7→ (π1(a), π2(a))

has kernel A2 ∩A2
op = {0}. As ι(A) is a subdirect product, A/A2 is trivial and A/A2

op is almost trivial, this
concludes the proof.

Remark 3.1.5. A weakly trivial skew brace A might be constructed as a subdirect product of a trivial and
an almost trivial skew brace in multiple ways. Take for example two non-abelian groups G and H and
consider the direct, hence subdirect, product A = Triv(G) × opTriv(H). It is easily seen that A/A2 ∼=
Triv(G)×Triv(Ab(H)) and A/A2

op
∼= Triv(Ab(G))× opTriv(H), where Ab(H) is the abelianization of

H . We conclude that A is a subdirect product of

(Triv(G)× Triv(Ab(H)))× (Triv(Ab(G))× opTriv(H)).

Although one might argue that it is more desirable to write A as a direct product when possible, the embed-
ding into A/A2 × A/A2

op provides a canonical choice which will prove to be useful in the classification in
Theorem 3.1.12.

Corollary 3.1.6. Every weakly trivial skew brace is two-sided.

Proof. Let A be a weakly trivial skew brace. As A/A2 and A/A2
op are two-sided, so is A/A2 ×A/A2

op and
therefore also A by Proposition 3.1.4.

Proposition 3.1.7. Let A be a skew brace, then A/(A2 ∩A2
op) is a weakly trivial skew brace.

Proof. Note that we have a natural embedding ι : A/(A2 ∩ A2
op) → A/A2 × A/A2

op. The statement then
follows from Proposition 3.1.4.

We now classify all weakly trivial skew braces. Our main tool for this is a generalization of Goursat’s
lemma [81] to skew braces. For this, we first need the existence of pullbacks in the category of skew braces.
This construction is classical and we therefore omit the proof.
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Proposition 3.1.8. Let B,C,D be skew braces with skew brace homomorphisms f : B → D, g : C → D.
Then the pullback of

B

C D

f

g

exists and is, up to isomorphism, given by

B ×D C := {(a, b) | f(a) = g(b)} ⊆ B × C,

together with the projection maps prB : B ×D C → B and prC : B ×D C → C.

The following version of Goursat’s lemma holds for skew braces.

Lemma 3.1.9. There is a bijective correspondence between subdirect products of skew braces B and C
and triples (I, J, ρ) where I , respectively J , is an ideal of B, respectively C, and ρ : B/I → C/J is an
isomorphism of skew braces.

Proof. We only give a sketch of the construction. Further details are just as in the classical case and are left
to the reader. Let A be a subdirect product of B and C. Let I ⊆ B be B such that

I × {0} = A ∩ (B × {0}),

and J ⊆ C such that
{0} × J = A ∩ ({0} × C).

Then I , respectively J , is an ideal of B, respectively C, and the map ρ : B/I → C/J , given by ρ(a) = b if
and only if (a, b) ∈ A, is a well-defined skew brace isomorphism. We therefore obtain a triple (I, J, ρ).

Conversely, if a triple (I, J, ρ) is given, the pullback of

B

C C/J B/J
ρ

yields a subdirect product of B and C.

Recall from Example 1.1.22 that the commutator of a skew brace A is A′ = A2 ·A2
op.

Lemma 3.1.10. Let A be a weakly trivial skew brace. Then A fits in the following pullback diagram:

A A/A2

A/A2
op A/A′

Proof. We denote the image of the embedding ofA intoA/A2×A/A2
op byB and now proceed as explained

in the proof of Lemma 3.1.9. Clearly

B ∩ (A/A2 × {0}) = {(a ·A2, 0) | a ∈ A2
op} = (A2)2op × {0}.



72 CHAPTER 3. TWO-SIDED SKEW BRACES

Likewise, one finds that B ∩ ({0} ×A/A2
op) = {0} × (A/A2)2op. Since A′ = A2 ·A2

op, it follows that

(A/A2
op)/(A/A

2
op)

2 ∼= A/A′,

and
(A/A2)/(A/A2)2op

∼= A/A′.

The isomorphism

ρ : A/A′ ∼= (A/A2
op)/(A/A

2
op)

2 → (A/A2)/(A/A2)2op
∼= A/A′,

must clearly be the identity in order to make the above diagram commute.

Definition 3.1.11. Consider the class of triples (G,H, θ) with G and H groups and θ : Ab(G) → Ab(H)
an isomorphism. We say that two such triples (G1, H1, θ1) and (G2, H2, θ2) are equivalent if there exist
group isomorphisms ϕG : G1 → G2, ϕH : H1 → H2 such that

G1 Ab(G1) Ab(H1) H1

G2 Ab(G2) Ab(H2) H2

ϕG

θ1

ϕG ϕH ϕH

θ2

commutes, where ϕG and ϕH are the unique induced group isomorphisms making the square on the left and
right-hand side commute.

Theorem 3.1.12. There exists a bijection between isomorphism classes of weakly trivial skew braces and
equivalence classes of triples as described in Definition 3.1.11.

Proof. Let A be a weakly trivial skew brace. We know that

Ab(A/A2, ◦) ∼= (A/A′, ◦) ∼= Ab(A/A2
op, ◦).

Hence ((A/A2, ◦), (A/A2
op, ◦), ρ), where ρ is the above group isomorphism, is a triple as described in

Definition 3.1.11.
Conversely, given a triple (G,H, ρ) we can construct the pullback of the diagram

Triv(G)

opTriv(H) opTriv(Ab(H)) Triv(Ab(G))
ρ

which clearly is a weakly trivial skew brace.
It follows from Lemma 3.1.10 that if we start from a weakly trivial skew brace, consider its associated

triple ((A/A2, ◦), (A/A2
op, ◦), ρ) and then again take the pullback as described above we end up with a skew

brace isomorphic to A.
Conversely, start from a triple (G,H, ρ) and let A ⊆ Triv(G) × opTriv(H) be its associated pullback.

We want to prove that the triple associated toA is isomorphic to (G,H, ρ), which we can do by showing that
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the kernels of the vertical maps in the following commutative diagram are A2, A′, A′ and A2
op respectively.

(A, ◦) (A, ◦) (A, ◦) (A, ◦)

G Ab(G) Ab(H) H

id

prG

id id

prH

θ2

The kernel of the first vertical map is clearly A ∩ ({0} × H) = {0} × [H,H]. Also, A2 is generated by
the elements (g1, h1) ∗ (g2, h2) = (h−1

2 h1h2h
−1
1 ) for (g1, h1), (g2, h2) ∈ A. As every element of H can

appear as the second coordinate of an element of A, the equality A ∩ ({0} ×H) = A2 follows. Similarly,
it follows that the kernel of prH is equal to A2

op. The kernel of the second vertical map must correspond to
the commutator subgroup of (A/A2, ◦), which is (A/A2)2op, and similar for the third vertical map.

When one looks at weakly trivial skew braces of small size, using for example the YangBaxter GAP
package [165], it appears that their additive and multiplicative group are always isomorphic. The following
example shows that this is not always the case.

Example 3.1.13. Consider the group

G := ⟨a, b | a5 = b4 = 0, b−1ab = a2⟩ ∼= C5 ⋊ C4.

Its derived subgroup is the subgroup generated by a, hence Ab(G) ∼= C4 is generated by the equivalence
class of b. Let A be the weakly trivial skew brace associated to the triple (G,G, id). Then

A = {(akbl, ambl) | k, l,m ∈ Z} ⊆ Triv(G)× opTriv(G).

The multiplicative group (A, ◦) is isomorphic to the semidirect product

C2
5 ⋊1 C4 := ⟨x, y, z | x5 = y5 = z4 = 0, xy = yx, z−1xz = x2, z−1yz = y2⟩,

where (a, 0) 7→ x, (0, a) 7→ y and (b, b) 7→ z. Meanwhile, as b−1 ·a ·b = bab−1 = a−2 = a3 in opTriv(G),
we find that (A, ·) is isomorphic to

C2
5 ⋊2 C4 := ⟨x, y, z | x5 = y5 = z4 = 0, xy = yx, z−1xz = x2, z−1yz = y3⟩,

where (a, 0) 7→ x, (0, a) 7→ y and (b, b) 7→ z. However, C2
5 ⋊1 C4 is not isomorphic to C2

5 ⋊2 C4, as in the
first group all subgroups of order 5 are normal, but in the latter the subgroup of order 5 generated by xy is
not normal.

Example 3.1.14. The previous example can be generalized by replacing G by Hol(Cp) = Cp ⋊ Aut(Cp)
with p > 3 a prime. In this way, one obtains an infinite number of weakly trivial skew braces with non-
isomorphic additive and multiplicative groups.

Although the class of weakly trivial skew braces is closed under taking direct products and skew sub-
braces, it is only closed under quotients by an ideal if the ideal satisfies some extra property.

Lemma 3.1.15. LetA be a weakly trivial skew brace and ι : A→ A/A2×A/A2
op its canonical embedding.

Then I ⊆ A is an ideal of A if and only if ι(I) is a normal subgroup of (A/A2 ×A/A2
op, ◦).
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Proof. Clearly λ(a1,a2)(b1, b2) = (b1, a2 ◦ b2 ◦ a2) and λop(a1,a2)(b1, b2) = (a1 ◦ b1 ◦ a1, b2), for all
(a1, a2), (b1, b2) ∈ ι(A). As the projections ι(A) → A/A2 and ι(A) → A/A2

op are surjective, the re-
sult follows.

Lemma 3.1.16. Let A be a weakly trivial skew brace and I an ideal of A. Then A/I is weakly trivial if and
only if (I ∩A2) · (I ∩A2

op) = I ∩A′.

Proof. Let I be an ideal ofA and consider the skew braceA/I . Assume that a ·I ∈ (A/I)2∩(A/I)2op. This
means that there exist elements b ∈ A2 and c ∈ A2

op such that a ·I = b ·I = c ·I . If a /∈ I then also, b, c /∈ I .
Hence, b ·c−1 ∈ I∩A′ is an element contained in I∩A′ but not in (I∩A2) ·(I∩A2

op). If b ·c, where b ∈ A2

and c ∈ A2
op, is contained in I∩A′ but not in (I∩A2)·(I∩A2

op) then b·I = c−1 ·I ∈ (A/I)2∩(A/I)2op.

Example 3.1.17. LetG = D8, the dihedral group of order 8, andA the weakly trivial skew brace associated
to the triple (G,G, id). Then

A = {(g, h) | g · [G,G] = h · [G,G]}.

In particular, I = {(g, g) | g ∈ Z(G)} ⊆ A as Z(G) = [G,G]. By Lemma 3.1.15, it follows that I is an
ideal of A. But I ∩ A2 = I ∩ A2

op = {0}, so from Lemma 3.1.16 it follows that A/I is not weakly trivial.
The same argument can be repeated for any group G such that Z(G) ∩ [G,G] is non-trivial.

To conclude this section, we study some structural properties of weakly trivial skew braces.

Lemma 3.1.18. Let ι : G → G1 × G2 be a subdirect product of groups. Then G is solvable if and only
if G1 × G2 is solvable, and in that case, the derived length of G and G1 × G2 coincide. Similarly, G is
nilpotent if and only if G1 ×G2 is nilpotent and the nilpotency class of G and G1 ×G2 coincide.

Proof. We prove the first part of the statement; the proof of the second part is analogous. Assume that G
is solvable, since both G1 and G2 are epimorphic images of G, they are solvable and their derived length is
at most that of G. Hence, the same holds for G1 × G2. Conversely, if G1 × G2 is solvable, then so is the
subgroup G and it is clear that the derived length of G is at most that of G1 ×G2.

Corollary 3.1.19. Let A be a weakly trivial skew brace. Then (A, ·) is solvable if and only if (A, ◦) is
solvable. In that case, their derived lengths coincide and A is solvable as a skew brace.

Proof. Consider the embedding ι : A→ A/A2 ×A/A2
op. Then in particular

ι(A, ·) ⊆ (A/A2, ·)× (A/A2
op, ·),

and
ι(A, ◦) ⊆ (A/A2, ◦)× (A/A2

op, ◦),

are subdirect products of groups. As (A/A2, ·) × (A/A2
op, ·) ∼= (A/A2, ◦) × (A/A2

op, ◦), the first part of
the statement follows from Lemma 3.1.18. Now, if A has a solvable additive subgroup, so does A/A2

op. In
particular, A/A2

op is solvable. As A/A2 is trivial, hence solvable, we conclude that A/A2 × A/A2
op, and

therefore also A, is solvable.

The proof of Corollary 3.1.19 can easily be adapted to prove the following corollary.

Corollary 3.1.20. Let A be a weakly trivial skew brace. Then (A, ·) is nilpotent if and only if (A, ◦) is
nilpotent. In that case, their nilpotency classes coincide and the skew brace A is left and right nilpotent.
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Proposition 3.1.21. Let A be a weakly trivial skew brace. Then the following are equivalent:

1. A is left nilpotent.

2. A is right nilpotent.

3. A is strongly nilpotent.

Proof. For any skew brace, 3 holds whenever 1 and 2 hold by Theorem 1.1.30. Therefore, only the equiva-
lence of 1 and 2 has to be proved.

Assume that A is left nilpotent. Then the almost trivial skew brace A/A2
op is left nilpotent, hence right

nilpotent. As A/A2 is trivial, so right nilpotent, it follows that A/A2 × A/A2
op, and therefore also its skew

subbrace A, is right nilpotent. The same argument can be used to show that right nilpotency implies left
nilpotency.

3.2 Two-sided skew braces
We start this section by proving our main results, Theorem 3.2.3 and Corollary 3.2.4, for which we first need
a lemma.

Lemma 3.2.1. Let A be a two-sided skew brace. Then A2 and A2
op centralize one another in (A, ·).

Proof. Let a, b, c, d ∈ A. Using consequently the fact that A is a left and right skew brace,

(a · b) ◦ (c · d) = ((a · b) ◦ c) · (a · b)−1 · ((a · b) ◦ d)
= (a ◦ c) · c−1 · (b ◦ c) · b−1 · a−1 · (a ◦ d) · d−1 · (b ◦ d)
= (a ◦ c) · (b ∗op c) · (a ∗ d) · (b ◦ d).

If we start by using the right skew brace structure, followed by the left one, then we find

(a · b) ◦ (c · d) = (a ◦ (c · d)) · (c · d)−1 · (b ◦ (c · d))
= (a ◦ c) · a−1 · (a ◦ d) · c−1 · b−1 · (b ◦ c) · b−1 · (b ◦ d)
= (a ◦ c) · (a ∗ d) · (b ∗op c) · (b ◦ d).

Comparing both calculations we find that (b ∗op c) · (a ∗ d) = (a ∗ d) · (b ∗op c), from which the statement
follows.

Remark 3.2.2. Although this result is new, a similar argument is used in [123, Lemma 4.5] to prove that the
additive group of (A ∗ Z(A, ◦)) · (Z(A, ◦) ∗A) is abelian.

Theorem 3.2.3. Let A be a two-sided skew brace. Then A2 ∩ A2
op is contained in Z(A′, ·). In particular,

A2 ∩A2
op is a two-sided brace.

Proof. Using Lemma 3.2.1 we find that A2 ∩ A2
op is in the center of both (A2, ·) and (A2

op, ·), so it is
contained in the center of (A′, ·). In particular, the commutativity of (A2 ∩A2

op, ·) follows.

Corollary 3.2.4. Every two-sided skew brace is the extension of a weakly trivial skew brace by a two-sided
left brace.
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Proof. It suffices to note that the ideal A2 ∩A2
op is a two-sided brace by Theorem 3.2.3 and A/(A2 ∩A2

op)
is a weakly trivial skew brace by Proposition 3.1.7.

On the other hand, it is not generally true that any extension of a weakly trivial skew brace by a two-sided
brace is a two-sided skew brace, as we now demonstrate.

Example 3.2.5. Let A be the semidirect product Triv(C3) ⋊ Triv(C2), where Triv(C2) acts non-trivially.
Then A is an extension of the weakly trivial skew brace Triv(C2) by the two-sided brace Triv(C3). How-
ever, {0} × C2 is a characteristic subgroup of (A, ·) ∼= C3 × C2 but not a normal subgroup of (A, ◦) ∼=
C3 ⋉ C2. It follows that A can not be two-sided, as this would contradict Corollary 1.1.16.

Definition 3.2.6. A skew brace A is simple if the only ideals are {0} and A.

We can now extend [123, Corollary 4.2], where a similar result is obtained under the assumption that the
additive group is solvable.

Theorem 3.2.7. Let A be a simple two-sided skew brace. Then one of the following holds:

1. A ∼= Triv(G) for a simple group G.

2. A ∼= opTriv(G) for a simple group G.

3. A is a simple two-sided brace.

Proof. Let A be a simple two-sided skew brace. If A2 = {0}, this means that A = Triv(G) for some group
G. In that case, the ideals of A are precisely the normal subgroups of G, so we conclude that G is simple.
If A2

op = {0} then the same reasoning yields that A ∼= opTriv(G) for some simple group G. The only case
that remains is the one where A2 = A2

op = A. By Lemma 3.2.1, this implies that (A, ·) is abelian. Hence,
A is a simple two-sided brace.

Corollary 3.2.8. Let A be a finite simple two-sided skew brace. Then either A ∼= Triv(G) or A ∼=
opTriv(G) for some finite simple group G.

Proof. It is well-known that if A is a finite two-sided brace, then A is strongly nilpotent and thus A2 ̸= A.
If furthermore A is simple, then this implies that A ∼= Triv(G) for some abelian group G. If we combine
this observation with Theorem 3.2.7, the statement follows.

Remark 3.2.9. Note that there exist simple non-trivial Jacobson radical rings, and therefore also simple
non-trivial two-sided braces. The first such example was constructed in [139].

We now prove a refinement of [123, Theorem 4.6], where nilpotency instead of solvability of the multi-
plicative group was assumed and the upper bound was 2n.

Theorem 3.2.10. Let A be a two-sided skew brace. If (A, ◦) is solvable of derived length n, then (A, ·) is
solvable of derived length at most n+ 1.

Proof. By Proposition 3.1.7 we find that A/(A2 ∩ A2
op) is weakly trivial. Because (A/(A2 ∩ A2

op), ◦) has
derived length at most n, it follows from Corollary 3.1.19 that (A/(A2 ∩A2

op), ·) has derived length at most
n. We also know that (A2 ∩ A2

op, ·) is abelian by Theorem 3.2.3, from which we conclude that (A, ·) has
derived length at most n+ 1.

Lemma 3.2.11. Let A be a two-sided skew brace. If (A, ◦) is nilpotent of class n, then (A′, ·) is nilpotent
of class at most n+ 1.
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Proof. As A′/(A2 ∩ A2
op) is weakly trivial and (A′/(A2 ∩ A2

op), ◦) is nilpotent of class at most n, also
(A′/(A2∩A2

op), ·) is nilpotent of class at most n by Corollary 3.1.19. By Theorem 3.2.3, we haveA2∩A2
op ⊆

Z(A′, ·), so we conclude that (A′, ·) is nilpotent of class at most n+ 1.

Theorem 3.2.12. Let A be a two-sided skew brace with nilpotent multiplicative group. Then its additive
group is abelian-by-nilpotent and nilpotent-by-abelian.

Proof. As (A/A′, ·) is abelian, the first claim follows by Lemma 3.2.11. For the second claim, recall from
Theorem 3.2.3 that (A2 ∩A2

op, ·) is abelian. It follows from the assumption on (A, ◦), together with Propo-
sition 3.1.7 and Corollary 3.1.20, that (A/(A2 ∩A2

op), ·) is nilpotent.

Recall that a group satisfies the ascending chain condition (ACC) on subgroups if there exists no infinite
strictly ascending chain of subgroups. The following proposition is a reformulation of the main result of
[168].

Proposition 3.2.13. Let A be a two-sided brace. Then the following are equivalent:

1. (A, ·) satisfies the ACC on subgroups,

2. (A, ◦) satisfies the ACC on subgroups.

In this case, A is strongly nilpotent and (A, ◦) is nilpotent.

We now generalize the first part of the previous proposition to two-sided skew braces. A generalization
of the second part is given at the end of this section in Theorem 3.2.24.

Theorem 3.2.14. Let A be a two-sided skew brace. Then the following are equivalent:

1. (A, ·) satisfies the ACC on subgroups,

2. (A, ◦) satisfies the ACC on subgroups.

Proof. Throughout the proof we freely use the fact that the ACC on subgroups is preserved under taking
subgroups, and forming quotients or extensions; see for example [130, 3.1.7] for a proof of the latter.

We first prove the statement for weakly trivial skew braces. Let A be a weakly trivial skew brace such
that (A, ·) satisfies the ACC on subgroups. Then so do (A/A2, ·) and (A/A2

op, ·), hence also (A/A2, ◦) and
(A/A2

op, ◦). As A embeds into A/A2 × A/A2
op, we find that (A, ◦) satisfies the ACC on subgroups. The

other implication is proved in a similar way.
Next, let A be any two-sided skew brace such that (A, ·) satisfies the ACC on subgroups. Then both

(A/(A2 ∩ A2
op), ·) and (A2 ∩ A2

op, ·) satisfy the ACC on subgroups. As A/(A2 ∩ A2
op) is weakly trivial

and A2 ∩ A2
op is a two-sided brace, we find that (A/(A2 ∩ A2

op), ◦) and (A2 ∩ A2
op, ◦) satisfy the ACC on

subgroups. It follows that (A, ◦) satisfies the ACC on subgroups. The other implication is proved similarly.

It is natural to ask if Theorem 3.2.14 can be generalized in the following way.
Question 3.2.15. LetA be a two-sided skew brace that satisfies the ACC on skew subbraces. Does this imply
that the equivalent conditions of Theorem 3.2.14 are satisfied?

For weakly trivial skew braces, this question can easily be answered affirmatively. The question therefore
remains whether the same is true for all two-sided braces.

Similarly, the question arises whether we can replace the ACC on subgroups by the assumption that
they are finitely generated. It is generally not true that if (A, ·) is finitely generated then (A, ◦) is finitely
generated, as the following example shows.
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Example 3.2.16. Consider the wreath product G = C2 ≀ Z, also known as the lamplighter group, which is
finitely generated but does not satisfy the ACC on subgroups since it contains the group H =

⊕
i∈Z C2.

By the construction in Example 2.2.6 we find a skew brace A with multiplicative group H × Z and additive
groupG. The groupH×Z is abelian, so the obtained skew brace is clearly two-sided. However,G is finitely
generated while H × Z is not.

On the other hand, it is not even known whether there exist two-sided braces with a finitely generated
multiplicative group and a non-finitely generated additive group. See [157, Question 4.1] for a short discus-
sion of an equivalent question.

Theorem 3.2.17. LetA be a two-sided skew brace that satisfies the equivalent conditions of Theorem 3.2.14.
Then (A, ·) is solvable if and only if (A, ◦) is solvable. In this case, A is a solvable skew brace.

Proof. Similar to the proof of Lemma 3.2.11, it is sufficient to prove the statement for weakly trivial skew
braces and two-sided braces. For weakly trivial skew braces, this was proved in Corollary 3.1.19. For two-
sided braces, the additive group is of course solvable, and it follows from Proposition 3.2.13 that both the
brace and the multiplicative group are solvable.

Remark 3.2.18. We can not drop the condition of Theorem 3.2.17. An example of a two-sided brace whose
additive group is not finitely generated and whose multiplicative group is non-solvable is given in [123,
Example 3.2].

Our next aim is to prove that, as for two-sided braces, there is no distinction between left and right
nilpotency for two-sided skew braces whose additive group is nilpotent.

Lemma 3.2.19. LetA be a two-sided skew brace. Then for all a, b ∈ A and c ∈ Z(A, ·), we have a∗c, c∗a ∈
Z(A, ·) and

c ∗ (a · b) = (c ∗ a) · (c ∗ b),
(a · b) ∗ c = (a ∗ c) · (b ∗ c).

Proof. As Z(A, ·) is characteristic in (A, ·), it is an ideal of A by Corollary 1.1.16. This implies the first
part of the statement. The second part follows from Lemma 1.1.18.

Lemma 3.2.20. Let A be a two-sided skew brace. Then for all a, b ∈ A and c ∈ Z(A, ·), we have that
(a ∗ b) ∗ c = a ∗ (b ∗ c).

Proof. Let a, b ∈ A, c ∈ Z(A, ·). Using Lemma 3.2.19 and Lemma 1.1.18 we find

(a ∗ b) ∗ c = (a−1 · (a ◦ b) · b−1) ∗ c
= (a ∗ c)−1 · ((a ◦ b) ∗ c) · (b ∗ c)−1

= (a ∗ c)−1 · (a ∗ (b ∗ c)) · (b ∗ c) · (a ∗ c) · (b ∗ c)−1

= a ∗ (b ∗ c).

Lemma 3.2.21. Let A be a two-sided skew brace and X,Y, Z subsets of A with X ⊆ Z(A, ·). Then
(X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z).

Proof. By definition, Y ∗ Z consists of all elements of the form (b1 ∗ c1)ϵ1 · . . . · (bn ∗ cn)ϵn with n ≥ 1,
ϵi ∈ {−1, 1}, bi ∈ Y , ci ∈ Z. Therefore, X ∗ (Y ∗ Z) is the additive subgroup generated by

{a ∗ ((b1 ∗ c1)ϵ1 · . . . · (bn ∗ cn)ϵn) | n ≥ 1, ϵi ∈ {−1, 1}, a ∈ X, bi ∈ Y, ci ∈ Z} .
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Using Lemma 3.2.19 we find that

a ∗ ((b1 ∗ c1)ϵ1 · . . . · (bn ∗ cn)ϵn) = (a ∗ (b1 ∗ c1))ϵ1 · . . . · (a ∗ (bn ∗ cn))ϵn ,

so X ∗ (Y ∗ Z) is the additive subgroup generated by

{(a ∗ (b ∗ c) | a ∈ X, b ∈ Y, c ∈ Z}. (3.1)

A similar argument shows that (X ∗ Y ) ∗ Z is the additive subgroup generated by

{(a ∗ b) ∗ c | a ∈ X, b ∈ Y, c ∈ Z}. (3.2)

It follows from Lemma 3.2.20 that (3.1) and (3.2) are the same set.

Lemma 3.2.22. Let A be a two-sided skew brace and m ≥ 1 such that A(m) ⊆ Z(A, ·). Then for all k ≥ 1,

A(m+k) = A(m) ∗A(k), (3.3)

A(mk) = (A(m))(k). (3.4)

Proof. We first prove (3.3) by induction on k. For k = 1 this is true by definition. For k > 1 we use the
induction hypothesis and Lemma 3.2.21 to find

A(m+k) = A(m+k−1) ∗A = (A(m) ∗A(k−1)) ∗A = A(m) ∗ (A(k−1) ∗A) = A(m) ∗A(k).

Next, we prove (3.4) by induction on k. For k = 1 this is trivial. We can use the induction hypothesis
and (3.3) to find that also for k > 1,

A(mk) = A(m(k−1)+m) = A(m(k−1)) ∗A(m) = (A(m))(k−1) ∗A(m) = (A(m))(k).

Theorem 3.2.23. Let A be a two-sided skew brace with (A, ·) nilpotent. Then the following properties are
equivalent:

1. A is left nilpotent.

2. A is right nilpotent.

3. A is strongly nilpotent.

Proof. Because of Theorem 1.1.30, only the equivalence of 1 and 2 has to be proved. We prove the impli-
cation from 1 to 2 through induction on the nilpotency class n of (A, ·). If n = 1, then A is a two-sided
brace, so in particular, left and right nilpotency coincide. Now assume that the claim is true for n − 1
and let A be a two-sided skew brace such that (A, ·) has nilpotency class n. Then A/Z(A, ·) is still left
nilpotent and its additive group has nilpotency class n − 1, so it is right nilpotent. Let m be such that
A(m) ⊆ Z(A, ·). From the assumption that A is left nilpotent, we find that, in particular, the subbrace
Z(A, ·) is left, so also right, nilpotent. Let k be such that Z(A, ·)(k) = {0}. By Lemma 3.2.22 it follows
that A(mk) = (A(m))(k) ⊆ Z(A, ·)(k) = {0}, so A is right nilpotent.

A similar argument proves the implication from 2 to 1.

Theorem 3.2.24. LetA be a two-sided skew brace that satisfies the equivalent conditions of Theorem 3.2.14.
If (A, ·) is nilpotent, then (A, ◦) is nilpotent and A is a strongly nilpotent skew brace.
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Proof. We will prove by induction on the nilpotency class n of (A, ·) thatA is right nilpotent. It then follows
by Theorem 3.2.23 that A is strongly nilpotent and by Proposition 1.1.25 that the group (A, ◦) is nilpotent.
For n = 1, the statement follows directly from Proposition 3.2.13. For n > 1, we know that (A, ·)/Z(A, ·)
has nilpotency class n − 1, so by the induction hypothesis there exists some m such that A(m) ⊆ Z(A, ·).
From the case n = 1, we know that Z(A, ·) is right nilpotent hence Z(A, ·)(k) = {0} for an appropriate
choice of k. It follows by Lemma 3.2.22 that

A(mk) = (A(m))(k) ⊆ Z(A, ·)(k) = {0},

so A is right nilpotent.

3.3 Prime and semiprime two-sided skew braces
In [107, 149], the following notions are introduced.

Definition 3.3.1. Let A be a skew brace.

• A is prime if I ∗ J ̸= {0} for any non-zero ideals I and J .

• A is strongly prime if every ∗-product of any number of non-zero ideals is non-zero.

• A is semiprime if I ∗ I ̸= {0} for any non-zero ideal I .

• A is strongly semiprime if every ∗-product of any number of copies of a non-zero ideal I is non-zero.

For two-sided braces, both variations of (semi)primeness correspond with the usual notions for rings.
At first sight, it is not clear whether every prime, respectively semiprime, skew brace is a strongly prime,
respectively strongly semiprime, skew brace. In [16, Section 6], Ballester-Bolinches, Esteban-Romero,
Jiménez-Seral and Pérez-Calabuig construct a brace A of size 32 with a unique non-trivial ideal I . The ideal
I has size 16 and is non-trivial but (I ∗ I)∗ (I ∗ I) = {0}. Therefore, A is prime but not strongly semiprime.
In this section, we prove that both variations do coincide for two-sided skew braces.

Lemma 3.3.2. Let A be a two-sided skew brace and X,Y subsets of A which are normal in (A, ◦). Then
X ∗ Y is normal in (A, ◦).

Proof. Using Proposition 1.1.15 we find for arbitrary a ∈ A, x ∈ X , y ∈ Y ,

a ◦ (x ∗ y) ◦ a = (a ◦ x ◦ a) ∗ (a ◦ y ◦ a),

from which we conclude that {x ∗ y | x ∈ X, y ∈ Y } is a normal subset of (A, ◦). Another application of
Proposition 1.1.15 then implies that X ∗ Y is normal in (A, ◦).

Lemma 3.3.3. Let A be a skew left brace, J a left ideal of A and X a normal subset of (A, ◦). Then X ∗ J
is a left ideal of A.

Proof. This follows from the fact that for all a, b, c ∈ A we have the equality

λa(b ∗ c) = λa(λb(c)− c) = λa◦b◦aλa(c)− λa(c) = (a ◦ b ◦ a) ∗ λa(c).

Lemma 3.3.4. Let A be a two-sided skew brace, and I and J ideals. If J ∩ A2
op = {0} or J ⊆ A2

op, then
I ∗ J is an ideal of A.
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Proof. It follows from Lemma 3.3.2 and Lemma 3.3.3 that I ∗ J is a left ideal which is moreover normal in
(A, ◦). Therefore, it remains to show that I ∗ J is normal in (A, ·). We treat the two cases separately.

Assume J ∩ A2
op = {0}, so in particular I ∗op J = {0}. Then x ◦ y = y · x or equivalently x ∗ y =

x−1 · y · x · y−1 for all x ∈ I , y ∈ J . We find that I ∗ J is in fact the additive commutator of the subgroups
(I, ·) and (J, ·). As these subgroups are normal in (A, ·), also their commutator is normal in (A, ·).

Next, assume that J ⊆ A2
op instead. Since I ∗ J is the additive group generated by the elements x ∗ y,

where x ∈ I , y ∈ J , it is sufficient to prove that a−1 · (x ∗ y) · a ∈ I ∗ J for all a ∈ A. From Lemma 1.1.18
we find

0 = x ∗ (a · a−1) = x ∗ a · a · (x ∗ (a−1)) · a−1,

hence x ∗ (a−1) = a−1 · (x ∗ a)−1 · a. Since y, x ∗ y ∈ A2
op and x ∗ a ∈ A2, it follows from Lemma 3.2.1

that y and x ∗ y commute with x ∗ a with in the group (A, ·). In combination with our prior observation and
Lemma 1.1.18 we find

x ∗ (a−1 · y · a) = (x ∗ (a−1)) · a−1 · (x ∗ (y · a)) · a
= a−1 · (x ∗ a)−1 · (x ∗ y) · y · (x ∗ a) · y−1 · a
= a−1 · (x ∗ y) · a.

Theorem 3.3.5. LetA be a two-sided skew brace. ThenA is semiprime if and only if it is strongly semiprime.

Proof. It suffices to show the implication from left to right; we do so by contraposition. Assume that A
contains a non-zero ideal I such that there exists a ∗-product of n copies of I which is zero. As a consequence
of [107, Lemma 6.11] there exists some n ≥ 2 such that I(n) = {0} where we define inductively I(1) = I
and I(k+1) = I(k) ∗ I(k) for k ≥ 1.

If I ∩A2
op = {0}, then Lemma 3.3.4 implies that Ik is an ideal for all k ≥ 1, so in particular there exists

some k such that the ideal Ik is non-zero and Ik ∗ Ik = {0}. It follows that A is not semiprime.
If instead J = I ∩A2

op ̸= {0}, then J(n) ⊆ I(n) = {0}. Since it follows from Lemma 3.3.4 that Jk is an
ideal for each k ≥ 1, we once again conclude that A is not semiprime.

Theorem 3.3.6. Let A be a two-sided skew brace. Then A is prime if and only if it is strongly prime.

Proof. We can restrict to proving the implication from left to right. Assume that A is prime. If there exists
a non-zero ideal I such that I ∩ A2

op = {0}, then I ∗ A2
op ⊆ I ∩ A2

op = {0}. So either A2
op = {0} or all

ideals intersect A2
op non-trivially.

Assume that there exists a ∗-product P of non-zero ideals of A which is zero. If A2
op = {0}, so A

is almost trivial, then a ∗-product of two ideals is once again an ideal; this is easily seen directly or also
follows from Lemma 3.3.4. In particular, at some point in P the ∗-product of two non-zero ideals gives {0}
and therefore A is not prime. If instead all ideals intersect A2

op non-trivially, we can replace all the ideals
appearing in P by their intersection with A2

op to obtain a new product P ′ which is also zero. But from
Lemma 3.3.4 we find that every ∗-product in P ′ gives an ideal, and therefore we find a ∗-product of two
non-zero ideals in P ′ which is zero.
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Chapter 4
Skew braces and the Yang–Baxter equation

Since (skew) braces were introduced precisely in order to provide an algebraic framework to study set-
theoretical solutions of the Yang–Baxter equation, it is only natural that a major emphasis of current research
is on the interplay between their respective properties. It is important to note that this question is ambiguous
since there exist multiple ways to relate a skew brace to a solution and vice versa. Recall that starting from
a solution (X, r), one can construct its associated structure skew brace G(X, r), or one can also look at the
permutation skew brace G(X, r). Moreover, the image of the canonical map X → G(X, r) provides a cycle
base of G(X, r), and the same holds for G(X, r). The structure skew brace retains strictly more information
about (X, r) than the permutation skew brace does. Indeed, abelianity of the group (G(X, r), ·) corresponds
to involutivity of (X, r), while this information is not always recoverable from G(X, r). Also, the results
in [14, 64, 115] show that solely from the structure group (G(X, r), ◦) of an involutive solution (X, r) one
can recover whether (X, r) has finite multipermutation level. One equivalent characterization is that (X, r)
has finite multipermutation level if and only if G(X, r) is poly-Z. From a more practical point of view,
however, it is often desirable to study G(X, r). One motivation might be that G(X, r) is finite whenever
(X, r) is finite. Another possible reason is that the class of skew braces that are isomorphic to a structure
skew brace is quite scarce. For example, if a structure skew brace has an abelian additive group, then it is
automatically free abelian. On the other hand, every skew brace appears as the permutation skew brace of
a solution [11]. Conversely, given a skew brace (A, ·, ◦) one can always consider the solution (A, rA) as
described in Proposition 1.2.17, although this is often not the most desirable since for example (A, rA) is
indecomposable only if |A| = 1. One gets more interesting behavior when restricting the solution (A, rA)
to a cycle base X ⊆ A, but still only injective solutions can be obtained in this way. At last, the most
general, but less straightforward way of obtaining solutions is by the construction given by Cedó, Jespers
and Bachiller for braces [12] and extended by Bachiller to skew braces [11]. Recall that a specialized case
of this construction was stated in Proposition 1.2.24. Their construction allows to obtain, for a given skew
brace (A, ·, ◦) and a cycle base Y , all solutions (X, r) such that G(X, r) ∼= (A, ·, ◦) and such that the cycle
base given by the image of the canonical map (X, r)→ G(X, r) corresponds to Y under this isomorphism.
Moreover, given two solutions constructed from the same skew brace (with possibly different cycle bases),
one has precise information on their isomorphisms, see also Proposition 1.2.25.

This chapter consists of four sections that each treat a different aspect of the interplay between solutions
and skew braces: the multipermutation level, the relation between indecomposability and generators, the
interplay between solutions and bi-skew braces, and automorphisms.

The property of having a finite multipermutation level behaves well with respect to all of the previous
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connections between skew braces and solutions. This follows directly from results by Gateva-Ivanova and
Cameron for the involutive case [78] and Cédo, Jespers, Kubat, Van Antwerpen and Verwimp for the general
case [49]. Moreover, for (X, r) an injective multipermutation solution, the multipermutation level of the
structure skew brace G(X, r) is precisely that of (X, r). More generally,

mpl(X, r)− 1 ≤ mpl(G(X, r) ≤ mpl(X, r).

Similarly, since trivially

mpl(G(X, r))− 1 ≤ mpl(G(X, r)) ≤ mpl(G(X, r)),

one finds bounds relating the multipermutation level of (X, r) and G(X, r). One can easily provide exam-
ples to show that these bounds cannot be made into a strict equality. In Theorem 4.1.10 we show that the
multipermutation level of G(X, r) does accurately predict another numerical invariant of (X, r), which is a
slight variation of the multipermutation level. Here, instead of measuring how many times one has to retract
a solution in order to get the one-element solutions, we measure how many retractions are necessary to get
a trivial solution.

Starting from an indecomposable solution (X, r), the induced cycle bases of G(X, r) and G(X, r) are
transitive cycle bases. Also, for the converse construction by Bachiller, Cédo and Jespers one needs a tran-
sitive cycle base in order to construct an indecomposable solution. From the work of Agata and Alicja
Smoktunowicz [150] and Rump [136], it follows that a multipermutation brace admits a transitive cycle base
if and only if it is one-generated as a brace. This does not hold without the assumption on the multipermu-
tation level, as demonstrated in [136, Section 5]. In Proposition 4.2.3 we prove that a skew brace admits
a transitive cycle base if and only if it is one-generated as a strong left ideal, where we do not require the
skew brace to have finite multipermutation level. We then further obtain results on the impact of differ-
ent types of nilpotency on how different notions of generating sets coincide in Theorems 4.2.5 and 4.2.9
and Proposition 4.2.13.

Bi-skew braces were introduced in the context of Hopf–Galois theory [61], but the question naturally
arises whether this corresponds to a property of solutions. This question, from multiple points of view, is the
main topic of Section 4.3. In Proposition 4.3.2 we characterize when a skew brace (A, ·, ◦) is a bi-skew brace
using only the solution (A, rA). In the other direction, in Theorem 4.3.4 we provide a precise criterion for
when G(X, r) is a bi-skew brace when (X, r) is an injective solution. However, in Example 4.3.3 we show
that given a bi-skew brace (A, ·, ◦) there is no direct relation between the solutions (A, rA) and (A, rA↔).

In the literature, not many general results are known about the automorphism group Aut(X, r) of a
solution (X, r). The most prominent results were obtained by Jedlička, Pilitowska and Zamojska-Dzienio
in [90] and Jedlička and Pilitowska in [88] in the case of indecomposable involutive solutions of multiper-
mutation level 2. For such solutions (X, r) we know that their automorphism group acts regularly on X
and if moreover the permutation group G(X, r) is abelian, then so is Aut(X, r). In [90], Jedlička, Pili-
towska and Zamojska-Dzienio also obtained intriguing results on homomorphisms and endomorphisms of
indecomposable involutive solutions of multipermutation level 2. We start the last section of this chap-
ter by proving Theorem 4.4.1, which states that an indecomposable multipermutation solution contains no
non-trivial subsolutions. This then allows us to extend the earlier-mentioned results on endomorphisms and
homomorphisms to arbitrary permutation levels and without restrictions on the permutation group. At last,
we give a first attempt at a systematic study of the automorphism group of indecomposable involutive solu-
tions. From the earlier mentioned results by Bachiller, Cédo and Jespers we deduce an explicit description
of the automorphism group of such solutions (X, r) in terms of automorphisms of G(X, r) that map its
canonical transitive cycle base to itself. To any brace A with transitive cycle base Y and x ∈ Y we as-
sociate a group SA(x), which coincides with the automorphism group of the uniconnected solution arising
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from the brace A and the element x. In Proposition 4.4.8 we prove that the automorphism group of any
indecomposable involutive solution (X, r) obtained starting from A and x through Proposition 1.2.24 is a
quotient of a subgroup of SA(x). We then further specialize to solutions that have multipermutation 2 or
whose permutation group is cyclic and obtain our main results which relate Aut(X, r) to the additive group
of the permutation brace G(X, r), this is achieved in Theorems 4.4.14 and 4.4.23.

All results in this chapter for which no external reference is given are novel. Those in Sections 4.1, 4.2
and 4.4 were obtained in collaboration with Marco Castelli and appear in the preprint [45]. One should
note that the contents of Section 4.4 differ from how they appear in [45, Section 6] since, in the meantime,
improved results have been obtained. The results in Section 4.3 were obtained in collaboration with Lorenzo
Stefanello and have been published in [154].

4.1 A variation of the multipermutation level
Definition 4.1.1. Let (X, r) be a multipermutation solution. We define mpl′(X, r) as the smallest n ≥ 1
such that Retn(X, r) is a trivial solution, possibly of size > 1.

If (X, r) is a multipermutation solution, then Retmpl(X,r)(X, r) has size 1 and is therefore trivial. Also
note that any solution (X, r) for which there exists some n such that Retn(X, r) is a trivial solution, is a
multipermutation solution as then Retn+1(X, r) has size 1. This proves the following result.

Lemma 4.1.2. Let (X, r) be a multipermutation solution. Then

mpl′(X, r) ≤ mpl(X, r) ≤ mpl′(X, r) + 1. (4.1)

Proposition 4.1.3. Let (X, r) be an indecomposable multipermutation solution. Then mpl′(X, r) and
mpl(X, r) are equal.

Proof. Let n be such that Retn(X, r) is a trivial solution. As indecomposability is preserved under retrac-
tion, Retn(X, r) is also indecomposable and thus |Retn(X, r)| = 1.

Proposition 4.1.4. Let (X, r) be a multipermutation solution with |X| > 1 and such that for every x ∈ X ,
there exist y, y′ ∈ X such that σy(x) = x and τy′(x) = x. Then mpl(X, r) = mpl′(X, r) + 1.

Proof. Let n = mpl(X, r). As |X| > 1, we know that n > 1, hence Retn−1(X, r) is well-defined and must
be a permutation solution on a set of size more than 1. The condition on (X, r) is preserved under retractions,
and a permutation solution satisfying this condition is necessarily trivial. It follows that Retn−1(X, r)
is a trivial solution and mpl′(X, r) ≤ n − 1, and therefore the statement follows in combination with
Lemma 4.1.2.

Remark 4.1.5. The condition appearing in Proposition 4.1.4 is a natural generalization of condition (∗)
appearing in [78, Definition 4.3] for involutive solutions. Note that solutions (X, r) such that r(x, x) =
(x, x) for all x ∈ X , the so-called square-free solutions, satisfy this condition. Also, for any skew brace A,
the solution (A, rA) satisfies the condition since σ0 = τ0 = id.

The first part of the following result appears as [49, Proposition 4.8]; for completeness’ sake, we give a
full proof.

Lemma 4.1.6. Let f : (X, r) → (Y, s) be a surjective homomorphism of solutions. Then f induces a
surjective homomorphism of solutions f : Ret(X, r)→ Ret(Y, s). If (X, r) is a multipermutation solution,
then so is (Y, s) and moreover mpl(Y, s) ≤ mpl(X, r) and mpl′(Y, s) ≤ mpl′(X, r).
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Proof. Let f : (X, r) → (Y, s) be a surjective homomorphism of solutions. If σx = σy for x, y ∈ X , then
also

σf(x)(f(z)) = f(σx(z)) = f(σy(z)) = σf(y)(f(z)),

for all z ∈ X . Since f is surjective, this implies σf(x) = σf(y) and thus f indeed induces a surjective
homomorphism of solutions f : Ret(X, r) → Ret(Y, s). Repeatedly applying this construction yields
surjective maps Retn(X, r) → Retn(Y, s) for all n ≥ 1. Since these maps are surjective, we find that if
Retn(X) has size 1 then so does Retn(Y ), and similarly if Retn(X) is trivial then so is Retn(Y ).

Corollary 4.1.7. Let (X, r) be a multipermutation solution. Then

mpl(X, r)− 1 ≤ mpl Inj(X, r) ≤ mpl(X, r),

mpl′(X, r)− 1 ≤ mpl′ Inj(X, r) ≤ mpl′(X, r).

Proof. If we apply Lemma 4.1.6 to the surjective homomorphisms

(X, r)→ Inj(X, r)→ Ret(X, r),

we obtain
mpl(Ret(X, r)) ≤ mpl(Inj(X, r)) ≤ mpl(X, r).

It then suffices to note that the inequality mpl(X, r) ≤ mpl(Ret(X, r)) + 1 holds. The second part of the
statement follows analogously.

Proposition 4.1.8. Let A be a skew brace and (X, r) a cycle base of A. Then G(X, r) ∼= Ret(A).

Proof. The universal property of G(X, r), see Theorem 1.2.21, yields a surjective skew brace homomor-
phism

f : G(X, r)→ A,

which is injective on the set of generators X . We claim that f−1(Soc(A)) = Γ, with Γ the kernel of the
canonical skew brace homomorphism π : G(X, r) → G(X, r), from which the statement then follows.
Since (X, r) is injective, we find Γ = Soc(G(X, r)). From the surjectivity of f we get f(Soc(G(X, r))) ⊆
Soc(A) and thus Γ ⊆ f−1(Soc(A)). Now to prove the inverse inclusion, let g ∈ G(X, r) \ Soc(G(X, r)).
As X is a cycle base of G(X, r) there exist some x, y ∈ X , x ̸= y, such that θ(g,0)(x) = y or θ(0,g)(x) = y.
As f(x) ̸= f(y), this implies that f(g) /∈ Soc(A) and this proves the remaining inclusion.

Corollary 4.1.9. Let (X, r) be a solution. Then G(Ret(X, r)) ∼= Ret(G(X, r)).

Proof. Let (X, r) be a solution, then we know that the canonical image of X in G(X, r) is a cycle base
isomorphic to Ret(X, r). Proposition 4.1.8 now yields that G(Ret(X, r)) ∼= Ret(G(X, r)).

We now obtain the main result of this section.

Theorem 4.1.10. Let (X, r) be a multipermutation solution. Then mpl′(X, r) equals mpl(G(X, r)).

Proof. From Corollary 4.1.9, we find that in general G(Retn(X, r)) ∼= Retn(G(X, r)) for all n ≥ 0. Note
that a solution is trivial if and only if its permutation skew brace is the zero brace, from which the equality
follows.
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As the multipermutation level of a solution (X, r) can vary between mpl′(X, r) and mpl′(X, r) + 1,
there is no general way to express mpl(G(X, r)) directly in terms of mpl(X, r). This shows the main
advantage of mpl′(X, r) over mpl(X, r). If (X, r) is indecomposable, we obtain the following result from
Proposition 4.1.3.

Corollary 4.1.11. Let (X, r) be an indecomposable multipermutation solution. Then mpl(X, r) equals
mpl(G(X, r)).

Theorem 4.1.12. Let (X, r) be a multipermutation solution with |X| > 1. Then

mpl(G(X, r))− 1 ≤ mpl′(X, r) ≤ mpl(G(X, r))

If moreover (X, r) is injective, then mpl′(X, r) + 1 = mpl(G(X, r)).

Proof. If (X, r) is injective, then G(X, r) = Ret(G(X, r)), hence the second part of the statement fol-
lows from Theorem 4.1.10. The first part now follows from Corollary 4.1.7 and the fact that G(X, r) =
G(Inj(X, r)).

As a consequence, we find the following generalization of [49, Corollary 4.16] and [78, Theorem 5.15].

Corollary 4.1.13. Let (X, r) be an injective multipermutation solution. Then

mpl(G(X, r))− 1 ≤ mpl(X, r) ≤ mpl(G(X, r)).

If moreover, (X, r) satisfies the condition of Proposition 4.1.4 then mpl(X, r) = mpl(G(X, r)).

Proof. The first part is a direct consequence of Lemma 4.1.2 and Theorem 4.1.12. The second part follows
from Proposition 4.1.4 and Theorem 4.1.12.

4.2 Cycle bases and generators of skew braces
Let a skew brace A be given. We start by showing that the existence of a transitive cycle base, or more
generally, the minimal number of orbits in a cycle base, can be studied in terms of generators of strong left
ideals.

Definition 4.2.1. Let A be a skew brace. For a set X ⊆ A, the skew subbrace (respectively strong left ideal
or ideal) of A generated by X is the smallest skew subbrace (respectively strong left ideal or ideal) of A
containing X . If A has a singleton generating set as a skew brace (respectively strong left ideal or ideal),
then we say that A is one-generated as a skew brace (respectively strong left ideal or ideal).

Recall that the θ-action of a skew brace was defined in Lemma 1.2.32.

Lemma 4.2.2. LetA be a skew brace andX ⊆ A. The strong left ideal generated byX , denoted by Isl(X),
is the subgroup of (A, ·) generated by

S = {θ(a,b)(x) | x ∈ X, a, b ∈ A}.

Proof. As a direct consequence of the definition of θ, a subgroup of (A, ·) is a strong left ideal if and only
if it is invariant under the θ-action. It then follows that S is contained in any strong left ideal containing
X . Since θ acts by additive automorphisms, the subgroup of (A, ·) generated by S is invariant under the
θ-action hence it is a strong left ideal.
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From Lemma 4.2.2 we immediately obtain the following result, which lets us translate the question
“What is the minimal number of orbits contained in a cycle base of A?" to “What is the minimal number of
elements that generate A as a strong left ideal?"

Proposition 4.2.3. LetA be a non-zero skew brace. IfX is a cycle base ofA and Y is a set of representatives
of the orbits in X , then Y generates A as a strong left ideal. Conversely, if Y ⊆ A generates A as a strong
left ideal, then the union of the orbits of elements in Y forms a cycle base of A.

Corollary 4.2.4. Let A be a skew brace. If X is a transitive cycle base of A, then every element of X
generates A as a strong left ideal.

Motivated by the above, in the remainder of this section, we study the relation between the generators of
A as a skew brace, strong left ideal and ideal. Inspired by results in [136, 145] we first consider multiper-
mutation skew braces. Later, also left nilpotency or annihilator nilpotency appear as a natural assumption.
This first result extends [145, Theorem 5.4] and [136, Proposition 10].

Theorem 4.2.5. Let A be a multipermutation skew brace. If X generates A as a strong left ideal, then X
generates A as a skew brace.

Proof. We will prove this claim by induction on the multipermutation level of A. If A is a trivial brace, then
the claim clearly holds. Now assume that A is not a trivial brace and let A(X) denote the skew subbrace
of A generated by X . The induction hypothesis implies that A = A(X) · Soc(A). As X generates A
as a strong left ideal, we know that A = Isl(X) with Isl(X) as in Lemma 4.2.2. For any a, b ∈ A, we
can write a = a1 · a2 and b = b1 · b2 with a1, b1 ∈ A(X) and a2, b2 ∈ Soc(A). This then implies that
θ(a,b)(x) = θ(a1,b1)(x) ∈ A(X) for all x ∈ X and therefore A = Isl(X) ⊆ A(X).

Corollary 4.2.6. Let A be a multipermutation skew brace. The following are equivalent:

1. A is one-generated as a skew brace,

2. A is one-generated as a strong left ideal.

In particular, if x ∈ A generates A as a strong left ideal, then it generates A as a skew brace.

Next, we study the relation between sets that generate a skew brace as an ideal and as a strong left ideal.
The following result by Jespers, Kubat, Van Antwerpen and Verwimp [91] gives a nice way to determine
the minimal number of generators as an ideal, for a large class of skew braces. For a skew brace A, we let
ω(A) be the minimal (possibly infinite) number of generators of A as an ideal. A skew brace satisfies the
descending chain condition (DCC) on ideals if there exists no infinite strictly descending chain of ideals.

Theorem 4.2.7. Let A be a skew brace with ω(A) <∞ and satisfying the DCC on ideals. Then

ω(A) = ω(A/A2) = ω(A/A′).

The following example shows that, in general, it is not true that if a skew brace is one-generated as an
ideal, then it is also one-generated as a strong left ideal. If we want such a result to hold, we thus need to
impose extra conditions on A.



4.2. CYCLE BASES AND GENERATORS OF SKEW BRACES 89

Example 4.2.8. Let A = Triv(Z/p × Z/p) and B = Triv(Z/2) for some odd prime p and consider the
semidirect product C = A⋊B, where A acts by inversion. Explicitly,

(n,m, l) + (n′,m′, l′) = (n+ n′,m+m′, l + l′)

(n,m, l) ◦ (n′,m′, l′) = (n+ (−1)ln′,m+ (−1)lm′, l + l′)

λ(n,m,l)(n
′,m′, l′) = ((−1)ln′, (−1)lm′, l′).

Then we find that C2 = C ′ = A and thus (C/C ′,+) ∼= Z/2 is cyclic, from which it follows that ω(A) = 1
by Theorem 4.2.7. We claim that C is not one-generated as a strong left ideal. If it were, then the image of
this generator should generate C/C2, hence it is of the form (1, l,m), with l,m ∈ Z/p. However, for any
choice of l,m ∈ Z/p, the set {(n, rm, rl) | n ∈ Z/2, r ∈ Z/p} is a strong left ideal which contains (1, l,m)
and which has index p. Thus C is not one-generated as a strong left ideal.

Theorem 4.2.9. Let A be a left nilpotent skew brace and X a subset of A. If the image of X in A/A2

generates A/A2 as a strong left ideal, then X generates A as a strong left ideal.

Proof. Let I = Isl(X) denote the strong left ideal of A generated by X . By induction on n, we will prove
that I · An = A, which then implies the statement. As the natural image of X in A/A2 generates A/A2

as a strong left ideal, we find that I · A2 = A. Now let n ≥ 2 and assume that I · An = A. Recall from
Lemma 1.1.18 that for all a, b, c ∈ A we have that a ∗ (b · c) = (a ∗ b) · b · (a ∗ c) · b−1, so we find

A2 = A ∗ (I ·An) = A ∗ (An · I) ⊆ An+1 · I.

We know already that I ·A2 = A, thus A ⊆ I ·An+1.

Corollary 4.2.10. Let A be a left nilpotent skew brace of finite weight satisfying the DCC on ideals. The
minimal number of generators of A as a strong left ideal coincides with ω(A).

Proof. It suffices to prove that A is generated as a strong left ideal by ω(A) elements. From Theorem 4.2.7
we know that ω(A) = ω(A/A2). As every strong left ideal inA/A2 is an ideal, ω(A/A2) is also the minimal
numbers of generators of A/A2 as a strong left ideal and by Theorem 4.2.9 we thus obtain a generating set
of size ω(A) which generates A as a strong left ideal.

Corollary 4.2.11. Let A be a left nilpotent skew brace such that A satisfies the DCC on ideals. Then the
following are equivalent:

1. A is one-generated as a strong left ideal,

2. A is one-generated as an ideal,

3. (A/A′,+) is cyclic.

Proof. The equivalence of 1 and 2 is clear from Corollary 4.2.10. The equivalence of 2 and 3 follows from
Theorem 4.2.7.

Lemma 4.2.12. Let A be a skew brace such that (A/A′,+) is cyclic and (A,+) or (A, ◦) is nilpotent. Then
A2 = A′.

Proof. Under the imposed conditions, the group (A/A2, ·) = (A/A2, ◦) is nilpotent. Also, its abelianization
is isomorphic to (A/A′, ·), hence it is cyclic. It is a well-known result in group theory that this implies that
(A2, ·) itself is cyclic. In particular, A/A2 is a trivial brace, hence A′ ⊆ A2.
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Proposition 4.2.13. Let A be an annihilator nilpotent skew brace that satisfies the DCC on ideals. Then the
following are equivalent:

1. A is one-generated as a skew brace,

2. A is one-generated as a strong left ideal,

3. A is one-generated as an ideal,

4. (A/A2, ·) is cyclic.

In this case, the following are equivalent for an element x ∈ X:

1. x generates A as a skew brace,

2. x generates A as a strong left ideal,

3. x generates A as an ideal,

4. x+A2 generates (A/A2, ·).

Proof. The first part is a consequence of Corollary 4.2.6, Corollary 4.2.11 and Lemma 4.2.12.
The second part now follows if we also take into account Theorem 4.2.9.

The first part of Proposition 4.2.13 generalizes [137, Corollary 1]. In the same paper, in Proposition 5,
Rump showed that for one-generated braces with an abelian multiplicative group, the transitive cycle bases
are precisely the cosets ofA2 that generateA/A2. Since a finite brace with an abelian multiplicative group is,
in particular, annihilator nilpotent, one might expect that a similar result holds for this class. The following
example shows that even skew braces that are very similar to this class, namely annihilator nilpotent braces
and annihilator nilpotent skew braces with an abelian permutation group, do not exhibit a similar feature.

Example 4.2.14. Let (A,+) = (Z/p)n, for p a prime and n < p and let ϕ ∈ Aut(A,+) be the auto-
morphism given by the Jordan normal block of size n, where we consider (Z/p)n as column vectors. Let
λ : (A,+)→ Aut(A,+) be given by (a1, . . . , an) 7→ ϕan . In particular, we find that

kerλ = (Z/p)n−1 × {0} = {ϕ(a)− a | a ∈ A}.

From Theorem 2.4.5 we find a bi-skew brace (A,+, ◦) where a ◦ b = a+λa(b). A direct verification shows
that (A, ◦) is abelian if and only if n = 2. Note that A is right nilpotent of class 2 since it is a bi-skew
brace. It is left nilpotent by Theorem 1.1.24 as it is of prime power size, hence A is annihilator nilpotent. As
(A, ◦)/ kerλ is cyclic of order p, we see that all transitive cycle bases have size p. Because |A2| = pn−1,
the transitive cycle bases are cosets of A2 if and only if n = 2, in this case (A, ◦) is abelian.

Example 4.2.15. For any choice of a prime p and n < p, the skew brace (A,+, ◦) from Example 4.2.14 is a
bi-skew brace, so we can also consider the skew brace (A, ◦,+), which is still annihilator nilpotent. Now its
multiplicative group is always abelian and its additive group is abelian if and only if n = 2. As the λ-map
of an element a ∈ A in this skew brace is given by λ−1

a and (A, ◦,+)2 = (A,+, ◦)2, we have the same
conclusion as in the previous case: it is only true that the transitive cycle bases of (A, ◦,+) are cosets of
(A, ◦,+)2 if n = 2. In this case, A is a brace.
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4.3 Bi-skew braces and solutions of the Yang–Baxter equation
Proposition 4.3.1. Let A be a skew brace. Then A is a bi-skew brace if and only if for all a, b ∈ A,

λλop
a (b) = λb. (4.2)

Proof. If A is a bi-skew brace, then the assertion follows from Theorem 1.1.34. For the other implication,
suppose that (4.2) holds. For all a, b ∈ A, we have

λa·b = λb◦λop

b
(a) = λbλλop

b
(a) = λbλa.

Hence, again by Theorem 1.1.34, A is a bi-skew brace.

The following is a straightforward corollary. Recall that for a skew brace A, we always have a natural
solution (A, rA) as described in Proposition 1.2.17 and the solution associated to Aop is the inverse of that
of A, see Example 1.2.20.

Proposition 4.3.2. Let A be a skew brace. Then A is a bi-skew brace if and only if its associated solution
(A, rA) satisfies, for all x, y ∈ A,

σσ̂x(y) = σy.

As a result, the information whether A is a bi-skew brace is not lost when one only considers its associ-
ated solution. Next, it is natural to ask whether, if we know thatA is a bi-skew brace, it is possible to recover
the associated solution of A↔ from the associated solution of A. The following example shows that this is,
in general, not possible, as we construct non-isomorphic bi-skew braces A and B such that the associated
solutions are isomorphic, but the solutions associated to A↔ and B↔ are not isomorphic.

Example 4.3.3. Let (G, ·) = C2 × C8, with C2 = ⟨x⟩, and let α : C2 → Aut(G) be the group homomor-
phism mapping x to the inversion automorphism of G. Then, as in Example 2.2.6 we find a bi-skew brace
A = Triv(G)⋊ Triv(C2), whose associated solutions are as follows:

rA((g, x
i), (h, xj)) = ((αix(h), x

j), (αjx(g), x
i)),

rA↔((g, xi), (h, xj)) = ((αix(h), x
j), (g · h · αix(h−1), xi)).

In particular, τ↔,(h,xj)(g, 1) = (g, 1) and τ↔,(h,xj)(g, x) = (g · h2, x). Here τ↔ is the usual τ -map asso-
ciated with the solution (A, rA↔). Note that if h ∈ G is an element of order 8, then τ↔,(h,xj) has order
4.

Now take (H, ·) = C4
2 , and let β : C2 → Aut(H), where still C2 = ⟨x⟩, be the map which sends x to

the automorphism interchanging the first two and the last two coordinates of H . In the same way as before,
we then obtain a bi-skew brace B = Triv(H)⋊ Triv(C2), and two associated solutions:

rB((g, x
i), (h, xj)) = ((βix(h), x

j), (βjx(g), x
i)),

rB↔((g, xi), (h, xj)) = ((βix(h), x
j , ), (g · h · βix(h), xi)).

In this case once again, we find that τ↔,(h,xj)(g, 1) = (g, 1) and τ↔,(h,xj)(g, x) = (g · h · βix(h), x). Since
h · βix(h) has either order 1 or 2, it follows that all τ -maps associated to rB↔ have either order one or two.
Therefore, rA↔ can not be isomorphic to rB↔ .

On the other hand, the cycle structures of αx and βx are the same; they are both of order two and fix four
points. Therefore, there exists a bijection θ : G→ H such that θαx = βxθ, and in particular the bijection

C2 ×G→ C2 ×H, (xi, g) 7→ (xi, θ(g))

gives an isomorphism between the solutions rA and rB .
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We now deal with the inverse situation, where we start with a given solution and ask whether the skew
brace on the structure group is a bi-skew brace.

Theorem 4.3.4. Let (X, r) be an injective solution. Then G(X, r) is a bi-skew brace if and only if σσ̂x(y) =
σy for all x, y ∈ X .

Proof. The implication from left to right is a consequence of Proposition 4.3.2 and the fact that (X, r) is
injective.

Now assume that for all x, y ∈ X , we have that σσ̂x(y) = σy . This means that λλop
x (y) = λy where x, y

are now considered as the generators of G(X, r) and λ and λop are the λ-maps associated to G(X, r) and
G(X, r)op respectively. In particular, as X generates the multiplicative group (G(X, r), ◦), it follows that
λλop

g (y) = λy for all g ∈ G(X, r).
For a word w = xϵ11 · . . . · xϵnn with xi ∈ X and ϵi ∈ {−1, 1}, we will prove that

λw = λϵnxn . . . λ
ϵ1
x1
.

As (G(X, r), ·) is generated by X , this then proves that

λ : (G(X, r), ·)→ Aut(G(X, r), ·)

is a group antihomomorphism, and therefore G(X, r) is a bi-skew brace. We will prove this claim by
induction on n. For n = 1 and ϵ1 = 1 the statement is trivial. To also cover the case where n = 1 and
ϵ1 = −1, we have to prove that λx−1 = λ−1

x for all x ∈ X . For this, we note that there is the equality

λopa (a) = (a ◦ a) · a−1 = a−1,

or equivalently, (λopa )−1(a−1) = a, so substituting a by x−1 we find (λopx−1)
−1(x) = x−1, thus

λx−1 = λ
(λop
x−1)

−1(x)
= λ−1

(λop
x−1)

−1(x)
= λ−1

x .

Now assume that the statement holds for words of length n − 1, and let w = xϵ11 · . . . · xϵnn be a word of
length n. If we write v = xϵ22 · . . . · xϵnn , then

λw = λv◦λop
v (x

ϵ1
1 )

= λvλλop
v (x

ϵ1
1 )

= λϵnxn . . . λ
ϵ2
x2
λϵ1
λop
v (x1)

= λϵnxn . . . λ
ϵ2
x2
λϵ1x1

.

Corollary 4.3.5. Let (X, r) be a solution such that σσ̂x(y) = σy for all x, y ∈ X . ThenG(X, r) is a bi-skew
brace.

Proof. As Inj(X, r) is a homomorphic image of (X, r), it follows that Inj(X, r) still has the property that
σσ̂x(y) = σy for all x, y ∈ Inj(X, r). Because G(X, r) and G(Inj(X, r)) are isomorphic skew braces, the
result follows from Theorem 4.3.4.

Recall from Theorem 2.2.1 that a brace A is λ-homomorphic (or equivalently, a bi-skew brace) if and
only if it is right nilpotent of class at most 2. The latter is in turn equivalent to mpl(A) ≤ 2.

Proposition 4.3.6. Let (X, r) be an involutive solution. Then
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1. G(X, r) is a bi-skew brace if and only if mpl′(X, r) ≤ 1,

2. G(X, r) is a bi-skew brace if and only if mpl′(X, r) ≤ 2.

Proof. We know that a brace A is a bi-skew brace if and only if it is multipermutation of level at most
2. The statement then follows when combined with Theorem 4.1.10 and the fact that mpl(G(X, r)) =
mpl(G(X, r)) + 1.

4.4 Automorphisms of solutions

4.4.1 Multipermutation solutions

Theorem 4.4.1. Let (X, r) be an indecomposable solution of finite multipermutation level. Then (X, r)
contains no non-trivial subsolutions.

Proof. Let us prove this by induction on the multipermutation level of the solutions. If (X, r) is an inde-
composable permutation solution, then r(x, y) = (σ(y), τ(x)) for permutations σ, τ ∈ SX such that ⟨σ, τ⟩
acts transitively on X . For such solutions, the statement clearly holds. Now assume that the statement holds
for all indecomposable solutions of multipermutation level at most n and let (X, r) be an indecomposable
solution of multipermutation level n + 1. Let Y ⊆ X be a subsolution and let Y ′ be the image of Y under
the canonical surjection (X, r) → Ret(X, r). By the induction hypothesis, Y ′ is the whole set Ret(X, r),
which means that for any x ∈ X there exists some y ∈ Y such that σx = σy and τx = τy . In particular,

⟨σx, τx | x ∈ X⟩ = ⟨σy, τy | y ∈ Y ⟩,

from which we deduce that Y = X .

The following example shows that the hypothesis on the multipermutation level can not be dropped.

Example 4.4.2. Let X = {1, 2, 3, 4} and let r be the involutive solution given by

σ1 = (3 4), σ2 = (1 3 2 4), σ3 = (1 4 2 3), σ4 = (1 2),

for all x, y ∈ X . Then, the set {1} is a subsolution of X .

The following corollary extends [90, Proposition 5.1], where the statement was proved for indecompos-
able involutive solutions with an abelian permutation group and multipermutation level 2.

Corollary 4.4.3. Let (X, r) be an indecomposable multipermutation solution. Then every endomorphism of
(X, r) is surjective. In particular, if |X| <∞ then every endomorphism of (X, r) is an automorphism.

Proof. It suffices to note that the image under an endomorphism of X is a subsolution of X .

The following lemma extends [88, Corollary 3.11], where the statement was proved for indecomposable
involutive solutions of multipermutation level 2.

Lemma 4.4.4. Let f, g : (X, r) → (Y, s) be homomorphisms of solutions such that f(x) = g(x) for some
x ∈ X . If (X, r) is indecomposable and has finite multipermutation level, then f = g.
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Proof. It suffices to prove that E = {y ∈ X | f(y) = g(y)} is a subsolution of (X, r), since Theorem 4.4.1
then implies that ϕ = ψ. To see this, note that if y, y′ ∈ E, then

f(σy(y
′)) = σf(y)f(y

′) = σg(y)g(y
′) = g(σy(y

′)),

and in a similar way we also find the equalities f(τy(y′)) = g(τy(y
′)), f(σ̂y(y′)) = g(σ̂y(y

′)) and
f(τ̂y(y

′)) = g(τ̂y(y
′)).

Corollary 4.4.5. Let (X, r) be an indecomposable multipermutation solution, then Aut(X, r) acts freely
on X . In particular, |Aut(X, r)| ≤ |X|.

Proof. Assume that ϕ(x) = ψ(x) for ϕ, ψ ∈ Aut(X, r) and x ∈ X . Then it follows from Lemma 4.4.4 that
ϕ = ψ.

4.4.2 Studying automorphisms of solutions through their permutation brace
We start by recording the following fact, which follows directly from Proposition 1.2.25.

Proposition 4.4.6. Let A be a brace, let (x,K) be a pair satisfying the conditions of Proposition 1.2.24 and
let (X, r) be the associated indecomposable solution. If z ∈ A and ψ is an automorphism of A such that
ψ(x) = λz(x) and ψ(K) = z ◦K ◦ z, then

F : (X, r)→ (X, r) : a ◦K 7→ ψ(a) ◦ z ◦K,

is an automorphism of the solution (X, r). Moreover, every automorphism of (X, r) is of this form.

Alternatively, using Proposition 1.2.24, we can formulate the same statement with the focus instead
shifted towards the solution.

Proposition 4.4.7. Let (X, r) be an indecomposable involutive solution and let x ∈ X . If τ ∈ G(X, r) and
ψ ∈ Aut(G(X, r)) such that ψ(σx) = λτ (σx) and

ψ(StabG(X,r)(x)) = τ ◦ StabG(X,r)(x) ◦ τ ,

then the map
F : X → X : σ(x) 7→ ψ(σ)(τ(x)),

is an automorphism of (X, r). Moreover, every automorphism of (X, r) is of this form.

Let A be a brace, x ∈ A and K a subgroup of (A, ◦) satisfying the conditions of Proposition 1.2.24.
Then Proposition 4.4.6 gives a solid motivation to study the subgroup

SA(x,K) = {R◦
z ◦ ψ | ψ ∈ Aut(A,+, ◦), z ∈ A,ψ(x) = λz(x), ψ(K) = z ◦K ◦ z},

of SA, where R◦
z denotes the right translation by z ∈ A in (A, ◦). Indeed, if we denote the associated

indecomposable solution by (X, r), then we have the following surjective group homomorphism:

h : SA(x,K)→ Aut(X, r) : R◦
zψ 7→ (a ◦K 7→ R◦

zψ(a) ◦K).

LetR◦
zψ ∈ SA(x,K) be contained in the kernel of h, then in particular K = R◦

z(ψ(0)) ◦K = z ◦K hence
z ∈ K. This implies ψ(x) = λz(x) = x. For an arbitrary a ∈ A we then find R◦

z(ψ(a)) ◦K = ψ(a) ◦K,
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which implies that ψ(a) ◦ a ∈ K. Conversely, let z ∈ K and ψ ∈ Aut(A,+, ◦) such that ψ(x) = x and
ψ(a) ◦ a ∈ K for all a ∈ A. Then clearly ψ(K) = K and for any a ∈ A we find R◦

z(ψ(a)) ◦K = a ◦K.
We conclude that

kerh = {R◦
zψ | z ∈ K,ψ(x) = x, ψ(a) ◦ a ∈ K for all a ∈ A}. (4.3)

Note that in particular we always have R◦(K) ⊆ kerh. If K = {0}, which corresponds to the case that
(A, ◦) acts regularly on the associated solution, then clearly kerh is trivial. If A is multipermutation, then
x must generate A as a brace by Corollary 4.2.6, so the only ψ ∈ Aut(A,+, ◦) such that ψ(x) = x is
the identity automorphism. In this case, we find that kerh = R◦(K). Our findings can be summarized as
follows, where the focus is shifted back to the solution itself.

Proposition 4.4.8. Let (X, r) be an indecomposable involutive solution. Then for any x ∈ X the map

h : SG(X,r)(σx,StabG(X,r)(x))→ Aut(X, r) : R◦
τψ 7→ (σ(x) 7→ ψ(σ)(τ(x))),

is a surjective group homomorphism. If G(X, r) acts regularly on X , then h is an isomorphism. If (X, r)
has finite multipermutation level, then kerh = R◦(StabG(X,r)(x)).

Remark 4.4.9. Note that the equality kerh = R◦(StabG(X,r)(x)) in Proposition 4.4.8 more generally holds
whenever σx generates G(X, r) as a brace. In particular, this is the case when σx generates the additive or
multiplicative group of G(X, r).

By definition, SA(x,K) is a subgroup of SA(x, {0}), we will denote the latter simply by SA(x) :=
SA(x, {0}). Let us approach the above discussion from a different point of view. Let

p̃ : (X, r)→ (Y, s),

be a universal covering of indecomposable solutions such that (X, r) is uniconnected. Let ϕ be an auto-
morphism of (Y, s), then since p̃ is a universal covering and also ϕ−1p̃ is a covering, we find that p̃ factors
through ϕ−1p̃, meaning that there exists a homomorphism ϕ̃ : (X, r) → (X, r) such that the following
diagram commutes:

(X, r) (X, r)

(Y, s) (Y, s)

ϕ̃

p̃ p̃

ϕ

It follows that ϕ̃ is also covering, but since (X, r) is uniconnected, it follows that ϕ̃ is invertible. We conclude
that any automorphism of (Y, s) lifts to an automorphism of (X, r), although this lifting is not expected to
be unique. Also, the converse should not hold; not every automorphism of (X, r) yields an automorphism
of (Y, s). However, we have a surjective group homomorphism from the subgroup of Aut(X, r) consisting
of all automorphisms that are liftings of automorphisms of (Y, s) to the automorphism group (X, r).

In fact, this situation is precisely the one that was discussed before. Indeed, letA be a brace and x ∈ A an
element contained in a transitive cycle base ofA. We let (X, r) be the solution arising from the pair (x, {0})
and (Y, s) the solution arising from (x,K) for any K satisfying the conditions of Proposition 1.2.24. Recall
from Proposition 1.2.29 that then the map

p̃ : (X, r)→ (Y, s) : a 7→ a ◦K
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is a covering and (X, r) is uniconnected. The group SA(x) is precisely the group of automorphisms of (X, r)
and SA(x,K) is the group of automorphisms of (X, r) that can be obtained by lifting an automorphism of
(Y, s). The surjective group homomorphism h is the map that sends any automorphism in SA(x,K) to the
automorphism of (X, r) it was lifted from.

From now on, let X be a transitive cycle base of A. We define Aut(A,X) as the group of all skew brace
automorphisms ψ : A→ A such that ψ(X) ⊆ X .

Lemma 4.4.10. Let A be a brace with transitive cycle base X . Then the following are equivalent for an
automorphism ψ of A:

1. There exists some x ∈ X such that ψ(x) ∈ X ,

2. ψ(X) ⊆ X ,

3. ψ(X) = X .

Proof. Assume that ψ(x) ∈ X for some x ∈ X . Recall that X = {λa(y) | a ∈ A} for any y ∈ X . Since
ψ(λa(x)) = λψ(a)(ψ(x)) ∈ X for all a ∈ A we find that ψ(X) ⊆ X . Also, since every y ∈ X is of the
form λa(ψ(x)) for some a ∈ A, we find y = ψ(λψ−1(a)(x)) ∈ ψ(X) and thus X ⊆ ψ(X). The other
implications are trivial.

Lemma 4.4.11. Let A be a brace, X a transitive cycle base of A and x ∈ X . Then SA(x) has a nor-
mal subgroup isomorphic to the stabilizer of x under the λ-action, such that its quotient is isomorphic to
Aut(A,X).

Proof. Define
ϕ : SA(x)→ Aut(A,X) : R◦

aψ 7→ ψ.

By Lemma 4.4.10, this is a well-defined group homomorphism with kernel the right translations contained
in SA(x). ClearlyR◦

a = R◦
a idA ∈ SA(x) if and only if λa(x) = x. Moreover, the definition of Aut(A,X)

ensures that ϕ is surjective.

If λa is an automorphism of A for some a ∈ A, then it follows automatically that λa ∈ Aut(A,X).
Define

H(A) = {a ∈ A | λa ∈ Aut(A,+, ◦)}.

From Lemma 1.1.33 we find that H(A) is precisely the preimage of Fix(A/Soc(A)) under the surjection
A→ A/ Soc(A). Moreover, if x ∈ X , thenR◦

aλa is contained in SA(x) for all a ∈ H(A). For all a, b ∈ H ,
c ∈ A we find

R◦
aλaR◦

bλb(c) = R◦
a(λa(λb(c) ◦ b)) = λaλb(c) ◦ λa(b) ◦ a = R◦

λa(b)◦aλa◦b(c).

Since a, b ∈ H we find that λa◦b = λλa(b)◦a. We conclude that

{R◦
aλa | a ∈ H(A)}

is a subgroup of SA(x).

Proposition 4.4.12. Let A be a brace. Then {R◦
aλa | a ∈ H(A)} is isomorphic to (H(A),+).
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Proof. Consider the map

ϕ : {R◦
aλa | a ∈ H(A)} → (H(A),+) : R◦

aλa 7→ a.

It is clear that ϕ is a bijection. Using the observation above, we find

ϕ(R◦
aλaR◦

bλb) = ϕ(R◦
λa(b)◦aλλa(b)◦a)

= λa(b) ◦ a

= a ◦ λa(b)
= a ◦ λa(b)
= a+ b

= ϕ(R◦
aλa) + ϕ(R◦

bλb),

from which the statement follows.

Lemma 4.4.13. Let A be a brace of multipermutation level 2, X a transitive cycle base of A and x ∈ X .
Then:

1. Aut(A,X) = {λa | a ∈ A}.

2. SA(x) = {R◦
aλa | a ∈ A}, so in particular SA(x) acts regularly on A.

3. SA(x,K) = SA(x) for any subgroup K of (A, ◦) that stabilizes x under the λ-action.

4. SA(x) ∼= (A,+).

Proof. Note that, since H(A) = A, the map λa is contained in Aut(A,X) for all a ∈ A. Because A has
finite multipermutation level, we know by Corollary 4.2.6 that x ∈ X generates A as a brace. By definition,
for ψ ∈ Aut(A,X) there exists some a ∈ A such that ψ(x) = λa(x). Since x generates the brace A, it
then follows that ψ = λa. This proves the first part of the statement. It then follows that every element in
SA(x) is of the form R◦

bλa for some a, b ∈ A, but the condition λb(x) = λa(x) forces λa = λb and thus
R◦
bλa = R◦

bλb. This implies the second part of the statement.
To prove the third part, let k ∈ A such that λk(x) = x. By a similar reasoning as above, it follows that

λk = idA and thus k ∈ Soc(A). Therefore, if K is a subgroup of (A, ◦) that fixes x under the λ-action, then
K ⊆ Soc(A) and thus λa(K) = a ◦K ◦ a by the comment in Example 1.1.5.

The last part is now a direct consequence of Proposition 4.4.12.

The following theorem is an extension of [88, Proposition 5.16].

Theorem 4.4.14. Let (X, r) be an indecomposable involutive solution of multipermutation level 2 and
x ∈ X . Then Aut(X, r) is isomorphic to (G(X, r),+)/ StabG(X,r)(x) and its action on X is regular. In
particular, Aut(X, r) is abelian.

Proof. Let x ∈ X . From Proposition 4.4.8 we know that

Aut(X, r) ∼= SG(X,r)(σx,StabG(X,r)(x))/R◦(StabG(X,r)(x)).

Since G(X, r) has multipermutation level 2 we get from Lemma 4.4.13 that

SG(X,r)(σx,StabG(X,r)(x)) = SG(X,r)(σx) ∼= (G(X, r),+),
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where under this isomorphism the subgroupR◦(StabG(X,r)(x)) is mapped to StabG(X,r)(x). Also, SG(X,r)(σx)
acts regularly onA, hence SG(X,r)(σx)/R◦(StabG(X,r)(x)) acts regularly on the cosets (G(X, r), ◦)/StabG(X,r)(x).

Remark 4.4.15. Let (X, r) be an indecomposable involutive solution of multipermutation level 2 and let p̃ :
(X̃, r̃)→ (X, r) be a universal covering with (X̃, r̃) uniconnected. Then Lemma 4.4.13 and Theorem 4.4.14
learn us that every automorphism of (X̃, r̃) yields an automorphism of (X, r) and the automorphism group
of (X̃, r̃) is isomorphic to (G(X, r),+).

We now turn our attention to braces whose additive group is cyclic, known as cyclic braces.

Lemma 4.4.16. Let A be a cyclic brace and x ∈ A. Then x generates A as a left ideal if and only if x
generates the group (A,+).

Proof. One implication is trivial. Conversely, we know that the additive subgroup generated by x is equal
to mA, for some m ≥ 1. Since mA is a characteristic subgroup of (A,+), it is a left ideal, the left ideal
generated by x is contained in mA. This forces m = 1.

The following lemma is similar to Lemma 4.4.13.

Lemma 4.4.17. Let A be a cyclic brace, let X be a transitive cycle base of A and x ∈ X . Then

1. Aut(A,X) = {λa | a ∈ H(A)}.

2. SA(x) = {R◦
aλa | a ∈ H(A)}, so the orbit of 0 under its action is H(A).

3. SA(x,K) = SA(x) for any subgroup K of (A, ◦) that stabilizes x under the λ-action.

4. SA(x) ∼= (H(A),+).

Proof. From Lemma 4.4.16 we know that x generates the group (A,+). Therefore, if ψ ∈ Aut(A,+, ◦)
and a ∈ A are such that λa(x) = ψ(x), then ψ = λa. The first part of the statement now follows since
λa ∈ Aut(A,+, ◦) if and only if a ∈ H(A). It now follows that every element in SA(x) is of the form
R◦
bλa for some a, b ∈ A, but the condition λb(x) = λa(x) forces λa = λb and thus R◦

bλa = R◦
bλb. This

implies the second part of the statement.
For the third part, let k ∈ A such that λk(x) = x. Since x generates (A,+), we find λk = idA and thus

k ∈ Soc(A). Therefore, if K is a subgroup of (A, ◦) that fixes x under the λ-action, then K ⊆ Soc(A) and
thus λa(K) = a ◦K ◦ a by the remark in Example 1.1.5.

The last part is now a direct consequence of Proposition 4.4.12.

Theorem 4.4.18. Let (X, r) be an indecomposable involutive solution such that (G(X, r),+) is cyclic.
Then Aut(X, r) is isomorphic to (H(G(X, r)),+)/ StabG(X,r)(x). In particular, Aut(X, r) is abelian and
Aut(X, r) acts transitively on X if and only if mpl(X, r) ≤ 2.

Proof. Let x ∈ X . From Lemma 4.4.16 we know that σx generates (G(X, r),+). From Proposition 4.4.8
and Remark 4.4.9 we get that

Aut(X, r) ∼= SG(X,r)(σx,StabG(X,r)(x))/R◦(StabG(X,r)(x)).

Lemma 4.4.17 implies that

SG(X,r)(σx,StabG(X,r)(x)) = SG(X,r)(σx) ∼= (H(G(X, r)),+),
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where under this isomorphism the subgroupR◦(StabG(X,r)(x)) is mapped to StabG(X,r)(x). Also, the orbit
of 0 under the action of SG(X,r)(σx) is H(G(X, r)), hence SG(X,r)(σx)/R◦(StabG(X,r)(x)) acts regularly
on the cosets (G(X, r), ◦)/ StabG(X,r)(x) if and only ifH(G(X, r)) = G(X, r) or equivalent when G(X, r)
is a bi-skew brace, the result now follows from Propositions 4.1.3 and 4.3.6.

It is non-trivial to determine whether, given a solution (X, r), the additive group (G(X, r),+) is cyclic.
On the other hand, it is directly verified whether the permutation group (G(X, r), ◦) is cyclic. The following
lemma shows that in many cases, if (G(X, r), ◦) is cyclic, then so is (G(X, r),+).

Lemma 4.4.19. Let A be a brace such that (A, ◦) is cyclic. Then either (A,+) is cyclic or A is finite and
(A,+) is isomorphic to (Z/2)2 × Z/n with n odd.

Proof. IfA is infinite, then the result follows by Corollary 2.3.3. IfA is finite, then the result follows directly
from [160, Proposition 1.3, Theorem 1.5] or [12, Proposition 5.4].

Remark 4.4.20. Recall from [132] that up to isomorphism every brace whose additive and multiplicative
groups are cyclic is of the form A = (Z/n,+, ◦) where a ◦ b = a+ b+ abk with k a divisor of n such that
every prime divisor of n also divides k. For such a brace, we find that H(A) = {a ∈ A | k2a = 0}.

If (X, r) is a finite indecomposable involutive solution with a cyclic permutation group such that the
highest power of 2 dividing |X| is not 4, then we can conclude from Lemma 4.4.19 that (G(X, r),+) is
cyclic. In the other case, however, the Sylow 2-subgroup is small, so in particular it is of multipermu-
tation level at most 2. The following lemma allows us to combine the two different cases considered in
Lemmas 4.4.13 and 4.4.17 in order to obtain a similar result in the case that the (G(X, r), ◦) is cyclic.

Lemma 4.4.21. Let A = A1 × A2 be a product of finite braces of coprime order, let X be a transitive
cycle base of A and x ∈ X . Let Xi ⊆ Ai and xi ∈ Ai, i ∈ {1, 2} be the projection onto Ai of X and x
respectively. Then

1. Xi is a transitive cycle base of Ai,

2. Aut(A,X) ∼= Aut(A1, X1)×Aut(A2, X2),

3. SA(x) ∼= SA1
(x1)× SA2

(x2).

Proof. Since for (a1, a2), (b1, b2) ∈ A1 ×A2 we have λ(a1,a2)(b1, b2) = (λa1(b1), λa2(b2)), it follows that
Xi is a transitive cycle base of Ai. As |A1| and |A2| are coprime, the automorphisms of (A,+) are of the
form

ϕ1 × ϕ2 : A→ A : (a, b) 7→ (ϕ1(a), ϕ2(b)),

for ϕi ∈ Aut(Ai,+, ◦). From this, the second part of the statement follows directly. Consider the injective
map

SA1(x1)× SA2(x2)→ SA(x) : (R◦
a1ψ1,R◦

a2ψ2) 7→ R◦
(a1,a2)

(ψ1 × ψ2),

which is well-defined since λ(a1,a2)(x1, x2) = (ψ1 × ψ2)(x1, x2) if and only if λa1(x1) = ψ1(x1) and
λa2(x2) = ψ2(x2). It follows from 2 that this map is surjective and it is clear that this is a group homomor-
phism.

Lemma 4.4.22. Let A be a brace with (A, ◦) cyclic, let X be a transitive cycle base of A and x ∈ X . Then

1. Aut(A,X) = {λa | a ∈ H(A)},
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2. SA(x) = {R◦
aλa | a ∈ H(A)}, so the orbit of 0 under its action is H(A),

3. SA(x) ∼= (H(A),+).

Proof. If (A,+) is cyclic, then this follows from Lemma 4.4.17. If (A,+) is not cyclic, then we know that
A is finite and A = A1 × A2 as braces, where (A1,+) is cyclic of odd order and (A2,+) is the Klein
group. Note that mpl(A2) ≤ 2. The result then follows by Lemma 4.4.21 combined with Lemmas 4.4.13
and 4.4.17 and the observation that H(A1 ×A2) = H(A1)×H(A2).

In [90, Section 5] all indecomposable involutive solutions with mpl(X, r) = 2 whose automorphism
and permutation group are cyclic were determined. In the following, we characterize these in terms of their
permutation skew braces, where we remove the assumption on the multipermutation level.

Theorem 4.4.23. Let (X, r) be an indecomposable involutive solution with a cyclic permutation group.
Then Aut(X, r) is isomorphic to (H(G(X, r)),+), so in particular it is abelian. Furthermore, Aut(X, r)
acts transitively on X if and only if mpl(X, r) ≤ 2.

Proof. Let x ∈ X . Note that by Corollary 2.3.3 and the well-known fact that finite Jacobson radical rings
are nilpotent, we find that (G(X, r),+) is multipermutation. From Proposition 4.4.8 we obtain

Aut(X, r) ∼= SG(X,r)(σx,StabG(X,r)(x))/R◦(StabG(X,r)(x)) ∼= SG(X,r)(σx),

where we used the fact that the stabilizer of x is trivial since (G(X, r), ◦) is abelian. From Lemma 4.4.22
we find that

SG(X,r)(σx) ∼= (H(G(X, r)),+),

which proves the first part of the statement. The orbit of 0 under the action of SG(X,r)(σx) is H(G(X, r)),
and we know that H(G(X, r)) = G(X, r) if and only if G(X, r) is a bi-skew brace. By Propositions 4.1.3
and 4.3.6, the last part of the statement follows.

Corollary 4.4.24. Let (X, r) be a finite indecomposable involutive solution such that its permutation group
is cyclic. Then Aut(X, r) is non-cyclic if and only if the Sylow 2-subgroup of (G(X, r),+) is isomorphic to
the Klein group. In particular, if the highest power of 2 dividing |X| is different from 4, then Aut(X, r) is
cyclic.

Proof. This follows directly from Theorem 4.4.23 and Lemma 4.4.19.

If we restrict to solutions of multipermutation level 2, then we can also obtain a partial dual statement.

Corollary 4.4.25. Let (X, r) be a finite indecomposable involutive solution with an abelian non-cyclic
permutation group. Suppose moreover that mpl(X, r) = 2. If Aut(X, r) is cyclic, then the Sylow 2-
subgroup of the permutation group is isomorphic to the Klein group. In particular, if the highest power of 2
dividing |X| is different from 4, then Aut(X, r) is non-cyclic.

Proof. If Aut(X, r) is cyclic then by Theorem 4.4.14 the additive group of G(X, r) is cyclic. Since
mpl(X, r) = 2, we find that G(X, r) is a bi-skew brace. The statement now follows from Lemma 4.4.19
since (G(X, r), ◦,+) is a brace with a cyclic multiplicative group and a non-cyclic additive group.



Chapter 5
Indecomposable involutive solutions of order p2

In [73, Theorem 2.13], Etingof, Schedler and Soloviev proved that for any prime p there exists, up to iso-
morphism, only a unique involutive solution given by (Z/p, r) with

r(x, y) = (x+ 1, y − 1).

Furthermore, Jedlička and Pilitowska [88] have classified all indecomposable involutive solutions of multi-
permutation level 2 by providing a universal indecomposable involutive solution and describing its epimor-
phic images through congruences, see also [89, 90]. In particular, this includes all indecomposable cycle
sets of order pq that are of finite multipermutation level, where p, q are (not necessarily distinct) primes. In
[54], Cedó and Okniński proved that all indecomposable involutive solutions of square-free size are of finite
multipermutation level, which implies that the classification of indecomposable involutive solutions of size
pq for p ̸= q is accomplished through the earlier mentioned results by Jedlička and Pilitowska. Cedó and
Okniński [53, Section 5] described a class of simple, thus irretractable, indecomposable solutions of size p2,
p a prime. Subsequently, they ask whether all irretractable indecomposable involutive solutions belong to
this family.

In this chapter, we explicitly determine all indecomposable involutive solutions of size p2. In order to
simplify some of the calculations and notations, we use the language of cycle sets throughout the whole
chapter. It is only at the end that we formulate the classification in terms of solutions of the YBE.

This chapter is organized as follows. In Section 5.1 we first include some preliminary results on systems
of imprimitivity of group actions and in Section 5.2 we prove auxiliary results on braces, both of which will
be extensively used in Sections 5.4 and 5.5. Although our focus is on irretractable solutions, we first give in
Corollary 5.3.4 a complete list of retractable indecomposable involutive solutions of size p2. These solutions
have been described by Jedlička and Pilitowska in [88], but in Theorem 5.3.2 we present them in a different
and more explicit way that bears a strong resemblance to how we describe the irretractable solutions later
in the chapter. We then start our classification by considering the irretractable indecomposable cycle sets of
size p2 whose permutation group is a p-group. In Theorem 5.4.9 we give a full classification together with an
explicit description of their automorphisms. The next step is to consider those cycle sets whose permutation
group is not a p-group. We prove that these can all be obtained by deforming one of the earlier classified
cycle sets by an automorphism of order coprime to p. This deformation process is given in Lemma 5.5.3.
We obtain the final classification in terms of cycle sets in Theorem 5.5.6. In Section 5.6 we transfer this
classification back to the original setting and we present a complete list of irretractable indecomposable
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solutions of size p2. We also give a formula to compute the number of isomorphism classes in function of p
and give an affirmative answer to the earlier mentioned question by Cedó and Okniński.

All results in this chapter (except for the ones in Section 5.1) for which no external reference is given
were obtained in collaboration with Carsten Dietzel and Silvia Properzi, and are published in [71].

5.1 Preliminaries on systems of imprimitivity

Let G be a group acting on a set X . A system of imprimitivity is a partition X =
⊔
i∈I Xi that is invariant

under the group action in the sense that for any g ∈ G, i ∈ I , there is a j ∈ I such that g ·Xi = Xj . The
subsets Xi are called blocks of the system. A system of imprimitivity is trivial if either |I| = 1 or |Xi| = 1
for all i ∈ I , else it is non-trivial. If X is finite and G is transitive, then G acts transitively on the blocks of
a system of imprimitivity, and |Xi| = |Xj | for all i, j ∈ X . In particular, all |Xi| divide |X|.

Lemma 5.1.1. Let G be a non-abelian p-group with a transitive action on a set X of size p2, for p a prime.
Then G has at most one non-trivial system of imprimitivity.

Proof. If there is more than one non-trivial system of imprimitivity, a result of Lucchini [118, Theorem 1]
implies that G ≤ Sp× Sp. But if G is a p-group, this forces G to be isomorphic to a subgroup of Z/p×Z/p
and therefore to be abelian.

Let G,H be groups such that G acts on a set X . The wreath product is the semidirect product H ≀X G =
HX ⋊ G, where HX = {(hx)x∈X | hx ∈ H for all x ∈ X} is the iterated direct product of H with itself
indexed by X , and G acts on HX by g · (hx)x∈X = (hg−1·x)x∈X . If the action of G on X is clear, we will
generally suppress the subscript X and write H ≀G.

If additionally H acts on a set Y , then H ≀G acts on X × Y by

(h, g) · (x, y) = (g · x, hg·x · y).

Proposition 5.1.2. Let G ≤ SZ/p×Z/p be a transitive solvable group such that the sets {a}×Z/p, a ∈ Z/p,
form a system of imprimitivity. Then G is conjugate to a subgroup of Hol(Z/p) ≀ Hol(Z/p). If moreover G
is a p-group, then G is conjugate to a subgroup of Z/p ≀ Z/p.

Proof. Let G be as above. As G respects the given system of imprimitivity, G ≤ Sp ≀ Sp, where the action
of the wreath product on Z/p× Z/p is precisely as described above.

As a special case of [86, Chapter II, Satz 3.2], we know that every solvable transitive subgroup of Sp
is conjugate to a subgroup of Hol(Z/p). We conclude that G is conjugate to a subgroup of Hol(Z/p) ≀
Hol(Z/p). As Z/p ≀ Z/p is a Sylow p-subgroup of Hol(Z/p) ≀ Hol(Z/p) also the last part of the statement
follows.

We note in particular that elements of Z/p ≀ Z/p are precisely permutations of the form

(a, x) 7→ (a+ β, x+ γa),

with β, γ0, . . . , γp−1 ∈ Z/p.
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5.2 Some results on braces

Lemma 5.2.1. Let A be a brace. Then for all a, b ∈ A,

λa(b) = −a+ (a ◦ b ◦ a) + λa◦b◦a(a).

In particular, a ∈ Fix(A) if and only if λa(b) = a ◦ b ◦ a for all b ∈ A.

Proof. Observe that if a, b ∈ A, then

λa(b) = −a+ (a ◦ b) = −a+ (a ◦ b ◦ a ◦ a) = −a+ (a ◦ b ◦ a) + λa◦b◦a(a).

Theorem 5.2.2. Let A be a brace and B a subbrace such that (B, ◦) acts trivially on (A,+)/B under the
λ-action. Furthermore, assume that (B, ◦) is normal in (A, ◦). Then B is an ideal of A.

Proof. Let b ∈ B. We have to show that λa(b) ∈ B for all a ∈ A. Since B is normal in (A, ◦) and (B, ◦)
acts trivially on (A,+)/B, we find λa◦b◦a(a) ∈ a+B. Using Lemma 5.2.1 we deduce that

λa(b) = −a+ ab+ λab(a) ∈ −a+B + a+B = B.

Proposition 5.2.3. Let A be a finite brace and B a subbrace with |A| = p|B|, where p is the smallest prime
divisor of |A|. Then B is an ideal of A.

Proof. The quotient group (A,+)/B is cyclic of order p and therefore is acted upon trivially by (B, ◦).
Furthermore, since the index of (B, ◦) in (A, ◦) is the smallest prime divisor of |A|, the subgroup (B, ◦) is
normal in (A, ◦). It follows from Theorem 5.2.2 that B is an ideal of A.

Given a brace A and a subset S ⊆ A we define

FixA(S) = {a ∈ A | λs(a) = a for all s ∈ S}.

In fact, it follows from Lemma 5.2.1 that λa(a ◦ s ◦ a) = −a + s + λs(a), so λs(a) = a if and only if
λa(a ◦ s ◦ a) = s, which is equivalent to λa(s) = a ◦ s ◦ a. Therefore, we obtain the alternative description:

FixA(S) = {a ∈ A | λa(s) = a ◦ s ◦ a for all s ∈ S}.

Lemma 5.2.4. Let A be a finite brace, L a left ideal of A and G a normal subgroup of (A, ◦). Then
FixA(L ∩G) is a subbrace of A contained in the normalizer of L ∩G in (A, ◦).

Proof. From the original definition of FixA(L ∩ G) we see that (FixA(L ∩ G),+) is a group. Let a ∈
FixA(L ∩G) and b ∈ L ∩G. Then λa(b) ∈ L, but as λa(b) = a ◦ b ◦ a, also λa(b) ∈ G. We conclude that
λa(b) ∈ L ∩G. Using the alternative description of FixA(L ∩G), we now see that FixA(L ∩G) is closed
under the operation ◦ and non-empty. As A is finite, we conclude that (FixA(L ∩ G), ◦) is a subgroup of
(A, ◦). Therefore, FixA(L ∩ G) is a subbrace. As a ◦ b ◦ a ∈ L ∩ G for all a ∈ FixA(L ∩ G), b ∈ L ∩ G
we find indeed that FixA(L ∩G) is contained in the normalizer of L ∩G in (A, ◦).
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5.3 Indecomposable retractable cycle sets of size p2

It is clear that, up to isomorphism, there is a unique indecomposable cycle set of size p2 whose retract has
size 1. This cycle set is given by X = Z/p2 with cycle set operation x · y = y + 1. Those cycle sets whose
retract has size p follow from results by Jedlička and Pilitowska [88]. We recall the following (slightly
restrictive case of the) construction of indecomposable cycle sets of multipermutation level 2 as obtained in
[88, Proposition 5.1 and 5.7].

Let ei, i ∈ Z, denote the elements in the canonical basis of
⊕

i∈Z Z. We define

ck =


∑−k
i=1−e1−i k < 0

0 k = 0∑k
i=1 ei k > 0

.

Theorem 5.3.1. Let (X, ·) be an indecomposable cycle set of multipermutation level 2 whose retract has
size m. Then there exist

1. a subgroup H ≤
⊕

i∈Z Z such that ci − ci+m ∈ H , for all i ∈ Z,

2. s ∈
(⊕

i∈Z Z
)
/H ,

such that (X, ·) is isomorphic to a cycle set of the form X = (Z×
⊕

i∈Z Z)/∼ where

(a, x) ∼ (b, y) ⇐⇒ a− b ≡ 0 mod m, and x− y ≡ a− b
m

s mod H,

and
[(a, x)] · [(b, y)] = [(b− 1, y − ca−b + c−b)].

Moreover, different choices of H and s yield non-isomorphic cycle sets.

For an abelian group (A,+) we define χ0 : A→ Z as

χ0(x) =

{
1 x = 0

0 x ̸= 0
.

Theorem 5.3.2. Let (X, ·) be an indecomposable cycle set of multipermutation level 2 whose retract has
size m. Then (X, ·) is isomorphic to a cycle set of the form X = Z/m×A with operation

(a, x) · (b, y) = (b+ 1, y + χ0(b)S +Φ(b− a)),

where (A,+) is an abelian group, Φ : Z/m → A is a non-constant map such that Φ(0) = 0 and Φ(Z/m)
generates A, and S ∈ A. Two such cycle sets, given by (A,Φ, S) and (B,Φ′, S′), are isomorphic if and
only if there exists a group isomorphism f : A→ B such that Φ′ = fΦ and f(S) = S′.

Proof. Let H ≤
⊕

i∈Z Z and s ∈
(⊕

i∈Z Z
)
/H satisfying the conditions of Theorem 5.3.1. Observe that

if 1 ≤ a, b ≤ m and x, y ∈
⊕

i∈Z Z, then (a, x) ∼ (b, y) if and only if a = b and x− y ∈ H . Also note that
since

(a, x) ∼ (a−m,x− s) ∼ (a+m,x+ s)
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for every a ∈ Z and x ∈
⊕

i∈Z Z, every element in Z ×
⊕

i∈Z Z is in relation with an element whose first
components is contained in {1, . . . ,m}. We define the map

ψ :

(
Z×

⊕
i∈Z

Z

)
/∼ → Z/m×

(⊕
i∈Z

Z

)
/H,

as ψ([(a, x)]) = (a, x) for 1 ≤ a ≤ m. This is well-defined by the earlier observations. In particular,

ψ([(0, x)]) = ψ([(m,x+ s)]) = (m,x+ s).

Under this identification, we find that the cycle set as given in Theorem 5.3.1 is isomorphic to the cycle set
on Z/m× (

⊕
i∈Z Z)/H given by

(a, x) · (b, y) = (b− 1, y − χ0(b)s− ca−b + c−b).

Now instead of starting from H ≤
⊕

i∈Z Z and s ∈
⊕

i∈Z Z/H we can also start with an abelian group A,
an element s ∈ A and a surjective group homomorphism ϕ :

⊕
i∈Z Z→ A; we then set H = kerϕ. As the

ci, i ̸= 0, form a basis of
⊕

i∈Z Z, we can freely choose the images ϕ(ci) ∈ A as long as ϕ(ci) = ϕ(ci+m).
If we denote ϕ(ci) = Φ(i) we see that every such homomorphism ϕ uniquely corresponds to a map Φ :
Z/m → A such that Φ(0) = 0 and Φ(Z/m) generates A. Using ϕ to identify

⊕
i∈Z Z/H and A we find a

cycle set structure on Z/m×A given by

(a, x) · (b, y) = (b− 1, y − χ0(b)s− Φ(a− b) + Φ(−b)).

Recall that different choices of H and s give non-isomorphic cycle sets. It is clear that for two abelian
groups A,B and maps Φ : Z/m → A and Φ′ : Z/m → B, the associated homomorphisms ϕ and ϕ′

have the same kernel H if and only if there exists a group isomorphism f : A → B such that ϕ′ = fϕ,
or equivalently Φ′ = fΦ. Moreover, s ∈ A and s′ ∈ B correspond to the same element in

⊕
i∈Z Z/H

precisely if f(s) = s′.
At last, define g : Z/m→ A as g(b) =

∑b−1
i=0 Φ(i) for 1 ≤ b ≤ m. If b ̸= 0, then g(b+1)−g(b) = Φ(b)

and if b = 0 then g(b+ 1)− g(b) = −
∑m−1
i=1 Φ(i). Under the bijection

θ : (a, x) 7→ (−a,−x+ g(a)),

the cycle set structure now becomes

θ−1(θ(a, x) · θ(b, y)) = θ−1((−a,−x+ g(a)) · (−b,−y + g(b)))

= θ−1(−b− 1,−y + g(b)− χ0(b)s− Φ(b− a) + Φ(b))

= (b+ 1, y − g(b) + χ0(b)s+Φ(b− a)− Φ(b) + g(b+ 1))

= (b+ 1, y + χ0(b)S +Φ(b− a)),

where S = s −
∑m−1
i=0 Φ(i). To conclude the proof, note that if we are given an abelian group B, an

isomorphism f : A→ B, and we set Φ′ = fΦ, then f(s) = s′ if and only if

f(S) = f(s−
m−1∑
i=0

Φ(i)) = s′ −
m−1∑
i=1

Φ′(i) = S′.
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Remark 5.3.3. The solutions on X = Z/p × A corresponding to the cycle sets in Theorem 5.3.2 are given
by

r

(
(a, x)
(b, y)

)
=

(
(b− 1, y − χ0(b− 1)S − Φ(b− 1− a))
(a+ 1, x+ χ0(a)S +Φ(a− b+ 1))

)
.

Corollary 5.3.4. Let (X, ·) be a retractable indecomposable cycle set of size p2 for p a prime. Then X has
finite multipermutation level and is isomorphic to one of the following:

1. X = Z/p2 with x · y = y + 1.

2. X = Z/p× Z/p, with

(a, x) · (b, y) = (b+ 1, y + χ0(b)S +Φ(b− a)),

where Φ : Z/p→ Z/p is a non-constant map such that Φ(0) = 0 and S ∈ Z/p. The parameters S,Φ
and S′,Φ′ define isomorphic cycle sets if and only if S′ = αS and Φ′ = αΦ for some α ∈ (Z/p)×.

Proof. It follows from Proposition 1.2.27 that |Ret(X)| ∈ {1, p}. If |Ret(X)| = 1 then X clearly has
finite multipermutation level and is isomorphic to the given cycle set on Z/p2. If |Ret(X)| = p, then
we know that Ret(X) is isomorphic to the cycle set on Z/p with x · y = y + 1 [73, Theorem 2.13]. In
particular, |Ret2(X)| = 1 and thus X has multipermutation level 2. The statement now follows directly
from Theorem 5.3.2.

5.4 Irretractable cycle sets whose permutation group is a p-group

5.4.1 Constructing the cycle sets
Proposition 5.4.1. Let (X, ·) be a finite irretractable cycle set such that (G(X, ·), ◦) is a p-group. Then
Soc(G(X, ·)) = {0} and (G(X, ·), ◦) is not abelian.

Proof. As X is irretractable, it follows from Corollary 4.1.9 that Soc(G(X)) = {0}. By Example 1.1.7
and Theorem 1.1.24 we find that (G(X), ◦) is not abelian, as otherwise its socle would be non-trivial.

For the remainder of the section, we let (X, ·) be an indecomposable irretractable cycle set of size p2

and assume that its permutation group is a p-group. For simplicity, we write G = G(X, ·). We also identify
X with its image in G, which is a transitive cycle base of G. By Lemma 5.1.1 and Proposition 5.4.1 we have
a unique system of imprimitivity for the action of G on X . For x ∈ X we denote by Bx the block containing
x. We denote by A the abelian subgroup of (G, ◦) which fixes the blocks set-wise. Note that (A, ◦) has
index p in (G, ◦).

Proposition 5.4.2. The sets Fix(G) and A have trivial intersection.

Proof. Suppose that 0 ̸= f ∈ Fix(G) ∩ A, without loss of generality we may assume that f◦p = 0, where
we recall that f◦p denotes the p-th power of f in (G, ◦). Recall from Lemma 5.2.1 that λf coincides with
conjugation by f in the group (G, ◦). Since (A, ◦) is abelian, λf fixes all elements inA. By the comment in
Example 1.1.7, we find

Fix(G) ∩ Z(G, ◦) ⊆ Ann(G) = {0},

so f ̸∈ Z(G, ◦). Since |G|/|A| = p, we see that A = {g ∈ G | λf (g) = g}. As λf is an automorphism, A
is a subbrace of G. By Proposition 5.2.3, A is an ideal of G.
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As G/A is a brace of order p, it must be trivial and therefore the canonical map G → G/A maps the
transitive cycle base X to a single element. Hence, there exists some g ∈ G such that for all x ∈ X there
exists some ax ∈ A such that x = g + ax. In particular, if we set γ = f ∗ g ∈ A, we find that also
f ∗ x = f ∗ g + f ∗ ax = γ. By induction we find that f◦n ∗ x = nγ for all n ≥ 1, since

f◦n ∗ x = λf◦n(x)− x
= λf (λf◦n−1(x))− λf (x) + λf (x)− x
= λf (f

◦n−1 ∗ x) + f ∗ x
= λf ((n− 1)γ) + γ = nγ.

In particular, this implies that pγ = 0. If γ = 0, then λf (x) = x, for all x ∈ X and therefore λf = idG ,
which would imply that f ∈ Soc(G) and thus contradict Proposition 5.4.1. It therefore follows that γ ̸= 0,
which in turn implies that λf has no fixed points on X . In particular, for each a ∈ A and x ∈ X , there exists
some n ≥ 0 such that λa(x) = λnf (x), hence a ∗ x = f◦n ∗ x = nγ.

Now let I be the subgroup of (G,+) generated by

{a ∗ g | a ∈ A, g ∈ G},

which is an ideal by [132, Corollary after Proposition 6]. Because X generates (G,+) and ∗ is left dis-
tributive, I is the subgroup of (G,+) generated by {a ∗ x | a ∈ A, x ∈ X}. By the previous discussion,
I = {0, γ, . . . , (p − 1)γ}. As |I| = p, we find that I ⊆ Fix(G). Since I is a minimal normal subgroup of
the nilpotent group (G, ◦), we also find that I ⊆ Z(G, ◦), hence I ⊆ Soc(G) which is impossible.

We now know that Fix(G)∩A = 0 but also from Theorem 1.1.24 we have Fix(G) ̸= 0, hence |Fix(G)| =
p. This implies that the multiplicative group of G is the semidirect product

(G, ◦) = (A, ◦)⋊ (Fix(G), ◦).

Therefore,A forms a system of representatives for (G, ◦)/Fix(G). Since Fix(G) is a left ideal, its left cosets
with respect to (G,+) and (G, ◦) coincide. We know that A is not necessarily closed under +, but by the
above observation we can define g ⊕ h as the unique element in A ∩ (g + h+ Fix(G)). As a consequence,
the bijection

(A,⊕)→ (G,+)/Fix(G),

is a group homomorphism.

Proposition 5.4.3. The structure (A,⊕, ◦) is a brace.

Proof. For a, b, c ∈ A, we calculate

{a ◦ b⊖ a⊕ a ◦ c} = A ∩ (a ◦ b− a+ a ◦ c+ Fix(G)) = A ∩ (a ◦ (b+ c) + Fix(G))
= A ∩

(
(a+ Fix(G)) ◦ (b+ c+ Fix(G))

)
=
(
A ∩ (a+ Fix(G)

)
◦
(
A ∩ (b+ c+ Fix(G)

)
=
(
A ∩ (a+ Fix(G)

)
◦ {b⊕ c}

= {a ◦ (b⊕ c)}.

Hence a ◦ (b⊕ c) = a ◦ b⊖ a⊕ a ◦ c.
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Denote by Ã the thus constructed brace on A. We define the map

ρ : G → Ã,

where {ρ(g)} = A ∩ (g ◦ Fix(G)). Note that ρ is a group homomorphism (G,+) → (Ã,⊕) but this is not
necessarily true for (G, ◦) → (Ã, ◦). However, the restriction of ρ to A ⊆ G is the identity map, hence in
particular it respects the multiplicative operation. On Ã, the λ-action is given by

λ̃g(h) = ⊖g ⊕ (g ◦ h) = ⊖ρ(g)⊕ ρ(g ◦ h) = ρ(−g + g ◦ h) = ρ(λg(h)),

for g, h ∈ A. This implies that the image ρ(X) ⊆ Ã is invariant under its λ̃-action (which is not necessarily
transitive). Therefore, ρ(X) is again a cycle set under the operation

ρ(x)̃·ρ(y) = λ̃−1
ρ(x)(ρ(y)).

Proposition 5.4.4. |ρ(X)| = p.

Proof. Note that (G, ◦) still acts transitively on ρ(X) by λg(ρ(x)) = ρ(λg(x)) and that

ρ−1(ρ(x)) ⊆ x+ Fix(G).

In particular, |ρ−1(ρ(x))| ≤ p and thus |X̃| ∈ {p, p2}.
Suppose that ρ : X → ρ(X) is injective, then (G(ρ(X), ·̃), ◦) is isomorphic to A and each element of

ρ(X) acts differently on ρ(X) by the λ̃-action, so ρ(X) is irretractable. This contradicts Proposition 5.4.1
and thus |ρ(X)| = p.

Proposition 5.4.5. For all x ∈ X , we have the equality Bx = x+Fix(G) = x ◦Fix(G). In particular, each
block intersects A in precisely one element.

Proof. By Proposition 5.4.4, for all x ∈ X , we have x + Fix(G) ⊆ X . As (G, ◦) leaves Fix(G) invariant
under the λ-action, we deduce that the cosets x+ Fix(G) form a non-trivial system of imprimitivity for the
λ-action of (G, ◦) on X . Since we know from Lemma 5.1.1 that such a system is unique, this implies that
Bx = x+ Fix(G).

Moreover, it was observed earlier thatA∩ (g+Fix(G)) is a singleton for each g ∈ G. Together with the
first part of this proposition, this gives the last part of the statement.

Proposition 5.4.6. Let x ∈ X , then X = Fix(G) ◦ x ◦ Fix(G).

Proof. Let 0 ̸= f ∈ Fix(G). Then from Lemma 5.2.1 we get

f ◦ Bx ◦ f = λf (Bx) ̸= Bx,

as f ̸∈ A. Therefore, Fix(G) acts transitively on the system of blocks by conjugation. Furthermore, by
Proposition 5.4.5, Fix(G) acts transitively on every single block by right-multiplication. Therefore, each
y ∈ X is of the form y = f ◦ x ◦ f ◦ f ′ for some f, f ′ ∈ Fix(G).

By Proposition 5.4.5, the set X ∩A is non-empty. Fix elements α0,0 ∈ X ∩A and 0 ̸= f ∈ Fix(G). We
now coordinatize the elements of X in the following way: for (a, x) ∈ Z/p× Z/p, we set

αa,x = f
◦a ◦ α0,0 ◦ f◦a ◦ f◦x.
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By Proposition 5.4.6, this gives a unique coordinatization of the elements in X .
The map λα0,0 leaves all blocks invariant, therefore we can write λα0,0(αb,0) = αb,−Φ(b) for some map

Φ : Z/p→ Z/p. The cycle set operation · on X can now be determined:

α0,0 · αb,y = λ−1
α0,0

(αb,−Φ(b) + (y +Φ(b))f)

= αb,0 + (y +Φ(b))f

= αb,y+Φ(b).

Also,

f◦a · αb,y = λf◦a

(
f
◦b ◦ α0,0 ◦ f◦b ◦ f◦y

)
= f

◦(a+b) ◦ α0,0 ◦ f◦(a+b) ◦ f◦y = αa+b,y.

from which we conclude that

αa,x · αb,y = f◦(a+x) · (α0,0 · (f
◦a · αb,y))

= f◦(a+x) · (α0,0 · αb−a,y)
= f◦(a+x) · αb−a,y+Φ(b−a)

= αb+x,y+Φ(b−a).

Theorem 5.4.7. Let (X, ·) be an indecomposable, irretractable cycle set of size p2 whose permutation group
a p-group. Then (X, ·) is isomorphic to a cycle set of the form X = Z/p× Z/p with

(a, x) · (b, y) = (b+ x, y +Φ(b− a))

where Φ : Z/p → Z/p is a non-constant map with Φ(A) = Φ(−A), for all A ∈ Z/p. Conversely, this
construction always results in an indecomposable, irretractable cycle set whose permutation group is a
p-group.

Proof. In the preceding calculations, we have already established that the given multiplication rule is neces-
sary. We now determine

((a, x) · (b, y)) · ((a, x) · (c, z)) = (b+ x, y +Φ(b− a)) · (c+ x, z +Φ(c− a))
= (c+ x+ y +Φ(b− a), z +Φ(c− a) + Φ(c− b)).

Similarly,

((b, y) · (a, x)) · ((b, y) · (c, z)) = (c+ y + x+Φ(a− b), z +Φ(c− b) + Φ(c− a)).

A comparison shows that in order for (X, ·) to satisfy the first cycle set axiom, a necessary condition is that
Φ(b − a) = Φ(a − b) for all a, b ∈ Z/p. This amounts to saying that Φ(A) = Φ(−A), for all A ∈ Z/p.
By the same calculation, one sees that this condition on Φ is also sufficient. By construction, all maps
(b, y) 7→ (a, x) · (b, y) are bijective. Furthermore, the square map

Sq(a, x) = (a, x) · (a, x) = (a+ x, x+Φ(0))

is also bijective. Finally, irretractability is the same as saying that for any a, a′ ∈ Z/p, there is at least one
b ∈ Z/p such that Φ(b− a) = Φ(b− a′). But this is equivalent to Φ not being constant.

Finally, for b ∈ Z/p with Φ(b) ̸= 0, we see that (0, 0) · (b, y) = (b, y+Φ(b)) ̸= (b, y) which shows that
the orbit of (b, y) contains at least the block {b} × Z/p. Since for example (b, 1) · (b, 0) = (b + 1,Φ(0))
is not contained in this block, we find that the orbit of (b, y) is all of X , hence X is indecomposable. Also
note that G(X, ·) is contained in Z/p ≀ Z/p ≤ SZ/p×Z/p, which implies that it is a p-group.
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We note the following corollary, which will be useful later in Section 5.5:

Corollary 5.4.8. The elements in X ∩ A generate the whole cycle set.

Proof. Note that, using the explicit form in Theorem 5.4.7, we are considering the set

X ∩ A = {(a, 0) | a ∈ Z/p}.

As Φ is non-constant, these elements generate the whole cycle set X .

5.4.2 Getting rid of redundancy and determining automorphisms
The aim of this subsection is to determine unique representatives for the irretractable cycle sets determined
in Section 5.4.1 and moreover, describe their automorphism groups.

Let Fp be the set of all non-constant maps Φ : Z/p → Z/p with the property that Φ(A) = Φ(−A), for
all A ∈ Z/p. Fp is acted upon by (Z/p)× via (αΦ)(A) = α−1Φ(αA). From now on, let Sp be a fixed
system of representatives for this action.

Recall from Theorem 5.4.7 that the cycle sets in the considered case are described as Z/p × Z/p with
the operation

(a, x) · (b, y) = (b+ x, y +Φ(b− a)),
where Φ ∈ Fp.

By Proposition 5.4.1, (G(X, ·), ◦) is non-abelian and by Lemma 5.1.1 it has a unique non-trivial system
of imprimitivity that consists of the blocks {a}×Z/p. Assume thatX = Z/p×Z/p comes with two cycle set
operations ·, ·′ that are given by the parameters Φ,Φ′ ∈ Fp and that ϕ : (X, ·)→ (X, ·′) is an isomorphism.
Then ϕG(X, ·)ϕ−1 = G(X, ·′) so in particular ϕ must normalize the cyclic permutation action on the blocks
and thus be of the form ϕ(a, x) = (αa + β, πa(x)) for some πa ∈ Sp, α ∈ (Z/p)×, β ∈ Z/p. We now
calculate

ϕ((a, x) · (b, y)) = (α(b+ x) + β, πb+x(y +Φ(b− a))),
ϕ(a, x) ·′ ϕ(b, y) = (αb+ β + πa(x), πb(y) + Φ′(α(b− a)).

Equating these terms results in πa(x) = αx, considering the first coordinate. Taking this into account when
considering the second coordinate leaves us with the equation

α(y +Φ(b− a)) = αy +Φ′(α(b− a))⇔ Φ(b− a) = α−1Φ′(α(b− a)).

This shows that Φ,Φ′ define isomorphic cycle sets if and only if there is an α ∈ (Z/p)× such that Φ = αΦ′.
Putting Φ = Φ′, the same considerations prove that ϕ provides an automorphism of a solution with parameter
Φ if and only if ϕ(a, x) = (αx+ β, αx) for α ∈ (Z/p)×, β ∈ Z/p with αΦ = Φ.

Theorem 5.4.9. Let p be a prime and let (X, ·) be an indecomposable irretractable cycle set of size p2

whose permutation group is a p-group. Then there is a unique Φ ∈ Sp such that X is isomorphic to the
cycle set on X = Z/p× Z/p with multiplication

(a, x) · (b, y) = (b+ x, y +Φ(b− a)).

The automorphisms of the latter are precisely the maps

(a, x) 7→ (αa+ β, αx),

for some α ∈ (Z/p)×, β ∈ Z/p with αΦ = Φ.
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5.5 All irretractable cycle sets
Throughout the whole section, we let (X, ·) be an indecomposable irretractable cycle set of size p2 and
G = G(X, ·). As we already covered the case where G is a p-group in Section 5.4, we can assume that G is
not a p-group. Recall, however, that G is solvable. We associate X with its image in G, which is a transitive
cycle base. As X is irretractable, it follows from Corollary 4.1.9 that Soc(G) = {0}.

Let Gp be the Sylow p-subgroup of (G,+) and let Gp′ be the Hall p′-subgroup of (G,+), both are
characteristic in (G,+) hence they are left ideals of G. We denote X = {x1, . . . , xp2} and for 1 ≤ i ≤ p2

we define yi ∈ Gp and zi ∈ Gp′ such that xi = yi + zi. As the λ-action of (Gp, ◦) is transitive on X and
therefore also on Y = {yi | 1 ≤ i ≤ p2}, we find that Y is a transitive cycle base of the brace Gp. In
particular, this implies that |Y | ∈ {1, p, p2}.

Assume that Y has finite multipermutation level. Let q ̸= p be a prime that divides |G| and let Gq
be the Sylow q-subgroup of (G,+), which is a left ideal by the same reasoning as above. It follows from
Lemma 5.2.4 that FixG(Gq) is a subbrace of G and thus Y ∩ FixG(Gq) is a sub-cycle set of Y . By Theo-
rem 4.4.1 we find that Y ∩ FixG(Gq) is either empty or equal to Y . As |Y | is a p-power, Gq fixes at least
one point in Y under the λ-action. This means that Y ∩ FixG(Gq) = Y and thus Gp ⊆ FixG(Gq). It follows
that (Gp, ◦) normalizes (Gq, ◦) but as (G, ◦) acts faithful and transitive on a set of size p2, this implies that
Gq = {0} which contradicts the choice of q. We therefore deduce that Y does not have finite multipermuta-
tion level. Together with the earlier observation that |Y | ∈ {1, p, p2}, we conclude that Y is irretractable of
size p2 and therefore as described in Theorem 5.4.7. In particular, we find that (Gp, ◦) is not abelian.

From now on, we consider the unique block system ofX under the action of G. Recall that its uniqueness
is guaranteed by Lemma 5.1.1. As before, we denote this block system by {Bx | x ∈ X}. We denote the
subgroup of (G, ◦) that fixes the blocks set-wise by A. Then Ap is normal in (G, ◦) by Proposition 5.1.2.
Also, we defineAp = A∩Gp and Ap′ = A∩Gp′ . Note that Ap is a Sylow p-subgroup of (A, ◦) and Ap′ is
a Hall p′-subgroup of (A, ◦).

Let a ∈ Ap and g ∈ Gp′ , then Lemma 5.2.1 yields

λg(g ◦ a ◦ g) = −g + a+ λa(g),

hence
−a+ λg(g ◦ a ◦ g) = −g + λa(g).

As −a + λg(g ◦ a ◦ g) is contained in Gp and −g + λa(g) is contained in Gp′ , we find that λa(g) = g. By
Lemma 5.2.1 this implies that g ◦ a ◦ g = λg(a), so the λ-action of Gp′ restricts to Ap and therefore also to
Y ∩ Ap.

By Proposition 5.4.5 we know thatAp contains a unique representative of each block in the block system
of Y under the action of (Gp, ◦), thus also under the action of (G, ◦). This means that Ap′ acts trivially on
the set Y ∩ Ap or equivalently Y ∩ Ap ⊆ FixG(Ap′). From Lemma 5.2.4 we know that FixG(Ap′) is a
subbrace, sinceAp′ = A∩Gp′ . In particular, FixG(Ap′)∩Y is a sub-cycle set of Y which contains Y ∩Ap
which by Corollary 5.4.8 then implies that FixG(Ap′) ∩ Y = Y . However, as the λ-action of G on Y is
faithful, this means that Ap′ = {0}.

By Proposition 5.1.2 we find that |Gp′ | < p and thus the λ-action of Gp on Gp′ is trivial. As this same
action acts transitively on Z, we find |Z| = 1. Let Z = {z}, then λz is a brace automorphism of Gp by
Lemma 5.2.1 and therefore also its restriction to Y yields a cycle set automorphism. For any xi, xj ∈ X we
find

xi · xj = (yi + z) · (yj + z) = λ−1
yi+z(yj + z) = λ−1

z (yi · yj) + z.

We find that the cycle set structure on X is obtained by deforming the cycle set structure on Y by an
automorphism of Y . In Lemma 5.5.3 we will show that such a deformation is always possible.
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Remark 5.5.1. We remark that the idea of starting from a finite cycle setX and then considering its projection
Y onto the Sylow p-subgroup Gp is strongly related to the notion of cabling as described in Section 1.2.5.
This connection was also explored in [74].

More precisely, let |G(X, ·)| = prm where (p,m) = 1. As for any non-zero multiple k of m the Sylow
p-subgroup G(X, ·)p of (G(X, ·),+) can be written as G(X, ·)p = {kg | g ∈ G}, we find that G(X, ·)p =
G(X, ·(k)), where (X, ·(k)) denotes the k-cabling of (X, ·). In particular, Ret(X, ·(k)) isomorphic to the
cycle set {kσx | x ∈ X} ⊆ G(X, ·) where the equivalence class of x is mapped to kσx. If we let k be such
that k ≡ 1 mod pr then we find that kσx is precisely the projection of σx onto G(X, ·)p, hence in this case
we find that Y ∼= Ret(X, ·(k)), with Y as before.

Proposition 5.5.2. Let (X, ·) be an indecomposable cycle set of order pn, with p a prime. Let k be the
largest divisor of |G(X, ·)| coprime to p. If (X, ·(k)) has finite multipermutation level, then G(X, ·) is a
p-group and thus k = 1.

Proof. The proof follows essentially the same reasoning as earlier in this section, where we proved that Y
is not of finite multipermutation level.

First of all, as (G(X, ·(k)), ◦) is a Sylow p-subgroup, (X, ·(k)) is still an indecomposable cycle set. Now
consider the sub-cycle set

Y = {kσx | x ∈ X} ∼= Ret(X, ·(k)).

As (X, ·(k)) has finite multipermutation level, so does Y .
Let q ̸= p be a prime and let G(X, ·)q be the Sylow q-subgroup of (G(X, ·),+). If we consider the

λ-action of G(X, ·)q on Y , we find that it has fixed points. Since Fix(G(X, ·)q) is a subbrace of G(X, ·)q
we find that Fix(G(X, ·)q) ∩ Y is a sub-cycle set of Y . As this sub-cycle set is non-empty, Theorem 4.4.1
implies that Y ⊆ Fix(G(X, ·)q) and hence G(X, ·)p ⊆ Fix(G(X, ·)q). As a result, G(X, ·)q is a normal
subgroup of (G(X, ·), ◦), but this is impossible as (G(X, ·), ◦) acts transitively and faithfully on a set of
p-power order. We conclude that G(X, ·) must be a p-group, and thus k = 1.

Lemma 5.5.3. Let (X, ·) be a cycle set and let ϕ be an automorphism of (X, ·). Then the following state-
ments hold:

1. X is a cycle set for the operation x ·ϕ y = ϕ(x · y).

2. If (X, ·) is irretractable, then so is (X, ·ϕ).

Proof. By the functoriality of the construction of the structure brace G(X, ·), we get an induced automor-
phism ϕ′ of G(X, r) which restricts to ϕ on the generating set X ⊆ G(X, ·). We let Triv(Z) act on G(X, ·)
where 1 acts by the automorphism (ϕ′)−1, and consider the semidirect product

G(X, ·)⋊ Triv(Z).

The set X × {1} ⊆ G(X, ·)⋊ Triv(Z) is closed under the λ-action. Hence, it forms a sub-cycle set that is
precisely the cycle set described in the statement, up to the correspondence x 7→ (x, 1).

If (X, ·) is irretractable, then also (X, ·ϕ) is irretractable as for any x, y, z ∈ X it follows directly that
x · z = y · z if and only if x ·ϕ z = y ·ϕ z.

Lemma 5.5.4. Let (X, ·) be a finite cycle set and ϕ an automorphism of (X, ·) of orderm coprime to |G(X)|
such that ϕ has a fixed point. Then

G(X, ·ϕ) = G(X, ·)⋊ ⟨ϕ⟩,



5.5. ALL IRRETRACTABLE CYCLE SETS 113

as subgroups of SX and
G(X, ·ϕ) ∼= G(X, ·)⋊ Triv(Z/m),

as braces where 1 ∈ Z/m acts on G(X, ·) by mapping σx to σϕ−1(x). In particular, if (X, ·) is indecom-
posable then so is (X, ·ϕ) and (X, ·) = (X, (·ϕ)(k)) for any k ∈ Z such that k ≡ 0 mod m and k ≡ 1
mod |G(X)|.
Proof. First of all, note that for x ∈ X , its σ-map with respect to the cycle set (X, ·ϕ) is given by σxϕ−1,
where σx is its σ-map with respect to the original cycle set (X, ·). Explicitly, we have

G(X, ·) = ⟨σx | x ∈ X⟩, G(X, ·ϕ) = ⟨ϕ−1σx | x ∈ X⟩.

Let x ∈ X such that ϕ(x) = x, then ϕσx = σxϕ and thus (ϕ−1σx)
n = ϕ−nσnx for all n ∈ Z. If we choose

n such that n ≡ 0 mod |G(X, ·)| and n ≡ 1 mod m, then ϕ−1 = (ϕ−1σx)
n ∈ G(X, ·ϕ). It follows that

G(X, ·ϕ) is generated by {σx | x ∈ X} ∪ {ϕ}. Since ϕσxϕ−1 = σϕ(x), we find that ϕ normalizes G(X, ·)
and since G(X, ·) ∩ ⟨ϕ⟩ because their sizes are coprime, we conclude that G(X, ·ϕ) = G(X, ·)⋊ ⟨ϕ⟩ in SX .

Next, consider the semidirect product of braces G(X, ·) ⋊ Triv(Z/m) where 1 ∈ Z/m acts by the
automorphism σx 7→ σϕ−1(x). Note that the map

X × Z/m→ SX : (x, n) 7→ σxϕ
−1,

extends to a group homomorphism g : (G(X, ·), ◦)⋊ Z/m→ SX since

g((0, 1)(x, 0)(0,−1)) = g(ϕ−1(x)) = σϕ−1 = ϕ−1σxϕ = g(0, 1)g(x, 0)g(0,−1).

Also for x, y ∈ X , λ−1
(x,1)(y, 1) = (ϕ(λ−1

x (y), 1) and thus

X → G(X, ·)⋊ Triv(Z/m) : x 7→ (x, 1),

is a homomorphism of cycle sets, where we see G(X, ·) ⋊ Triv(Z/m) as a cycle set in the canonical way.
By Theorem 1.2.21 we find a brace homomorphism f : G(X, ·ϕ) → G(X, ·) ⋊ Triv(Z/m). Since the
composition gf : (G(X, ·ϕ), ◦) → SX maps x to σxϕ−1, we find that ker gf = ker f is precisely the socle
of G(X, ·ϕ) and thus we conclude that

G(X, ·ϕ) ∼= G(X, ·ϕ)/ ker f ∼= G(X, ·)⋊ Triv(Z/m).

The first part of the statement implies that (X, ·ϕ) is indecomposable when (X, ·) is indecomposable and the
last part of the statement follows from Remark 5.5.1.

Lemma 5.5.5. Let (X, ·), (X, ·′) be finite cycle sets and let ϕ ∈ Aut(X, ·), ψ ∈ Aut(X, ·′) be such that
|G(X, ·)||G(X, ·′)| is coprime to the orders of ϕ and ψ. Assume also that ϕ and ψ both have a fixed point.
Then f : (X, ·ϕ) → (X, ·′ψ) is an isomorphism if and only if f : (X, ·) → (X, ·′) is an isomorphism and
ψ = fϕf−1. In particular, Aut(X, ·ϕ) is precisely the centralizer of ϕ in Aut(X, ·).
Proof. Assume that f : (X, ·ϕ) → (X, ·′ψ) is an isomorphism. From Lemma 5.5.4 and the assumptions
we find the existence of some k ∈ Z such that (X, (·ϕ)(k)) = (X, ·) and (X, (·′ψ)(k)) = (X, ·′). The
functoriality of cabling now yields that f induces an isomorphism f : (X, ·) → (X, ·′). For any x, y ∈ X
we find f(x ·ϕ y) = fϕ(x · y) and f(x) ·ψ f(y) = ψf(x · y), hence f(x ·ϕ y) = f(x) ·ψ f(y) if and only if
ψ = fϕf−1. This proves one implication of the statement.

Conversely, assume that f : (X, ·)→ (X, ·′) is an isomorphism and ψ = fϕf−1. Then

f(x ·ϕ y) = fϕ(x · y) = ψ(f(x · y)) = ψ(f(x) ·′ f(y)) = f(x) ·′ψ f(y),

for all x, y ∈ X .
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Theorem 5.5.6. Let (X, ·) be an irretractable cycle set of size p2 where p is a prime. Then there exists a
unique Φ ∈ Sp and α ∈ (Z/p)× satisfying αΦ = Φ such that X is isomorphic to the cycle set on Z/p×Z/p
with multiplication

(a, x) · (b, y) = (αb+ αx, αy + αΦ(b− a)).

If α = 1, then the cycle sets are the ones that appear in Theorem 5.4.9. If α ̸= 1, then any automorphism of
(X, ·) is of the form (a, x) 7→ (γa, γx) for some γ ∈ (Z/p)× with γΦ = Φ.

Proof. From the discussion preceding Lemma 5.5.3 we know that (X, ·) can be obtained by starting from
a cycle set structure on X whose permutation group is a p-group and deforming such a cycle set by an
automorphism of order coprime to p, in the sense of Lemma 5.5.3. From Theorem 5.4.9 it follows that, up
to a cycle set isomorphism, X = Z/p× Z/p and

(a, x) · (b, y) = (αb+ αx+ β, αy + αΦ(b− a)),

for some Φ ∈ Sp, α ∈ (Z/p)× and β ∈ Z/p, satisfying αΦ = Φ. By Lemma 5.5.5 we may even assume
β = 0. We therefore get that up to isomorphism the multiplication on X is precisely as in the statement.

Conversely, it follows directly from Lemma 5.5.3 and Lemma 5.5.4 that Z/p × Z/p with the given
multiplication always yields an indecomposable irretractable cycle set. As a consequence of Lemma 5.5.5,
we find that different choices of α and Φ yield non-isomorphic solutions and also that the automorphisms
are the ones described in the statement. Note in particular that the necessary conditions are satisfied since
any point (0, 0) is always fixed under the considered automorphisms.

Remark 5.5.7. Observe that if α ̸= 1 in Theorem 5.5.6, then |G(X, ·)| has prime divisors different from p.
This means that the permutation braces of these solutions are all examples of singular brace as defined in
[138].

5.6 Summary
We summarize our classification result in the following theorem.

Theorem 5.6.1. Let (X, ·) be an indecomposable cycle set of size p2 for p a prime. Then X is isomorphic
to a cycle set of one of the following forms:

1. X = Z/p2, with x · y = y + 1.

2. X = Z/p× Z/p, with

(a, x) · (b, y) = (b+ 1, y + χ0(b)S +Φ(b− a)),

where Φ : Z/p→ Z/p is a non-constant map with Φ(0) = 0, S ∈ Z/p and χ0 : Z/p→ Z/p with

χ0(x) =

{
1 x = 0

0 x ̸= 0
.

The parameters S,Φ and S′,Φ′ define isomorphic cycle sets if and only if S = S′ and αΦ = Φ′ for
some α ∈ (Z/p)×.
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3. X = Z/p× Z/p, with
(a, x) · (b, y) = (αb+ αx, αy + αΦ(b− a)),

where Φ : Z/p → Z/p is a non-constant map with Φ(x) = Φ(−x) and α ∈ (Z/p)× is such that
Φ(αx) = αΦ(x). The parameters α,Φ and α′,Φ′ define isomorphic cycle sets if and only if α = α′

and there is a β ∈ (Z/p)× such that β−1Φ(βx) = Φ′(x), for all x ∈ Z/p.

These three cases are mutually exclusive.

Proof. Corollary 5.3.4 tells us that the indecomposable cycle sets of size p2 that have finite multipermutation
level 1 and 2, are exactly the ones described in cases 1 and 2 respectively. On the other hand, the irretractable
cycle sets are classified, up to isomorphism, in Theorem 5.5.6 and make up case 3.

5.6.1 Indecomposable set-theoretical solutions of size p2

Recall that given a cycle set on X , the associated solution is given by

rX(x, y) = (σx(y), σx(y) · x),

where we recall that σx is the inverse of the bijection y 7→ x·y. Therefore, we can obtain all indecomposable
solutions of size p2 simply translating the cycle sets obtained in Theorem 5.6.1 to set-theoretical solutions.
For the first one we obtain r(x, y) = (y − 1, x+ 1) since σ−1

x (y) = y + 1.
For the second family of cycle sets we find σ−1

(a,x)(b, y) = (b+ 1, y + Sχ0(b) + Φ(b− a)), hence

σ(a,x)(b, y) = (b− 1, y − Sχ0(b− 1)− Φ(b− 1− a)),

and

τ(b,y)(a, x) = σ(a,x)(b, y) · (a, x) = (b− 1, y − Sχ0(b− 1)− Φ(b− 1− a)) · (a, x)
= (a+ 1, x+ Sχ0(a) + Φ(a− b+ 1)).

Thus, the associated solution is

r

(
(a, x)
(b, y)

)
=

(
(b− 1, y − Sχ0(b− 1)− Φ(b− 1− a))
(a+ 1, x+ Sχ0(a) + Φ(a− b+ 1))

)
.

Finally, for the last family, we have σ−1
(a,x)(b, y) = (αb+αx, αy+αΦ(b−a)). Using the fact that Φ(αx) =

αΦ(x) for all x ∈ Z/p, we find

σ(a,x)(b, y) =
(
α−1b− x, α−1y − Φ

(
α−1b− x− a

))
,

and

τ(b,y)(a, x) = σ(a,x)(b, y) · (a, x) =
(
α−1b− x, α−1y − Φ

(
α−1b− x− a

))
· (a, x)

=
(
αa+ α

(
α−1(y − Φ(b− αx− αa))

)
, αx+ αΦ

(
a− α−1(b− αx)

))
= (αa+ y − Φ(b− αx− αa), αx+Φ(αa− b+ αx)) .

Thus the associated solution is

r

(
(a, x)
(b, y)

)
=

(
(α−1b− x, α−1y − Φ(α−1b− x− a)))

(αa+ y − Φ(b− αx− αa), αx+Φ(αa− αx− b))

)
.
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Theorem 5.6.2. Each indecomposable non-degenerate involutive set-theoretical solution (X, r) of the Yang–
Baxter equation of size p2 for some prime p is isomorphic to one of the following solutions:

1. X = Z/p2, with r(x, y) = (y + 1, x− 1).

2. X = Z/p× Z/p, with

r

(
(a, x)
(b, y)

)
=

(
(b− 1, y − χ0(b− 1)S − Φ(b− 1− a))
(a+ 1, x+ χ0(a)S +Φ(a− b+ 1))

)
where Φ : Z/p→ Z/p is a non-constant map with Φ(0) = 0, S ∈ Z/p and χ0 : Z/p→ Z/p with

χ0(x) =

{
1 x = 0

0 x ̸= 0
.

The parameters S,Φ and S′,Φ′ define isomorphic solutions if and only if S = S′ and αΦ = Φ′ for
some α ∈ (Z/p)×.

3. X = Z/p× Z/p, with

r

(
(a, x)
(b, y)

)
=

(
(α−1b− x, α−1y − Φ(α−1b− x− a))

(αa+ y − Φ(b− αx− αa), αx+Φ(αa− αx− b))

)
where Φ : Z/p → Z/p is a non-constant map with Φ(x) = Φ(−x) and α ∈ (Z/p)× is such that
Φ(αx) = αΦ(x).

The parameters α,Φ and α′,Φ′ define isomorphic solutions if and only if α = α′ and there is a
β ∈ (Z/p)× such that β−1Φ(βx) = Φ′(x) for all x ∈ Z/p.

In fact, these solutions are isomorphic to those constructed in [53, Theorem 5.1] as we will show in the
remainder of this section. In particular, this answers [53, Question 7.3] affirmatively. We first recall the
definition of a simple solution, see also [44, 65, 94] for a complete characterization of such solutions in
terms of their permutation skew brace.

Definition 5.6.3. A solution (X, r) is simple if for any solution (Y, s) and any surjective homomorphism
f : (X, r)→ (Y, s), we have that either f is an isomorphism or |Y | = 1.

Theorem 5.6.4 ([53, Theorem 5.1]). Let p be a prime number. Let t ∈ Z/p be a non-zero element. Let
f : Z/p→ Z/p be a map such that:

(S1) f(i) = f(−i), for all i ∈ Z/p.

(S2) f(tsi) = tsf(i)− (ts − 1)f(0), for all i ∈ Z/p and s ∈ Z.

(S3) f is not a constant map.

Let X = Z/p× Z/p and r : X2 → X2 be the map

r

(
(i, j)
(k, l)

)
=

(
λ(i,j)(k, l)

λ−1
λ(i,j)(k,l)

(i, j)

)
,

where λ(i,j)(k, l) = (tk + j, t(l − f(tk + j − i))). Then (X, r) is a simple solution of the YBE.
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We will denote the solution associated with cycle sets of the form (3) in Theorem 5.6.1 with parameters
Φ, α as rα,Φ with first component

λΦ,α(a,x) : (b, y) 7→ (α−1b− x, α−1y − Φ(α−1b− x− a))).

Similarly, we will denote the solution constructed in Theorem 5.6.4 with parameters f, t as rf,t with first
component

σf,t(i,j) : (k, l) 7→ (tk + j, t(l − f(tk + j − i))).

With this notation and fixing X = Z/p × Z/p, it is easy to prove that the map Ψ(i, j) = (i,−j) is an
isomorphism of solutions Ψ : (X, rΦ,α)→ (X, rfΦ,α,α

−1

), where fΦ,α : i 7→ −Φ(αi), since

λΦ,αΨ(i,j)(Ψ(k, l)) = λΦ,α(i,−j)((k,−l)) = (α−1(k + αj), α−1(−l − Φ(k + αj − αi)))

= (α−1k + j, α−1(−l + fΦ,α(α
−1k + j − i)))

= Ψ(α−1k + j, α−1(l − fΨ,α(k + αj − αi))

= Ψ
(
σ
fΦ,α,α

−1

(i,j) (k, l)
)
.

It remains to show that, with the conditions for Φ and α given in Theorem 5.6.1, the parameters f = fΦ,α
and t = α−1 satisfy the properties required by Theorem 5.6.4. Since Φ satisfies (S1) and (S3), so does fΦ,α.
Moreover, since Φ(αi) = αΦ(i), we have that

fΦ,α(α
−si) = −Φ(αα−si) = −α−sΦ(αi) = α−sfΦ,α(i).

Hence fΦ,α satisfies (S2) if and only if (α−s − 1)fΦ,α(0) = 0 for all s ∈ Z, which is equivalent to
(α− 1)Φ(0) = 0. But the latter is a consequence of the properties of Φ and α as Φ(0) = Φ(α0) = αΦ(0).

5.6.2 Enumeration of indecomposable, irretractable cycle sets of size p2

In this subsection, we will use the following convention extending the notation introduced in Section 5.2:
for a group G acting on a set X by an action (g, x) 7→ gx, we denote the set of fixed points by

FixX(G) = {x ∈ X | gx = x for all g ∈ G}.

Recall that we defined Fp as the set of all non-constant maps Φ : Z/p→ Z/p such that Φ(−A) = Φ(A) for
all A ∈ Z/p. It is acted upon by the group (Z/p)× with the action given by αΦ : A 7→ α−1Φ(αA).

By Theorem 5.6.1, every irretractable cycle set can be described by a pair (Φ, α) where Φ ∈ Fp and
α ∈ (Z/p)× such that αΦ = Φ. Furthermore, (Φ, α) and (Φ′, α′) define isomorphic cycle sets, if and only
if α = α′ and Φ′ = βΦ for some β ∈ (Z/p)×. It follows directly that for p = 2 we find 2 non-isomorphic
indecomposable irretractable cycle sets of size 4.

Assume p ̸= 2 from now on. For a pair (Φ, α) with Φ(0) ̸= 0, the condition Φ(αA) = αΦ(A) forces
α = 1. As Φ(0) ̸= 0, there is exactly one β ∈ (Z/p)× such that βΦ(0) = 1. Therefore, each cycle set with
parameters (Φ, α), Φ(0) ̸= 0, is isomorphic to a unique cycle set with parameters (Φ̃, 1) where Φ̃(0) = 1,
and these parameters define mutually non-isomorphic cycle sets. We find np = p

p−1
2 − 1 such cycle sets.

This leaves the case where Φ(0) = 0. We define

F ′
p = {Φ ∈ Fp | Φ(0) = 0}.
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We first calculate, for a fixed α ∈ (Z/p)×, the number of isomorphism classes of cycle sets with parameters
contained in the set

{(Φ, α) | Φ ∈ F ′
p,
αΦ = Φ,Φ(0) = 0},

or equivalently, the number of orbits of FixF ′
p
(⟨α⟩) under the action of (Z/p)×.

Let d denote the multiplicative order of α. The condition p ̸= 2 implies that FixF ′
p
(⟨α⟩) is empty for

α = −1, as Φ(A) = Φ(−A). More generally, the same applies whenever −1 ∈ ⟨α⟩ ≤ (Z/p)×. This means
that we can restrict to the case that d is odd. Writing p − 1 = 2kl, with 2 ∤ l, this amounts to restricting to
the case where

α ∈ {x ∈ (Z/p)× : xl = 1} =: ζl ∼= Z/l.

A function Φ ∈ F ′
p that satisfies αΦ = Φ, is already defined by its values on coset representatives of

(Z/p)×/ ⟨−1, α⟩. Since Φ is non-constant and Φ(0) = 0, we find |FixF ′
p
(⟨α⟩)| = p

p−1
2d − 1.

Next, we compute the number of elements in FixF ′
p
(⟨α⟩) that are fixed by a given β ∈ (Z/p)× to apply

Burnside’s lemma afterwards. Once again, only the case where β ∈ ζl is non-trivial, so we can restrict to this
case. Note that the elements fixed by both α and β are precisely the ones contained in the set FixF ′

p
(⟨α, β⟩).

By the previous discussion this set has size p
p−1
2c − 1, where c is the size of the group ⟨α, β⟩. For any given

c ≥ 1 such that d|c|l, there are precisely φ( cd ) different cosets [β] ∈ ζl/⟨α⟩ such that |⟨α, β⟩| = c. Since
each of these cosets has size d, we find dφ( cd ) elements β ∈ ζl such that |⟨α, β⟩| = c. From Burnside’s
lemma, we get that there are

1

p− 1

∑
β∈(Z/p)×

|FixF ′
p
(⟨α, β⟩)| = 1

p− 1

∑
β∈(Z/p)×

(p
p−1

2|⟨α,β⟩| − 1)

=
1

p− 1

∑
c≥1
d|c|l

∑
β∈(Z/p)×
|⟨α,β⟩|=c

(p
p−1
2c − 1)

=
d

p− 1

∑
c≥1
d|c|l

φ
( c
d

)
(p

p−1
2c − 1)

equivalence classes for parameters of the form (Φ, α) with Φ(0) = 0.
Considering that there are φ(d) choices of α ∈ ζl such that α has order d, we get the following number

of non-isomorphic cycle sets with parameters (Φ, α) with Φ(0) = 0:

n′p =
1

p− 1

∑
c,d≥1
d|c|l

dφ(d)φ
( c
d

)
(p

p−1
2c − 1) =

1

p− 1

∑
c,d≥1
d|c|l

dφ(d)φ
( c
d

)
(p2

k−1 l
c − 1).

Note that the function

ψ(c) =
∑
d≥1
d|c

dφ(d)φ
( c
d

)

is a convolution of multiplicative functions. Here, multiplicative means µ(mn) = µ(m)µ(n) for coprime
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positive integers m,n. So also ψ is a multiplicative function which evaluates on prime powers qν , ν ≥ 1, as

ψ(qν) =

ν∑
k=0

qkφ(qk)φ(qν−k)

= qν(q − 1)qν−1 + (q − 1)qν−1 +

ν−1∑
k=1

(q − 1)2qν+k−2

= (q − 1)

(
q2ν−1 + qν−1 + (q − 1)qν−1

ν−1∑
k=1

qk−1

)
= (q − 1)

(
q2ν−1 + qν−1 + qν−1(qν−1 − 1)

)
= (q − 1)

(
q2ν−1 + q2ν−2

)
= (q2 − 1)q2ν−2.

For a number with prime factorization c =
∏
i q
νi
i , we therefore get

ψ(c) =
∏
i

(q2i − 1)q2νi−2
i .

The total number of indecomposable, non-isomorphic, irretractable cycle sets of size p2 can therefore be
described as:

np + n′p = p
p−1
2 − 1 +

∑
c|l

ψ (c)
p2
k−1 l

c − 1

p− 1

where p− 1 = 2kl with 2 ∤ l.
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Chapter 6
Indecomposable involutive solutions with
abelian permutation group

It is natural to study classes of involutive solutions whose permutation group satisfies a certain condition.
Arguably, the easiest such property is abelianity. It was proved by Cedó, Jespers and Okniński [50] that every
finite involutive solution whose permutation group is abelian has finite multipermutation level. Gateva-
Ivanova and Cameron proved, among other results, that square-free indecomposable involutive solutions
with an abelian permutation group are necessarily trivial [79, Theorem 7.1]. In [90], Jedlička, Pilitowska
and Zamojska-Dzienio gave an explicit construction of all finite indecomposable involutive solutions with
an abelian permutation group of multipermutation level at most 2. It is interesting to note that the seemingly
slightly stronger condition that the structure group is abelian implies triviality for involutive solutions [78,
Theorem 6.1]. This no longer holds for non-involutive solutions; in [17] Bardakov and Nasybullov give a
full classification of quandles whose structure group is a free abelian group on 2 generators. Finite quandles
with an abelian permutation group were studied and classified by Lebed and Mortier in [113].

In this chapter, we characterize, and up to some extent classify and enumerate, indecomposable solutions
with an abelian permutation group. In Section 6.1 we reduce this classification problem to classifying braces
with a transitive cycle set whose multiplicative group is abelian. In Section 6.2 describe how all finite braces
with an abelian multiplicative group and a transitive cycle base can be obtained starting from matrices. We
define a group action on such matrices such that two matrices yield isomorphic braces precisely when they
lie in the same orbit. Subsequently, we use these results to explicitly enumerate isomorphism classes of
finite indecomposable solutions with an abelian permutation group of multipermutation level 2 and 3 in
Section 6.3. At last, we also discuss infinite indecomposable solutions with an abelian permutation group in
Section 6.4. We are able to give a full classification of the ones of multipermutation level 2 and of those that
have a torsion-free permutation group.

All results in this chapter for which no external reference is given were obtained in collaboration with
Marco Castelli and are contained in the preprint [45].

6.1 Reducing the classification to braces
Let AbBr be the category with as objects bracesAwith an abelian multiplicative group, with a distinguished
transitive cycle base X . We denote such an object by (A,X). Morphisms (A,X) → (B, Y ) are brace
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morphisms f : A → B such that f(X) ⊆ Y . Also, let AbSol be the category formed by indecomposable
involutive solutions with an abelian permutation group and homomorphisms of solutions. Note that for an
object (A,X) ∈ AbBr, the automorphism of (A,X) coincides with Aut(A,X) as defined in Section 4.4.
The following is a slight variation of [137, Corollary 2].

Proposition 6.1.1. There exists a bijective correspondence between isomorphism classes of AbSol and
isomorphism classes in AbBr. Moreover, the size and multipermutation level of objects are preserved
under this correspondence.

Proof. Recall that every indecomposable involutive solution with an abelian permutation group can be ob-
tained through the construction in Proposition 1.2.24 from a brace A, an element x contained in a transitive
cycle baseX andK = {0}. Moreover, it follows from Proposition 1.2.25 that the obtained solution does not
depend on the choice of x ∈ X and that the solutions associated to (A,X), (B, Y ) ∈ AbBr are isomorphic
if and only if (A,X) and (B, Y ) are isomorphic. This correspondence clearly preserves the size of objects.
Theorem 4.1.10 and Corollary 4.1.11 ensure that also the multipermutation level is preserved.

It is a direct consequence of Proposition 6.1.1 that the classification of indecomposable solutions with
an abelian permutation group can be obtained through a classification of braces whose multiplicative group
is abelian and admit a transitive cycle base. In particular, all solutions are of the form described in the
following example.

Example 6.1.2. Let A be a one-generated nilpotent ring with generator x. Then from Proposition 4.2.13
it follows that (1 + A)x = x + Ax is a transitive cycle base of the brace A. Let (A, rx) denote the
indecomposable solution obtained from Proposition 1.2.24 from A, the element x and K = {0}, then rx is
explicitly given by

rx(a, b) = (σa(b), σ
−1
σa(b)

(a)),

where
σa(b) = λa(x) ◦ b = (ax+ x) ◦ b = ax+ x+ b+ axb+ xb.

Remark 6.1.3. Recall from Theorem 4.2.5 that multipermutation braces with an abelian multiplicative group
that admit a transitive cycle base are necessarily one-generated as a brace. Under the correspondence be-
tween Jacobson radical rings and two-sided braces, being one-generated as a ring is generally not the same
as being one-generated as a skew brace; the latter is a weaker notion since a subring of a Jacobson radical
ring is a monoid but not necessarily a group for the operation ◦. However, for a nil two-sided brace A these
two notions coincide as a =

∑∞
i=1(−a)i for any a ∈ A.

6.2 Abelian one-generated braces
LetA be a one-generated multipermutation brace with an abelian multiplicative group with generator x ∈ A.
As A is one-generated as a ring, every element a ∈ A is of the form

∑n
i=1 aix

i, for some n ≥ 0 and ai ∈ Z,
where xn is the ∗-product of n occurrences of x. More generally every element a ∈ Ak can be written
as
∑n
i=k aix

n for some n ≥ 0 and ai ∈ Z, or equivalently Ak = {xk−1 ∗ a | a ∈ A} for k > 1. As
∗-multiplication by x is an endomorphism of (A,+), we obtain the following result.

Lemma 6.2.1. Let A be a brace generated by x ∈ A with an abelian multiplicative group. Then we have a
chain of surjective group homomorphisms

(A/A2,+)→ (A2/A3,+)→ (A3/A4,+)→ . . .

where for all i ≥ 1, the map Ak/Ak+1 → Ak+1/Ak+2 is given by a+Ak+1 7→ x ∗ a+Ak+2.
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Definition 6.2.2. Let A be a finite one-generated brace with an abelian multiplicative group. We say that A
is of type (m1, . . . ,mn), for m1, . . . ,mn ≥ 1, if |Ai/Ai+1| = mi for 1 ≤ i < n and An+1 = {0}. We
define AbBr(m1, . . . ,mn) as the full subcategory of AbBr consisting of objects (A,X) with A of type
(m1, . . . ,mn).

Definition 6.2.3. For a finite indecomposable multipermutation solution (X, r), we say that (X, r) is of
type (m1, . . . ,mn), for m1, . . . ,mn ≥ 1, if |Reti−1(X, r)|/|Reti(X, r)| = mi for 1 ≤ i < n and
|Retn(X, r)| = 1. We define AbSol(m1, . . . ,mn) as the full subcategory consisting of objects (X, r) ∈
AbSol such that (X, r) is of type (m1, . . . ,mn).

The following result generalizes the observation by Rump that |A2||Soc(A)| = |A| for a finite brace A
with a cyclic multiplicative group; this was remarked in the introduction of [137] and follows from equation
(15) and Proposition 9 of [134].

Lemma 6.2.4. Let A be a finite one-generated brace with an abelian multiplicative group. Then

|Sock(A)||Ak+1| = |A|,

or equivalently |Ak| = |Retk−1(A)| for all k ≥ 0.

Proof. We prove by induction that for all k ≥ 1 and a ∈ A, xk ∗ a = 0 if and only if a ∈ Sock(A). For
k = 1, note that xk ∗ a = 0 if and only if a ∗ A = A ∗ a = 0, the latter is equivalent to a ∈ Soc(A). Now
assume that the statement holds for k ≥ 1. Then xk+1 ∗a = xk ∗ (x∗a) = 0 if and only if x∗a ∈ Sock(A).
However, as x + Sock(A) generates A/ Sock(A), the case k = 1 yields that the latter is equivalent to
a + Sock(A) ∈ Soc(A/ Sock(A)) hence a ∈ Sock+1(A). Now notice that xk ∗ a = 0 if and only if a is
contained in the kernel of the surjective homomorphism (A,+) → (Ak+1,+) given by multiplication by
xk. As Ak+1 = {xk ∗ a | a ∈ A}, the statement now follows.

Proposition 6.2.5. Let m1, . . . ,mn ≥ 1. The bijective correspondence from Proposition 6.1.1 restricts to
a bijective correspondence between isomorphism classes of AbSol(m1, . . . ,mn) and isomorphism classes
of AbBr(m1, . . . ,mn).

Proof. This follows directly from Corollary 4.1.9 and Lemma 6.2.4.

Corollary 6.2.6. Let m1, . . . ,mn ≥ 1 and (X, r) in AbSol(m1, . . . ,mn). Then

|Aut(X, r)| = m1|Aut(G(X, r), X ′)|

with X ′ the image of X in G(X, r).

Proof. From Proposition 4.4.8 and Lemma 4.4.11 we know that Aut(X, r) has a normal subgroup isomor-
phic to Soc(G(X, r)) such that the quotient is isomorphic to Aut(G(X, r), X ′). As m1 = |A/A2|, which is
in turn equal to |Soc(A)| by Lemma 6.2.4, the statement follows.

Example 6.2.7. Consider the ring Z[x]/(xn+1). Let Fn denote its (non-unital) subring generated by x.
Then clearly Fn is nilpotent, in particular Fnn ̸= 0 but Fn+1

n = 0. It follows that Fn is a one-generated brace
with an abelian multiplicative group. The orbit of x is (1 + Fn)x = x+ F 2

n and is a transitive cycle base of
Fn.

From now on, the object (Fn, x+ F 2
n) ∈ AbBr will be denoted by F ∗

n . If I is an ideal of Fn, then the
image of x + F 2

n in Fn/I is a transitive cycle base of Fn/I and Fn/I together with this cycle base will be
denoted by (Fn/I)

∗.
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Proposition 6.2.8. Let A be a one-generator two-sided brace with multipermutation level at most n and
y ∈ A a generator, there is a unique surjective brace homomorphism f : Fn → A mapping x to y.

Proof. Let F denote the (non-unital) subring of Z[x] generated by x. Then there exists a unique ring homo-
morphism f ′ : F → A where x 7→ y. Since mpl(A) ≤ n, we find that that yn+1 = 0 and thus f ′ yields a
ring homomorphism f : Fn → A. Since f is also a brace homomorphism and y generates A, f is surjective.
As Fn is generated (as a brace) by x, the uniqueness of f is guaranteed.

Corollary 6.2.9. Let (A, Y ) ∈ AbBr with A of multipermutation level at most n. Then there exists a
surjective homomorphism f : F ∗

n → (A, Y ). In particular, (A, Y ) is isomorphic to (Fn/ ker f)
∗.

Corollary 6.2.10. Let (X, r) ∈ AbSol with mpl(X, r) = n. Then both the additive and multiplicative
groups of G(X, r) are generated by at most n elements.

Proof. Clearly (Fn,+) is free abelian of rank n. As (F kn/F
k+1
n , ◦) ∼= Z for all 1 ≤ k ≤ n and (Fn, ◦)

is abelian, we find that also (Fn, ◦) is free abelian of rank n. The first part of the result then follows from
Corollary 6.2.9.

Remark 6.2.11. For n = 2 the first part of the previous corollary was proved in [90].

Since a finite brace A with an abelian multiplicative group is, in particular, two-sided, it is strongly
nilpotent and therefore it has a (uniquely determined) type. By Proposition 1.1.25 we find that A is a direct
product of braces of prime power size. We therefore will restrict to braces, and thus also solutions, of prime
power size. From Lemma 6.2.1 it follows that if |A| = pd for some prime p, then A is of type (pd1 , . . . , pdn)
for some d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 such that d = d1 + . . .+ dn. In the remainder of this section, we fix the
notation that n ≥ 1, p is a prime, d1, . . . , dn are integers such that d1 ≥ . . . ≥ dn ≥ 0 and d =

∑n
i=1 di.

From Corollary 6.2.9 it follows that any object in AbBr(pd1 , . . . , pdn) is isomorphic to (Fn/I)
∗ for

some ideal I . This now yields two natural questions: (1) Can we determine all ideals I of Fn such that
(Fn/I)

∗ ∈ AbBr(pd1 , . . . , pdn)? (2) Can we determine when two such ideals give an isomorphic quotient?
We start by providing an answer to the first question.

We define group endomorphisms s+, s− : Zn → Zn by s+(v1, . . . , vn) = (0, v1, . . . , vn−1) and
s−(v1, . . . , vn) = (v2, . . . , vn, 0).

Definition 6.2.12. LetM(pd1 , . . . , pdn) be the set of all n× n-matrices M such that

1. M is upper triangular.

2. M contains only positive integer elements.

3. Every diagonal element of M is strictly greater than every other element in the same column.

4. For every k such that 1 ≤ k < n, the image of the k-th row of M under s+ is contained in the
subgroup of Zn generated by (k + 1)-th until n-th row.

5. The diagonal of M is (pd1 , . . . , pdn).

Proposition 6.2.13. There exists a bijective correspondence between matrices in M(pd1 , . . . , pdn) and
ideals of I in Fn such that Fn/I is of type (pd1 , . . . , pdn).
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Proof. LetM′ be the class of n × n-matrices satisfying the first three conditions of Definition 6.2.12 and
such that their diagonal contains only non-zero elements. It is easily seen that every integer n × n-matrix
of rank n is row equivalent to a unique matrix inM′. It follows from basic techniques from linear algebra
that there exists a bijective correspondence between matrices inM′ and subgroups I of Zn of finite index,
where to a matrix M = (mi,j) ∈ M′ we associate the subgroup IM of Zn generated by the rows of M .
As the elements x, x2, . . . , xn form a basis of (Fn,+), we obtain a correspondence between matrices inM′

and finite subgroups of (Fn,+).
We claim that IM is an ideal if and only ifM satisfies condition 4. Let f1, . . . , fn ∈ Fn be the generators

of IM associated to the rows ofM . In order for IM to be an ideal, we need that x∗fk ∈ IM for all 1 ≤ k ≤ n.
As the first k coordinates of fk are 0, we find that the latter happens precisely if x ∗ fk ∈ ⟨fk+1, . . . , fn⟩+.
Because ∗-multiplying fk by x is the same as shifting its coordinates to the right, this proves the claim.

At last we prove that the lower series of Fn/I is of type (pd1 , . . . , pdn) if and only ifM satisfies condition
5. For this, it suffices to note that F in consists of all elements which are 0 on the first i−1 coordinates, hence
the additive group of (Fn/I)i/(Fn/I)i+1 is isomorphic to Z/mi,i, from which the last part of the statement
follows.

Theorem 6.2.14. Let M ∈ M(pd1 , . . . , pdn) and let A = Fn/IM . Then (A, rx+IM ) is a solution in
AbSol(pd1 , . . . , pdn) and every solution in AbSol(pd1 , . . . , pdn) is isomorphic to such a solution.

Proof. This follows from Corollary 6.2.9 and Proposition 6.2.13.

Remark 6.2.15. If, within the setting of Theorem 6.2.14, we identify an element a1x1 + . . . + anx
n, then

we find for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn that the σ-map of the solution (A, rx+IM ) in Theo-
rem 6.2.14 is given by σa+IM (b+ IM ) = (c1(a, b), . . . , cn(a, b)) + IM with c1(a, b) = b1 + 1 and

ci(a, b) = ai−1 + bi−1 + bi +
∑

1≤k<i−1

akbi−k.

Proposition 6.2.16. The setM(pd1 , . . . , pdn) has size pd−d1 .

Proof. We will prove this by induction on n. If n = 1, the statement is clear. Now let n ≥ 2. Let
M ′ ∈ M(pd2 , . . . , pdn). We will count the number of matrices M ∈ M(pd1 , . . . , pdn) such that if we
remove the first row and column of M , we obtain M ′.

Let fi ∈ Zn be the i-th row of such M . Then f2, . . . , fn are completely determined by M ′, so we need
to compute the number of choices of f1. Let us consider what the conditions in Definition 6.2.12 imply
on f1: condition 1 does not impose restrictions on f1, condition 4 means that s+(f1) ∈ ⟨f2, . . . , fn⟩+ and
condition 5 means that the first coordinate of f1 is pd1 . Conditions 2 and 3 mean that we can determine
f1 up to equivalence in Zn/⟨f2, . . . , fn⟩+, as the conditions then ensure a unique choice of representative.
Note that considering f1 up to this equivalence does not conflict in any way with the restrictions imposed by
4 and 5.

Clearly
H = ⟨s−(f3), . . . , s−(fn), (0, . . . , 0, 1)⟩+,

is the largest subgroup of Zn such that s+(H) ⊆ ⟨f3, . . . , fn⟩+ so in particular ⟨f2, . . . , fn⟩+ ⊆ H . Then
the condition s+(f1) ∈ ⟨f2, . . . , fn⟩+ is equivalent to f1 ∈ pd1−d2s−(f2) +H . So the number of choices
of f1 is precisely the number of elements in the coset pd1−d2s−(f2) +H modulo ⟨f2, . . . , fn⟩+, but this is
precisely the index |H : ⟨f2, . . . , fn⟩+|, which we can calculate as

|s+(Zn) : ⟨f2, . . . , fn⟩+|
|s+(Zn) : H|

=
pd−d1

pd−d1−d2
= pd2 .
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We conclude that |M(pd1 , . . . , pdn)| = pd2 |M(pd2 , . . . , pdn)| which by the induction hypothesis is pd−d1 .

Corollary 6.2.17. AbSol(pd1 , . . . , pdn) contains at most pd−d1 isomorphism classes.

Proof. This follows directly from Theorem 6.2.14 and Proposition 6.2.16.

Now that we know how to describe and count the ideals of finite index of Fn, we focus on the second
question that arose earlier. We will describe the isomorphism classes of quotients of Fn through orbits of a
certain group action. We first treat general quotients and then restrict to a more specific case as above.

Lemma 6.2.18. For every y ∈ x+ F 2
n , there exists a unique automorphism of F ∗

n mapping x to y.

Proof. Let y ∈ x+F 2
n . It is clear that yn = 0, hence there exists a unique ring endomorphism ϕy of Fn such

that ϕy(x) = y. By Proposition 4.2.13, y generates Fn as a brace, hence ϕy is surjective. Because (Fn,+)
is free of finite rank, it follows that ϕy is an automorphism of Fn, which by construction is an automorphism
of F ∗

n as well.

Corollary 6.2.19. Let I and J be ideals of Fn and ϕ : (Fn/I)
∗ → (Fn/J)

∗ an isomorphism. Then there
exists an automorphism ϕ̂ : F ∗

n → F ∗
n such that ϕ̂(I) = J and ϕ̂ is a lifting of ϕ in the sense that the

following diagram commutes.

Fn Fn

Fn/I Fn/J

ϕ̂

ϕ

Proof. Let y ∈ ϕ(x + I) for some y ∈ x + F 2
n . In particular, this implies that for any ai ∈ Z we find that∑n

i=1 aix
i ∈ I if and only if

∑n
i=1 aiy

i ∈ J . Now define ϕ̂ : Fn → Fn as the automorphism mapping x
to y, which exists by the previous lemma. Then in particular, ϕ̂(I) ⊆ I = J , and thus ϕ̂ fits in the above
diagram.

Consider the action of Aut(F ∗
n) on ideals of Fn where ϕ ∈ Aut(F ∗

n) maps an ideal I to ϕ(I). We then
obtain the following result.

Proposition 6.2.20. There is a bijective correspondence between isomorphism classes of quotients of F ∗
n

and orbits of ideals of Fn under the action by Aut(F ∗
n). Under this correspondence, the orbit of an ideal I

is mapped to the isomorphism class of (Fn/I)∗.

Proof. Let I, J be ideals of Fn. Assume that there exists an isomorphism θ : (Fn/I)
∗ → (Fn/J)

∗. Then
using Corollary 6.2.19 we find that ϕ lifts to an automorphism ϕ̂ of F ∗

n such that ϕ̂(I) = J . Conversely, any
automorphism of F ∗

n mapping I to J induces an isomorphism between Fn/I and Fn/J .

For counting purposes, it is more convenient to consider a slight variation of this action such that we
have a finite group acting on a finite set. We do so by restricting to ideals I of Fn such that Fn/I is of type
(pd1 , . . . , pdn). Let (pdx) be the ideal of Fn generated by pdx and let Fn,pd = Fn/(p

dFn). Ideals of Fn
of index pd always contain pdFn, so they are in correspondence with ideals of Fn,pd of index pd. By abuse
of notation, we will also denote the image of x in Fn,pd by x, and F ∗

n,pd is short for the object in AbBr

consisting of Fn,pd and the transitive cycle base containing x. It is clear that every (A,X) ∈ AbBr with
|A| = pd is isomorphic to (Fn,pd/I)

∗ for some ideal I . As every automorphism of Fn maps pdFn to itself,
we immediately obtain the following variations of Lemma 6.2.18 and Corollary 6.2.19.
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Lemma 6.2.21. For every y ∈ x+ F 2
n,pd , there exists a unique automorphism of F ∗

n,pd mapping x to y.

Corollary 6.2.22. Let I and J be ideals of Fn,pd and ϕ : (Fn,pd/I)
∗ → (Fn,pd/J)

∗ an isomorphism. Then
there exists an automorphism ϕ̂ : F ∗

n,pd → F ∗
n,pd such that ϕ̂(I) = J and ϕ̂ is a lifting of ϕ in the sense that

the following diagram commutes.

Fn,pd Fn,pd

Fn,pd/I Fn,pd/J

ϕ̂

ϕ

Consider the action of Aut(F ∗
n,pd) on ideals of Fn,pd where ϕ ∈ Aut(F ∗

n,pd) maps an ideal I to ϕ(I).
We then obtain the following variation of Proposition 6.2.20.

Theorem 6.2.23. Isomorphism classes of AbBr(pd1 , . . . , pdn) are in bijective correspondence with orbits
of ideals I of Fn,pd such that Fn,pd is of type (pd1 , . . . , pdn) under the action of Aut(F ∗

n,pd). Under this
correspondence, the orbit of an ideal I is mapped to the isomorphism class of (Fn,pd/I)∗.

Using the bijective correspondence from Proposition 6.2.13, we obtain an action · of Aut(F ∗
n,pd) on

M(pd1 , . . . , pdn), where ϕ ·M is the unique matrix inM(pd1 , . . . , pdn) equivalent to ϕ(IM ). The orbit of
some M ∈M(pd1 , . . . , pdn) under this action is denoted byO(M). We denote the number of isomorphism
classes in AbSol(pd1 , . . . , pdn) by |AbSol(pd1 , . . . , pdn)|. From Proposition 6.1.1 and Theorem 6.2.23,
we obtain the main result of this section.

Theorem 6.2.24. Isomorphism classes in AbSol(pd1 , . . . , pdn) are in bijective correspondence with orbits
of the action of Aut(F ∗

n,pd) onM(pd1 , . . . , pdn). In particular,

|AbSol(pd1 , . . . , pdn)| =
∑

M∈M(pd1 ,...,pdn )

1

|O(M)|
,

6.3 Explicit calculations
In what follows, we will explicitly apply the results of Section 6.2 to the cases n = 2 and n = 3. We first
cover the case where n = 2, which was already done in [90] using different techniques, and we subsequently
also give an explicit formula for |AbSol(pd1 , pd2 , pd3)|. For n > 3, the applied techniques do not seem
to generalize; however, it would be interesting to see up to which multipermutation level n and size pd one
could enumerate the number of isomorphism classes of solutions with the help of a computer.

6.3.1 Multipermutation level 2
Let M ∈M(pd1 , pd2). So M is of the form

M =

(
pd1 m
0 pd2

)
,

where m can be freely chosen such that 0 ≤ m < pd2 . Recall that the automorphisms of F ∗
2,pd are in

bijection with elements in the coset x + F2,pd ; to every element y in this coset we associate the unique
automorphism ϕy which maps x to y. For any a, b ∈ Z/pd we find

ϕx+ax2(ϕx+bx2(x)) = ϕx+ax2(x+ bx2) = x+ ax2 + b(x+ ax2)2 = x+ (a+ b)x2 = ϕx+(a+b)x2(x).
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Hence Aut(F ∗
2,p2)

∼= Z/pd. If we let ϕx+ax2 act on M , we find that the result ϕx+ax2 ·M is the unique
matrix inM(pd1 , pd2) which is row-equivalent to

M =

(
pd1 m+ apd1

0 pd2 ,

)
.

As d1 ≥ d2, we thus find that ϕx+ax2 ·M =M and therefore the action is trivial.

Theorem 6.3.1. Let p be a prime, d1 ≥ d2 ≥ 0, and A = Z/pd1 × Z/pd2 . Then for any 0 ≤ m < pd2 , the
map

r

(
(a1, a2)
(b1, b2)

)
=

(
(b1 + 1, a1 + b1 + b2 − χ0(b1 + 1)m)
(a1 − 1, a2 − a1 − b1 + χ0(a1)m)

)
yields a solution (A, r) ∈ AbSol(pd1 , pd2). Here, χ0 : Z/pd1 → Z/pd2 is defined as

χ0(x) =

{
1 x = 0

0 x ̸= 0
.

Moreover, every solution in AbSol(pd1 , pd2) is isomorphic to such a solution for a unique choice of m.

Proof. The first part of the statement is a consequence of Theorem 6.2.14 and Remark 6.2.15, where the
ideal IM of F2 is generated by {pd1x+mx2, pd2x2}. Indeed, it follows directly that

σ(a1,a2)(b1, b2) = (b1 + 1, a1 + b1 + b2 − χ0(b1 + 1)m),

and using (1.6) we also find

τ(b1,b2)(a1, a2) = σ−1
σ(a1,a2)(b1,b2)

(a1, a2)

= σ−1
(b1+1,a1+b1+b2−χ0(b1+1)m)(a1, a2)

= (a1 − 1, a2 − a1 − b1 + χ0(a1)m).

The second part of the statement follows from Theorem 6.2.24, combined with the observation that the
considered action onM(pd1 , pd2) is trivial.

Corollary 6.3.2. Let p be a prime, d ≥ 0. The total number of solutions of size pd and multipermutation
level at most 2 in AbSol is given by

(p⌊d/2⌋+1 − 1)/(p− 1),

where ⌊d/2⌋ is the largest integer n such that n ≤ d/2.

Proof. We find

∑
d1+d2=d
d1≥d2≥0

|AbSol(pd1 , pd2)| =
∑

d1+d2=d
d1≥d2≥0

pd2 =

⌊d/2⌋∑
d2=0

pd2 = (p⌊d/2⌋+1 − 1)/(p− 1),

from which the statement follows.
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Remark 6.3.3. The classification given in Theorem 6.3.1 was also obtained by Jedlička, Pilitowska and
Zamojska-Dzienio in [90], albeit in another form. It is interesting to note that the techniques used in the
classification in [90] differ strongly from ours. One benefit of our techniques is that the general theoretical
framework earlier in the section does not in any way pose strict assumptions on the permutation level; the
downside is that it is not immediately clear what the multiplicative and additive group of the permutation
brace look like precisely. The techniques used in [90] rely strongly on the assumption that the multiper-
mutation level is 2 and do not seem to generalize to higher multipermutation levels; however, through their
classification, it is immediately clear what the permutation group of a solution looks like.

6.3.2 Multipermutation level 3

Now let us compute the number of solutions in AbSol of a given size and multipermutation level at most 3.
To do so, we first compute |AbSol(pd1 , pd2 , pd3)|. We may assume that d3 > 0, as otherwise the value can
be obtained from the case n = 2. It will be convenient to consider the matrices inM(pd1 , pd2 , pd3) up to
row-equivalence (which we will denote by ∼). This is no problem as no two matrices inM(pd1 , pd2 , pd3)
are row-equivalent and the ideal IM can easily be constructed from any matrix which is row-equivalent to
M , hence the action onM(pd1 , pd2 , pd3) is still straightforward to compute. From the defining conditions
ofM(pd1 , pd2 , pd3) we find that all M ∈M(pd1 , pd2 , pd3) are of the formpd1 pd1−d2m2 + αpd3 m1

0 pd2 m2

0 0 pd3

 ,

for 0 ≤ m1,m2 < pd3 and 0 ≤ α < pd2−d3 .
Once again, for y ∈ x + F 2

3,pd we denote the unique automorphism of F ∗
3,pd mapping x to y by ϕy .

We need to determine all y ∈ x + F 2
3,pd such that ϕy acts trivially on M . Let y = x + ax2 + bx3. So

y2 = x2 + 2ax3 and y3 = x3 in F3,pd . We then know that

ϕy ·M ∼

pd1 pd1−d2m2 + αpd3 + apd1 m1 + bpd1 + 2a(pd1−d2m2 + αpd3)
0 pd2 m2 + pd2

0 0 pd3


∼

pd1 pd1−d2m2 + αpd3 m1 + apd1−d2m2

0 pd2 m2

0 0 pd3

 .

From which we find that ϕy ·M ∼M if and only if

apd1−d2m2 ≡ 0 (mod pd3) (6.1)

If we let r(M) ≥ 0 be the smallest value such that (6.1) holds for a = pr(M), then we find that

StabAut(F∗
3,pd

)(M) = {ϕx+ax2+bx3 | a ∈ pr(M)Z/pd, b ∈ Z/pd},

so in particular |StabAut(F∗
3,pd

)(M)| = p2d−r(M) and thus |O(M)| = pr(M).
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Let νp : Q → Z ∪ {+∞} denote the p-valuation, then r(M) = max{0,−d1 + d2 + d3 − ν(m2)}.
Theorem 6.2.24 now yields

|AbSol(pd1 , pd2 , pd3)| =
∑

M∈M(pd1 ,pd2 ,pd3 )

p−r(M)

=
∑

0≤m1,m2<p
d3

0≤α<pd2−d3

p−max{0,−d1+d2+d3−ν(m2)}

= pd2
pd3−1∑
m2=0

p−max{0,−d1+d2+d3−ν(m2)}

For a given v, with 0 ≤ v < d3, there are precisely pd3−v − pd3−v−1 integers k, with 1 ≤ k < pd3 , such
that νp(k) = v. We therefore find that

|AbSol(pd1 , pd2 , pd3)| = pd2

(
1 +

d3−1∑
v=0

pd3−v − pd3−v−1

pmax{0,−d1+d2+d3−v}

)

= pd2

(
1 +

d3−1∑
w=0

pw+1 − pw

pmax{0,−d1+d2+w+1}

)
.

If d1 = d2 then

|AbSol(pd1 , pd2 , pd3)| = pd2

(
1 +

d3−1∑
w=0

pw+1 − pw

pw+1

)
= pd2(1 + d3(1− p−1)).

If d1 > d2 and d1 < d2 + d3 then

|AbSol(pd1 , pd2 , pd3)| = pd2

(
1 +

d1−d2−1∑
w=0

(pw+1 − pw) +
d3−1∑

w=d1−d2

pw+1 − pw

p−d1+d2+w+1

)

= pd2

(
1 + pd1−d2 − 1 + pd1−d2

d3−1∑
w=d1−d2

(1− p−1)

)
= pd1(1 + (−d1 + d2 + d3)(1− p−1)).

If d1 > d2 and d1 ≥ d2 + d3 then

|AbSol(pd1 , pd2 , pd3)| = pd2

(
1 +

d3−1∑
w=0

pw+1 − pw
)

= pd2
(
1 + pd3 − 1

)
= pd2+d3

We obtain the following result, whose proof is given above for d3 > 0 and follows from Theorem 6.3.1 for
d3 = 0.
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Theorem 6.3.4. Let p be a prime and d1 ≥ d2 ≥ d3 ≥ 0. Then

|AbSol(pd1 , pd2 , pd3)| =

{
pd1(1 + (−d1 + d2 + d3)(1− p−1)) d1 < d2 + d3

pd2+d3 d1 ≥ d2 + d3
.

In particular, the number of isomorphism classes of solutions of size pd and multipermutation level at most
3 in AbSol can be computed as ∑

d1≥d2≥d3≥0
d1+d2+d3=d

|AbSol(pd1 , pd2 , pd3)|.

6.4 Infinite indecomposable involutive solutions with an abelian per-
mutation group

In [90, Theorem 6.1] for each m = 0 or m ≥ 2 an indecomposable involutive solutions of multipermutation
level 2 and permutation group Z×Z/m was given. In this section, we will show that they are the only ones.
Furthermore, we classify indecomposable involutive multipermutation solutions with a torsion-free abelian
permutation group.

Proposition 6.4.1. Let A be an infinite one-generated brace with an abelian multiplicative group and mul-
tipermutation level 2, and let X be a transitive cycle base of A. Then (A,X) is isomorphic to (F2/Im)∗ for
some m with either m = 0 or m ≥ 2, where Im = Zmx2. Moreover, the multiplicative group of F2/Im is
isomorphic to Z× (Z/m).

Proof. By Corollary 6.2.9 we know that (A,X) is isomorphic to (F2/I)
∗ for some ideal I . It is possible

that I = {0}, in which case I = I0. Now assume that I ̸= {0}. We know that (I,+) should be cyclic
because otherwise (F2/I,+) is finite. Let lx +mx2, with l,m ∈ Z and m ≥ 0, be a generator of (I,+).
Then x ∗ (lx +mx2) = lx2 ∈ I is an additive multiple of lx +mx2, hence l = 0. We find that I = Im
for some m with either m = 0 or m ≥ 2, since m = 1 would mean that mpl(Fn/I) = 1. Because
F2 ∗ F 2

2 = F 2
2 ∗ F2 = 0, we find that Im is an ideal for every choice of m. As (F2/Im,+) ∼= Z× (Z/m),

it is clear that different choices of m yield non-isomorphic braces F2/Im.
It remains to show that (F2/Im, ◦) ∼= Z× (Z/m). To see this, it suffices to note that

((F2/Im)/(F2/Im)2, ◦) ∼= Z,

and ((F2/Im)2, ◦) ∼= Z/m.

Theorem 6.4.2. Let m = 0 or m ≥ 2 then Z× Z/m with

r

(
(a1, a2)
(b1, b2)

)
=

(
(b1 + 1, a1 + b1 + b2)
(a1 − 1, a2 − a1 − b1)

)
is an infinite indecomposable involutive solution whose permutation group is isomorphic to Z × Z/m and
multipermutation level 2. Moreover, every infinite indecomposable solution with an abelian permutation
group and multipermutation level 2 is isomorphic to such a solution.
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Proof. Let m = 0 or m ≥ 2. An easy computation shows that the solution associated with (Fn/Im)∗

is precisely the solution in the statement, and it satisfies the required properties. Conversely, if (X, r) is
an indecomposable solution with an abelian permutation group and multipermutation level 2, then its per-
mutation brace must satisfy the conditions of Proposition 6.4.1, hence the statement follows from Proposi-
tion 6.1.1.

Proposition 6.4.3. Let A be a brace of multipermutation level n, with a transitive cycle base X and with an
abelian torsion-free multiplicative group. Then (A,X) is isomorphic to F ∗

n .

Proof. From Corollary 6.2.9 we know that A ∼= Fn/I for some ideal I . Assume that I ̸= 0. As Soc(Fn) =
Fnn , it follows that I ∩ Fnn ̸= 0 by [55, Theorem 2.8]. If I ∩ Fnn ̸= Fnn , we find that xn has a finite order in
(Fn, ◦). This implies that I ∩Fnn = Fnn , but then Fn/I has a multipermutation level strictly less than n. We
conclude that I = {0}.

Theorem 6.4.4. Let n > 1. Then the solution (Fn, rx) (as in Example 6.1.2) is the unique indecomposable
involutive solution with abelian torsion-free permutation group and multipermutation level n.

Proof. This is a direct consequence of Proposition 6.1.1 and Proposition 6.4.3.

Remark 6.4.5. The solutions in Theorem 6.4.4 can be expressed explicitly in terms of the additive group Zn
of Fn, just as the ones discussed in Remark 6.2.15.



Chapter 7
Skew braces and Hopf–Galois structures

As discussed in Section 1.5.3, a main role in the development of Hopf–Galois theory was played by a
groundbreaking result of Greither and Pareigis [82]. This result was followed by new approaches to the
theory, and problems of existence and classification have been studied by several authors; given a group N ,
does there exist a Hopf–Galois structure of type N on L/K? Can we classify and count the Hopf–Galois
structures on L/K? A precise survey of the main results developed in the last years can be found in [63].

A problem that can be approached with Greither–Pareigis theory regards the surjectivity of the Hopf–
Galois correspondence. For example, if we consider the classical structure, then we recover the usual Galois
correspondence, which is surjective. But it was proved in [82] that if we consider the canonical non-classical
structure, then the image of the Hopf–Galois correspondence consists precisely of the normal intermediate
fields of L/K; this shows that if G is Hamiltonian (that is, non-abelian with all the subgroups normal), then
the Hopf–Galois correspondence is surjective, but as soon as the group is not abelian nor Hamiltonian, we
find a Hopf–Galois structure for which the Hopf–Galois correspondence is not surjective.

More generally, given a Hopf–Galois structure on L/K with Hopf algebra H corresponding to a regular
subgroup N of SG normalized by L(G), we know that there exists a bijective correspondence between K-
Hopf subalgebras of H and subgroups of N normalized by L(G); the first explicit proof of this fact can be
found in [67, Proposition 2.2]. Recall that we use L : G → SG to denote the left regular action. As there
always exists a bijective correspondence between intermediate fields of L/K and subgroups of the Galois
group G, we can translate the Hopf–Galois correspondence to find a correspondence between subgroups of
N normalized by L(G) and subgroups of G. This means that for groups of small order the problem can be
approached from a quantitative point of view; in [102], the authors used GAP [77] to deal with groups of
order 42 and found some non-classical Hopf–Galois structures for which the number of subgroups of the
Galois group G equals the number of subgroups of N normalized by L(G), meaning that the Hopf–Galois
correspondence for these structures is surjective.

A deeper look in the literature seems to suggest that these cases are not really common. Besides these
examples and the aforementioned classical structure and canonical non-classical structure when G is Hamil-
tonian, there exists only one other known class of Hopf–Galois structures for which the Hopf–Galois corre-
spondence is surjective. The problem of the surjectivity of the Hopf–Galois correspondence was rephrased
as a problem on finite commutative Jacobson radical rings by Childs [59], who showed that given a Hopf–
Galois structure on L/K with Hopf algebra H , there exists a bijective correspondence between K-Hopf
subalgebras of H and ideals of the associated rings. In this way, Childs proved that for all the Hopf–Galois
structures on a Galois extension with Galois group cyclic of odd prime power order, the Hopf–Galois cor-
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respondence is surjective. Independently of Childs, Bachiller noted in [10] that Hopf–Galois structures of
abelian type and left braces are connected since they are both inherently related to regular subgroups of the
holomorph of abelian groups. This connection was then further deepened in [60] and in the appendix of By-
ott and Vendramin in [151], where Childs’ and Bachiller’s ideas were refined in order to relate Hopf–Galois
structures with skew braces.

To the best knowledge of the author, besides the ones in [59], there are no further examples of Galois
field extensions such that the Hopf–Galois correspondence is surjective for every Hopf–Galois structure on
this extension. An interesting approach to better understand this phenomenon is given in [60, 62]. Namely,
instead of looking for Hopf–Galois structures for which the Hopf–Galois correspondence is surjective, one
can study the failure of the surjectivity. Given a Hopf–Galois structure on L/K with Hopf algebra H , how
far is the Hopf–Galois correspondence from being surjective? The idea is to compute (or estimate) the ratio
between the number of K-Hopf subalgebras of H and the number of intermediate fields of L/K, which
was translated by Childs in a problem regarding just the associated skew brace. A possible explanation
for the lack of new examples could be given by the fact that the substructures of skew braces studied by
Childs, which seem to arise naturally from Hopf–Galois theory, are not the usual substructures considered
in the theory of the skew braces, namely, left ideals, strong left ideals, and ideals. This issue was initially
addressed by Koch and Truman [103], who showed that the substructures studied by Childs coincide with
left ideals of the opposite skew brace. They moved the problem to a more familiar setting, and combined
this observation with the results of [102] to describe some known properties of Hopf–Galois structures in
terms of the opposite skew brace.

This intuition is at the very base of this chapter, where we present a new version of the known connection
between Hopf–Galois structures and skew braces, as per the following points:

1. Use directly the opposite skew brace.

2. Make the connection bijective.

3. Forget about the regular subgroup.

The idea is that using this new point of view one can explicitly see how the knowledge of the structure of a
skew brace gives useful and qualitative information for the associated Hopf–Galois structure.

This chapter is organized as follows. In Section 7.1, we discuss the earlier-mentioned known connec-
tion between skew braces and Hopf–Galois structures in more detail. We also mention some of the less
convenient properties of this connection. In Section 7.2, we explicitly describe the new connection that we
propose. We remark how the known advantages of the usual connection still apply in the new perspective,
and we see how some old and new results can be explained and derived. In Section 7.3, we use the new point
of view to deal with the Hopf–Galois correspondence. In particular, we present new qualitative results, ex-
amples, and statements to explain from a more general perspective why in some situations the Hopf–Galois
correspondence is surjective. Concretely, in Theorem 7.3.23 we obtain a full classification of Galois field
extensions such that the Hopf–Galois correspondence is surjective for any Hopf–Galois structure on it. A
main role here is played by bi-skew braces.

All results in this chapter for which no external reference is given were obtained in collaboration with
Lorenzo Stefanello and have been published in [155].

7.1 The existing connection
We recall the well-known connection between Hopf–Galois structures and skew braces. While it was orig-
inally developed in the appendix of Byott and Vendramin in [151], we present here an equivalent version,
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which does not involve explicitly the holomorph, as described in [125, Proposition 2.1]. See also [63, section
2.8]. This is based on the following result, which is a different interpretation of Proposition 1.1.9. Here we
use a slightly refined version of the notation as in Section 1.5.3: for a group (G, ·), the left regular action is
denoted by

L· : G→ SG,

and the right regular action by
R· : G→ SG.

Proposition 7.1.1. Let (G, ·) and (G, ◦) be groups with the same identity. Then (G, ·, ◦) is a skew brace if
and only if L·(G) is normalized by L◦(G) in SG.

Let L/K be a finite Galois extension of fields with Galois group (G, ◦).

• Consider a Hopf–Galois structure on L/K, corresponding to a regular subgroup N of SG normalized
by L◦(G). We can use the bijection

ν : N → G : η 7→ η(1)

to transport the group structure of N to G. In this way, we find a group structure (G, ·) for which
L·(G) = N . By Proposition 7.1.1, we conclude that (G, ·, ◦) is a skew brace.

• Let (A, ·, ◦) be a skew brace with (A, ◦) ∼= (G, ◦). Use this bijection to transport the structure of
(A, ·) to G, to find a skew brace (G, ·, ◦) isomorphic to (A, ·, ◦). By Proposition 7.1.1, we have that
N = L·(G) is normalized by L◦(G), so we obtain a Hopf–Galois structure on L/K.

Example 7.1.2. Peculiarly, under this connection, the classical structure yields the almost trivial skew brace.
On the other hand, the trivial skew brace is obtained by the canonical non-classical structure. See Exam-
ples 1.5.7 and 1.5.8.

We immediately state an important and well-known consequence.

Theorem 7.1.3. Let N and G be finite groups. Then the following are equivalent:

• There exists a skew brace (A, ·, ◦) with (A, ·) ∼= N and (A, ◦) ∼= G.

• There exists a Hopf–Galois structure of type N on every Galois extension of fields with Galois group
isomorphic to G.

We underline that the previous connection is not bijective, as distinct Hopf–Galois structures can cor-
respond to isomorphic skew braces. This was precisely quantified in [125, Corollary 2.4]; see also [104,
Corollary 3.1]. However, there is a way to obtain from this connection a bijective correspondence. Indeed,
as a consequence of Proposition 7.1.1 (see [43, section 7]), given a group (G, ◦), there exists a bijective
correspondence between group operations · such that (G, ·, ◦) is a skew brace and regular subgroups of SG
normalized by L◦(G), via

· 7→ L·(G).

In this way, given a Galois extension of fields L/K with Galois group (G, ◦), we obtain a bijective corre-
spondence between operations · such that (G, ·, ◦) is a skew brace and Hopf–Galois structure on L/K.
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7.2 A refined connection
We begin with our main result, in which we propose an adapted version of the connection between Hopf–
Galois structures and skew braces. We underline that some of the consequences, as developed in this section,
can also be obtained from the usual theory, for example from [102], together with the observations on
opposite skew braces in [103, Theorem 5.6]. However, we prefer to develop the theory directly from this
new perspective, to highlight how old and new statements can be derived in a transparent way, without too
much effort.

Theorem 7.2.1. Let L/K be a finite Galois extension of fields with Galois group (G, ◦). Then the following
data are equivalent:

• a Hopf–Galois structure on L/K.

• an operation · such that (G, ·, ◦) is a skew brace.

Explicitly, given an operation · such that (G, ·, ◦) is a skew brace, we can consider the Hopf–Galois structure
on L/K consisting of the K-Hopf algebra L[G, ·](G,◦), where (G, ◦) acts on L via Galois action and on
(G, ·) via the λ-action of (G, ·, ◦), with action on L given as follows:(∑

σ∈G
ℓσσ

)
⋆ x =

∑
σ∈G

ℓσσ(x).

Proof. Denote by S the set of group operations · on G such that (G, ·, ◦) is a skew brace, and by N the set
of regular subgroups of SG normalized by L◦(G). Consider the composition

S → S → N ,

where the first map is the bijection that sends · to ·op and the second map is the bijection that sends · to
L·(G), as described at the end of Section 7.1. Since L·op(G) = R·(G), we obtain a bijection

S → N : · 7→ R·(G),

which, by Greither–Pareigis theory, yields the equivalence of data in the statement.
We just need to show that the Hopf–Galois structures on L/K can be described in the claimed way. So

take an operation · such that (G, ·, ◦) is a skew brace. Clearly (G, ·) ∼= R·(G), via the map

σ 7→ R·(σ)−1.

This yields an L-Hopf algebra isomorphism L[G, ·] → L[R·(G)]. Let (G, ◦) act on (G, ·) via the λ-action
of (G, ·, ◦). We show that this isomorphism is also (G, ◦)-equivariant. It is enough to show that for all
σ, τ ∈ G,

R·(λσ(τ))
−1 = L◦(σ)R·(τ)−1L◦(σ)−1.

The claim follows because the left-hand side element is the unique element ofR·(G) which sends 1 ∈ G to

λσ(τ)
−1 = λσ(τ

−1) = σ−1 · (σ ◦ τ−1),

while the right-hand side element is the unique element ofR·(G) which sends 1 ∈ G to

σ ◦ (σ · τ−1) = (σ ◦ σ) · σ−1 · (σ ◦ τ−1) = σ−1 · (σ ◦ τ−1).
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By Galois descent, we derive that L[G, ·](G,◦) and L[R·(G)](G,◦) are isomorphic as K-Hopf algebras, and
the isomorphism is given as follows: ∑

σ∈G
ℓσσ 7→

∑
σ∈G

ℓσR·(σ)−1.

To conclude, we need to find the action of L[G, ·](G,◦) on L that respects this isomorphism:(∑
σ∈G

ℓσσ

)
⋆ x =

(∑
σ∈G

ℓσR·(σ)−1

)
⋆ x =

∑
σ∈G

ℓσ(R·(σ)(1))(x)

=
∑
σ∈G

ℓσσ(x).

Remark 7.2.2. Following the proof of Theorem 7.2.1, it should be clear that we are associating with a Hopf–
Galois structure on L/K the skew brace that is opposite to the usual one. Explicitly, given a Hopf–Galois
structure in Greither–Pareigis terms, so a regular subgroup N of SG normalized by L◦(G), then the way to
find the operation · associated to this structure is the following:

σ · τ = ν(ν−1(τ)ν−1(σ)),

where ν : N → G is the usual bijection that maps η to η(1).

For the rest of the section, we fix a finite Galois extension L/K with Galois group (G, ◦).
Notation 7.2.3. To lighten the notation, we associate a Hopf–Galois structure on L/K with a skew brace
(G, ·, ◦), implicitly meaning the operation · such that (G, ·, ◦) is a skew brace.

We immediately see that the new version of the connection fixes the behavior described in Example 7.1.2.

Example 7.2.4. Consider the trivial skew brace (G, ◦, ◦). As the λ-action in this case is given by λσ = id,
we find that the Hopf algebra in the Hopf–Galois structure on L/K associated with (G, ◦, ◦) is K[G, ◦], and
we recover the classical structure.

Example 7.2.5. If instead we consider the almost trivial skew brace (G, ◦op, ◦), we find the Hopf–Galois
structure on L/K originally corresponding to L◦(G), that is, the canonical non-classical structure.

Example 7.2.6. Let A and B be finite groups. Consider a group homomorphism α : B → Aut(A), and
suppose that (G, ◦) is the semidirect product of A and B with respect to α. Given (a, b) ∈ G and x ∈ L,
write (a, b)(x) for the Galois action. Finally, take (G, ·) = A×B. Then by [83, Example 1.4], we have that
(G, ·, ◦) is a skew brace. We obtain a Hopf–Galois structure on L/K, which we now describe.

First, a straightforward calculation shows that the λ-action of (G, ·, ◦) is given as follows:

λ(c,d)(a, b) = (αd(a), b).

In particular, the K-Hopf algebra L[G, ·](G,◦) we obtain consists of the elements∑
(a,b)∈G

ℓ(a,b)(a, b) ∈ L[G, ·],

that satisfy, ∑
(a,b)∈G

ℓ(a,b)(a, b) =
∑

(a,b)∈G

[(c, d)(ℓ(a,b))](αd(a), b),
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for all (c, d) ∈ G. Such an element acts on L as follows: ∑
(a,b)∈G

ℓ(a,b)(a, b)

 ⋆ x =
∑

(a,b)∈G

ℓ(a,b)(a, b)(x).

The known results about existence and classification can also be translated and obtained using the new
point of view. Indeed, Theorem 7.1.3 immediately follows from Theorem 7.2.1, as well as the result counting
the number of Hopf–Galois structures associated with the same isomorphism class of a skew brace. We recall
this result and its proof here, which is just a slight modification of the proof of [104, Corollary 3.1].

Proposition 7.2.7. Let (G, ·, ◦) be a skew brace. Then there are

|Aut(G, ◦)|
|Aut(G, ·, ◦)|

Hopf–Galois structures on L/K such that the associated skew brace is isomorphic to (G, ·, ◦).

Proof. Consider the set S of group operations ·′ on G such that (G, ·′, ◦) is a skew brace. We need to count
for how many operations ·′ ∈ S, the skew brace (G, ·′, ◦) is isomorphic to (G, ·, ◦). There is an action of
Aut(G, ◦) on S, where ϕ maps ·′ to ·′ϕ, with

σ ·′ϕ τ = ϕ(ϕ−1(σ) ·′ ϕ−1(τ)).

Then the orbit of · ∈ S consists precisely of the operations ·′ such that (G, ·′, ◦) is a skew brace isomorphic
to (G, ·, ◦). As the stabilizer of · under this action is Aut(G, ·, ◦), we derive the assertion.

We also remark that Byott’s translation [34] for Galois extensions, an extremely useful tool to count
Hopf–Galois structures, can be obtained in this fashion. We recall here the statement and a quick proof,
along the lines of the one described in [58, section 7], but without involving regular subgroups. Let (N, ·)
be a group of the same order as (G, ◦). Denote by e(G,N) the number of Hopf–Galois structures on L/K
of type (N, ·), which by Theorem 7.2.1 equals the number of operations · such that (G, ·, ◦) is a skew brace
with (G, ·) ∼= (N, ·), and denote by f(G,N) the number of operations ◦ such that (N, ·, ◦) is a skew brace
with (N, ◦) ∼= (G, ◦).

Theorem 7.2.8. The following equality holds:

e(G,N) =
|Aut(G, ◦)|
|Aut(N, ·)|

f(G,N).

Proof. Consider N = {bijections φ : N → G} and G = {bijections ψ : G → N}. Clearly, there exists a
bijection

δ : N → G : φ 7→ φ−1.

For all φ ∈ N , consider (G, ·φ), where ·φ is the operation obtained by φ via transport of structure. In
particular, φ : (N, ·) → (G, ·φ) is an isomorphism. Similarly, for all ψ ∈ G, one can define (N, ◦ψ). It is
straightforward to check that δ restricts to a bijection

N ′ = {φ ∈ N | (G, ·φ, ◦) is a skew brace} → G′ = {ψ ∈ G | (N, ·, ◦ψ) is a skew brace}.

Note that the right action of Aut(N, ·) on N ′ via composition satisfies the following properties:
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• The orbits of N ′ under the action of Aut(N, ·) correspond bijectively to the operations · such that
(G, ·, ◦) is a skew brace and (N, ·) ∼= (G, ·).

• The action of Aut(N, ·) on N ′ is fixed-point-free.

We deduce that the cardinality of N ′ equals |Aut(N, ·)|e(G,N). A similar argument yields that the cardi-
nality of G′ equals |Aut(G, ◦)|f(G,N), so

|Aut(N, ·)|e(G,N) = |Aut(G, ◦)|f(G,N).

We describe now the structure of the Hopf algebras in terms of the associated skew braces. Consider a
Hopf–Galois structure on L/K, with associated skew brace (G, ·, ◦).

Theorem 7.2.9. The K-Hopf subalgebra of L[G, ·](G,◦) are precisely those of the form L[G′, ·](G,◦) for left
ideals G′ of (G, ·, ◦). Moreover, L[G′, ·](G,◦) is normal in L[G, ·](G,◦) if and only if G′ is a strong left ideal
of (G, ·, ◦).

Proof. This follows from Galois descent and the fact that the subgroups of (G, ·) invariant under the action
of (G, ◦) via the λ-action of (G, ·, ◦) are precisely the left ideals of (G, ·, ◦).

Consider a left ideal G′ of (G, ·, ◦). Then G′ corresponds to an intermediate field LH
′

of L/K via the
Hopf–Galois correspondence, where H ′ = L[G′, ·](G,◦). But as G′ is a subgroup of (G, ◦), we have that G′

also corresponds to an intermediate field F of L/K via the usual Galois correspondence. We denote both
fields by LG

′
, the ambiguity justified by the following pleasant consequence of Theorem 7.2.1.

Corollary 7.2.10. Within the above setting, the equality LH
′
= F holds.

Proof. It is clear that if x ∈ F , then x ∈ LH′
. Indeed, given

∑
σ∈G ℓσσ ∈ H ′, we have(∑

σ∈G
ℓσσ

)
⋆ x =

∑
σ∈G

ℓσσ(x) =
∑
σ∈G

ℓσx = ε

(∑
σ∈G

ℓσσ

)
x.

The assertion then follows from [L : F ] = |G′| = [L : LH
′
].

As the action of (G, ◦) on (G, ·) is given by the λ-action of (G, ·, ◦), we can easily describe the grouplike
elements of L[G, ·](G,◦).

Corollary 7.2.11. The grouplike elements of the K-Hopf algebra L[G, ·](G,◦) are precisely the elements of
Fix(G, ·, ◦).

We now describe how several known notions in skew brace theory have a natural description in Hopf–
Galois theory.

• Left ideals: As already mentioned, a left ideal G′ of (G, ·, ◦) corresponds to a K-sub Hopf algebra
L[G′, ·](G,◦) of L[G, ·](G,◦), which then corresponds to an intermediate field F = LG

′
of L/K. The

extension L/F is Galois with Galois group (G′, ◦), and there exists a natural Hopf–Galois structure
on L/F given by the F -Hopf algebra F ⊗K L[G′, ·](G,◦). The skew brace associated with this Hopf–
Galois structure is precisely (G′, ·, ◦). Indeed, by Galois descent, the natural map

F ⊗K L[G′, ·](G,◦) → L[G′, ·](G
′,◦)

is an F -Hopf algebra isomorphism, and as both the actions of these Hopf algebras on L are obtained
by that of L[G, ·](G,◦), the assertion easily follows.
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• Strong left ideals: Suppose in addition that G′ is a strong left ideal of (G, ·, ◦), so G′ is normal in
(G, ·). In this case, L[G′, ·](G,◦) is normal in L[G, ·](G,◦), and we obtain a short exact sequence of
K-Hopf algebras

K → L[G′, ·](G,◦) → L[G, ·](G,◦) → L[G/G′, ·](G,◦) → K.

We find a Hopf–Galois structure on F/K with K-Hopf algebra L[G/G′, ·](G,◦).

• Ideals: Finally, suppose that G′ is an ideal of (G, ·, ◦). Then F/K is Galois with Galois group
(G/G′, ·), and the Hopf–Galois structure on F/K given by L[G/G′, ·](G,◦) is associated with the
skew brace (G/G′, ·, ◦), because in this case the equality L[G/G′, ·](G,◦) = F [G/G′, ·](G/G′,◦) holds.

• Semidirect products: Suppose that (G, ·, ◦) is isomorphic to a semidirect product of skew braces.
Then there exists an ideal G1 and a strong left ideal G2 of (G, ·, ◦) such that (G, ◦) is the inner
semidirect product of (G1, ◦) and (G2, ◦), and (G, ·) is the inner direct product of (G1, ·) and (G2, ·).
Write F1 = LG1 and F2 = LG2 . In this case, the towersK ⊆ F1 ⊆ L andK ⊆ F2 ⊆ L are described
exactly as before. Moreover, L[G, ·] is isomorphic to L[G1, ·] ⊗L L[G2, ·] as (G, ◦)-compatible L-
Hopf algebras, and by Galois descent,

L[G, ·](G,◦) ∼= L[G1, ·](G,◦) ⊗K L[G2, ·](G,◦)

as K-Hopf algebras.

Moreover, because G1 is an ideal of (G, ·, ◦), the obvious isomorphism φ : (G2, ◦) → (G/G1, ◦)
between Galois groups is in fact an isomorphism of skew braces φ : (G2, ·, ◦) → (G/G1, ·, ◦). This
implies that the Hopf–Galois structures on L/F2 and F1/K given by the previous description are
associated with skew braces that are isomorphic in a natural way. By this observation and Galois
descent, we can also deduce that

F2 ⊗K F1[G/G1, ·](G/G1,◦) ∼= L[G2, ·](G2,◦)

as F2-Hopf algebras.

• Direct products: If the semidirect product is also direct, then the Galois group (G, ◦) is the inner
direct product of (G1, ◦) and (G2, ◦), and we can repeat the previous analysis also for F2/K, which
is Galois in this case.

• Metatriviality: Suppose now that (G, ·, ◦) metatrivial. Consider an ideal G′ of (G, ·, ◦) such that
(G′, ·, ◦) and (G/G′, ·, ◦) are trivial skew braces, and write F = LG

′
. Then the Hopf–Galois struc-

tures on L/F and F/K obtained by the action of L[G, ·](G,◦) on L are the classical structures.

7.3 The Hopf–Galois correspondence
In this final section, we study the Hopf–Galois correspondence with respect to the new version of the con-
nection. We fix a finite Galois extension of fields L/K with Galois group (G, ◦). From the discussion of
Section 7.2, we immediately derive the following result.

Corollary 7.3.1. Consider a Hopf–Galois structure on L/K, with associated skew brace (G, ·, ◦). Then the
Hopf–Galois correspondence for this structure is surjective if and only if every subgroup of (G, ◦) is a left
ideal of (G, ·, ◦).

Specifically, if G′ is a subgroup of (G, ◦), then LG
′

is in the image of the Hopf–Galois correspondence
if and only if G′ is a left ideal of (G, ·, ◦).
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Example 7.3.2. Consider the classical structure, with associated skew brace (G, ◦, ◦). In this case, every
subgroup of (G, ◦) is a left ideal of (G, ◦, ◦), so we find, as expected, that the Hopf–Galois correspondence
for this structure is surjective.

We note the following facts, which are direct consequences of Corollary 7.3.1

Corollary 7.3.3. If (G, ·, ◦) is a skew brace and (G, ·) has less subgroups than (G, ◦). Then for the Hopf–
Galois structure on L/K associated with (G, ·, ◦), the Hopf–Galois correspondence is not surjective.

Corollary 7.3.4. Suppose that (G, ·, ◦) is a skew brace isomorphic to the direct product of skew braces
(Gi, ·, ◦) of pairwise coprime orders. If all the subgroups of (Gi, ◦) are left ideals of (Gi, ·, ◦), the Hopf–
Galois correspondence is surjective.

We focus our attention now on Hopf–Galois structures associated with bi-skew braces. In this case, the
λ-action acts by automorphisms of (G, ◦), so we easily derive the following fact.

Lemma 7.3.5. Consider a Hopf–Galois structure on L/K such that the associated skew brace (G, ·, ◦) is a
bi-skew brace. Let G′ be a characteristic subgroup of (G, ◦). Then LG

′
is in the image of the Hopf–Galois

correspondence for this structure.

Corollary 7.3.6. Suppose that (G, ◦) is a cyclic group, and consider a Hopf–Galois structure on L/K such
that the associated skew brace (G, ·, ◦) is a bi-skew brace. Then the Hopf–Galois correspondence for this
structure is surjective.

Example 7.3.7. Suppose that (G, ◦) is cyclic of order 8. As shown in [133], there exists a skew brace
(G, ◦, ·) with (G, ·) ∼= Q8, the quaternion group. A straightforward calculation shows that (G, ◦, ·) is a
bi-skew brace. We conclude by Corollary 7.3.6 that for the Hopf–Galois structure on L/K associated with
the skew brace (G, ·, ◦), the Hopf–Galois correspondence is surjective.

We remark that for a Hopf–Galois structure on L/K associated with a bi-skew brace (G, ·, ◦), the Hopf–
Galois correspondence is surjective if and only if λσ is a power automorphism of (G, ◦) for all σ ∈ G, that
is, λσ(τ) is a power of τ in (G, ◦) for all τ ∈ G. Indeed, the power automorphisms of (G, ◦) are precisely
the automorphisms of (G, ◦) that map every subgroup of (G, ◦) to itself.

Example 7.3.8. Suppose that (G, ◦) is the direct product of an abelian group A and the cyclic group C2

of order 2. Denote by α the action of C2 on A via inversion, and consider the semidirect product (G, ·) =
A ⋊ C2 with respect to this action. Then (G, ·, ◦) is a bi-skew brace; see Example 2.2.6. Here the λ-action
of (G, ·, ◦) is given as follows:

λ(c,d)(a, b) = (αd(a), b),

which is either equal to (a, b) or to (a, b). In particular, λ(c,d) is a power automorphism of (G, ◦), and we
conclude that for the Hopf–Galois structure on L/K associated with (G, ·, ◦), the Hopf–Galois correspon-
dence is surjective.

We deal now with bi-skew braces (G, ·, ◦) whose λ-action is by inner automorphisms of (G, ◦), as fea-
tured in Example 2.4.11. Denote by N(G, ◦) the norm of (G, ◦), that is, the intersection of the normalizers
of the subgroups of (G, ◦). It is clear that conjugation by σ in (G, ◦) is a power automorphism of (G, ◦) if
and only if σ ∈ N(G, ◦).

We can apply this fact to obtain Hopf–Galois structures on L/K for which the Hopf–Galois correspon-
dence is surjective, as follows. Given a group homomorphism ψ : (G, ◦)→ N(G, ◦)/Z(G, ◦), define

σ ·ψ τ = σ ◦ ψ(σ) ◦ τ ◦ ψ(σ) = σ ◦ ψ(σ) ◦ τ ◦ ψ(σ);
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here by ψ(σ) we denote any element in the coset ψ(σ) in N(G, ◦)/Z(G, ◦), with a little abuse of notation
justified by the fact that if τ ∈ Z(G, ◦), then conjugation by τ is trivial.

Theorem 7.3.9. For all group homomorphisms ψ : (G, ◦) → N(G, ◦)/Z(G, ◦), we have that (G, ·ψ, ◦) is
a bi-skew brace, and for the Hopf–Galois structure on L/K associated with (G, ·ψ, ◦), the Hopf–Galois
correspondence is surjective.

Proof. Let ψ : (G, ◦) → N(G, ◦)/Z(G, ◦) be a group homomorphism. By the main theorem of [140], the
quotient N(G, ◦)/Z(G, ◦) is abelian, so as described in Example 2.4.11 we find that (G, ·ψ, ◦) is a bi-skew
brace and the λ-action of (G, ·ψ, ◦) is given by λσ(τ) = ψ(σ) ◦ τ ◦ ψ(σ). In particular, the λ-action of
(G, ·ψ, ◦) is given by conjugation by elements of N(G, ◦) in (G, ◦), so by power automorphisms of (G, ◦),
and therefore we obtain our assertion.

Example 7.3.10. Suppose that (G, ◦) = Q8, the quaternion group of order 8. There are 22 Hopf–Galois
structures on L/K, and 6 of them are of cyclic type; see [151, Table 2]. As (G, ◦) is Hamiltonian, we derive
that N(G, ◦) = G, so N(G, ◦)/Z(G, ◦) ∼= C2 × C2. Since there are 16 distinct group homomorphisms

Q8 → C2 × C2,

we obtain 16 distinct Hopf–Galois structures on L/K for which the Hopf–Galois correspondence is surjec-
tive. We find indeed all the Hopf–Galois structures on L/K except for the 6 of cyclic type, for which the
Hopf–Galois correspondence is not surjective by Corollary 7.3.3.

Example 7.3.11. Suppose that (G, ◦) is the extraspecial group of order p3 and exponent p2, with p an odd
prime. Then N(G, ◦) is the elementary abelian subgroup of (G, ◦) of order p2, while the center is cyclic of
order p. As there are p2 distinct group homomorphisms

(G, ◦)→ Cp,

we obtain p2 distinct Hopf–Galois structures on L/K for which the Hopf–Galois correspondence is surjec-
tive.

The following result, whose proof is immediate, shows that the behavior of the canonical non-classical
structure can also be displayed by other Hopf–Galois structures.

Proposition 7.3.12. Consider a Hopf–Galois structure on L/K such that associated skew brace (G, ·, ◦) is
a bi-skew brace with λ-action λ : (G, ◦) → Inn(G, ◦). Then every normal intermediate field K of L/K is
in the image of the Hopf–Galois correspondence for this structure.

Moreover, if λ : (G, ◦) → Inn(G, ◦) is surjective, then the image of the Hopf–Galois correspondence
consists precisely of the normal intermediate fields of L/K.

Example 7.3.13. Consider the canonical non-classical structure, with associated skew brace (G, ◦op, ◦).
Here λσ(τ) = σ ◦ τ ◦ σ for all σ, τ ∈ G. Applying Proposition 7.3.12, we recover the well-known property
of the canonical non-classical structure.

Example 7.3.14. Suppose that (G, ◦) is nilpotent of class two, and define

σ · τ = σ ◦ σ ◦ τ ◦ σ.

Then by Example 2.4.11 we have that (G, ·, ◦) is a bi-skew brace and the λ-action of (G, ·, ◦) is given by
λσ(τ) = σ ◦ τ ◦ σ. By Proposition 7.3.12, we derive that for the associated Hopf–Galois structure on L/K,
the image of the Hopf–Galois correspondence consists precisely of the normal intermediate fields of L/K.
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It is easy to see that if there exists σ ∈ G such that σ ◦ σ is not in the center of (G, ◦), then the Hopf–
Galois structure we find is different from the canonical non-classical structure. This holds, for example, for
the Heisenberg group of order p3, with p an odd prime.

We study now a question posed in [62]. Let L1/K1 be a finite Galois extension of fields with Galois
group (G, ◦), and consider a Hopf–Galois structure on L1/K1, with associated skew brace (G, ·, ◦). We can
rewrite the Hopf–Galois correspondence ratio, defined as the ratio of the number of intermediate fields of
L1/K1 in the image of the Hopf–Galois correspondence to the number of intermediate fields of L1/K1, as
follows:

GC(L1/K1, L1[G, ·](G,◦)) =
|{left ideals of (G, ·, ◦)}|
|{subgroups of (G, ◦)}|

.

Suppose in addition that (G, ·, ◦) is a bi-skew brace, and let L2/K2 be a finite Galois extension of fields
with Galois group (G, ·). The skew brace (G, ◦, ·) is associated with a Hopf–Galois structure on L2/K2.
Are these two Hopf–Galois structures related in some way?

The next result follows immediately from the facts that the lattices of left ideals of (G, ·, ◦) andK1-Hopf
subalgebra of L1[G, ·](G,◦) are isomorphic, and the left ideals of (G, ·, ◦) and (G, ◦, ·) coincide.

Theorem 7.3.15. The following facts hold:

• The lattices of K1-Hopf subalgebra of L1[G, ·](G,◦) and K2-Hopf subalgebra of L2[G, ◦](G,·) are
isomorphic.

• There is the same number of intermediate fields in the images of the Hopf–Galois correspondence
for the Hopf–Galois structure on L1/K1 associated with (G, ·, ◦) and the Hopf–Galois structure on
L2/K2 associated with (G, ◦, ·).

• The following equality holds:

GC(L1/K1, L1[G, ·](G,◦))
GC(L2/K2, L2[G, ◦](G,·))

=
|{subgroups of (G, ·)}|
|{subgroups of (G, ◦)}|

.

In particular, the ratio between the two Hopf–Galois correspondence ratios is constant and depends
only on the isomorphism classes of the Galois groups.

Example 7.3.16. Suppose that (G, ·, ◦) is the skew brace of Example 7.3.8 with p an odd prime andA = Cp.
Then (G, ·) is dihedral of order 2p and (G, ◦) is cyclic of order 2p. There are p+ 3 subgroups of (G, ·) and
4 subgroups of (G, ◦), and as every subgroup of (G, ◦) is a left ideal of (G, ·, ◦), we have the following
equalities:

GC(L1/K1, L1[G, ·](G,◦)) = 1,

GC(L2/K2, L2[G, ◦](G,·)) =
4

p+ 3
,

GC(L1/K1, L1[G, ·](G,◦))
GC(L2/K2, L2[G, ◦](G,·))

=
p+ 3

4
.

We conclude by focusing our attention on Hopf–Galois structures associated with skew braces that are
not necessarily bi-skew braces. We begin with the following theorem, which was proved in [106]. We
provide a quick proof for convenience.
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Theorem 7.3.17. Let N be a group. If there exists m such that the number of characteristic subgroups of
order m of N is greater than the number of subgroups of order m of (G, ◦). Then L/K has no Hopf–Galois
structures of type N .

Proof. If L/K has a Hopf–Galois structure of type N , then there exists a skew brace (G, ·, ◦) with (G, ·) ∼=
N . As every characteristic subgroup of (G, ·) is a left ideal of (G, ·, ◦), so also a subgroup of (G, ◦), we
immediately derive a contradiction.

On the contrary, if there exists a skew brace (G, ·, ◦) such that the number of characteristic subgroups
of (G, ·) equals the number of subgroups of (G, ◦), then the Hopf–Galois structure on L/K associated with
(G, ·, ◦) assumes a nice behavior.

Proposition 7.3.18. Consider a Hopf–Galois structure on L/K, with associated skew brace (G, ·, ◦). Sup-
pose that the number of characteristic subgroups of (G, ·) equals the number of subgroups of (G, ◦). Then
the Hopf–Galois correspondence for this structure is surjective.

Proof. Every characteristic subgroup of (G, ·) is a left ideal of (G, ·, ◦), so also a subgroup of (G, ◦). In
particular, every subgroup of (G, ◦) is a left ideal.

Example 7.3.19. Suppose that (G, ◦) is cyclic of odd prime power order, and consider a Hopf–Galois struc-
ture on L/K, with associated skew brace (G, ·, ◦). By [105], also (G, ·) is cyclic, so by Proposition 7.3.18,
we conclude that the Hopf–Galois correspondence is surjective; we have recovered [59, Proposition 4.3].

Example 7.3.20. Suppose that (G, ◦) is cyclic of order 2m, with m ≥ 1, and consider a Hopf–Galois
structure on L/K, with associated skew brace (G, ·, ◦). We claim that the Hopf–Galois correspondence for
this structure is surjective.

If m = 1, 2, then by the explicit classification in [9, Proposition 2.4], one can check that (G, ·, ◦) is a
bi-skew brace, so the result follows from Corollary 7.3.6.

Suppose now that m ≥ 3. By [36, Theorem 6.1], necessarily (G, ·) is cyclic, the dihedral group, or
the generalized quaternion group. With the unique exception of m = 3 and (G, ·) ∼= Q8, the numbers of
characteristic subgroups of (G, ·) and subgroups of (G, ◦) coincide, so we conclude by Proposition 7.3.18.

Finally, suppose that m = 3 and (G, ·) ∼= Q8. Then the center Z(G, ·) is a characteristic subgroup of
order 2. It follows that Z(G, ·) is an ideal of (G, ·, ◦). By the case m = 2, we know that (G/Z(G, ·), ·, ◦)
has a left ideal G′/Z of order 2, which easily implies that G′ is a left ideal of (G, ·, ◦) of order 4.

Remark 7.3.21. With the classification given in [9], it is easy to construct a skew brace (G, ·, ◦) with (G, ◦)
cyclic of order p3, where p is a prime, such that (G, ·, ◦) is not a bi-skew brace. Thus Examples 7.3.19
and 7.3.20 do not follow from Corollary 7.3.6.

We shall now conclude by characterizing all the Galois extensions that behave like Examples 7.3.19
and 7.3.20. First, a useful lemma.

Lemma 7.3.22. Suppose that (G, ◦) is isomorphic to a direct product of groups (A, ◦) and (B, ◦), and that
there exists a skew brace (A, ·, ◦) such that not every subgroup of (A, ◦) is a left ideal of (A, ·, ◦). Then
there exists a Hopf–Galois structure on L/K for which the Hopf–Galois correspondence is not surjective.

Proof. We can use the group isomorphism (G, ◦) ∼= (A, ◦) × (B, ◦) to transport the structure of (A, ·) ×
(B, ◦) to G. We obtain a group operation · such that (G, ·, ◦) is a skew brace isomorphic to (A, ·, ◦) ×
(B, ◦, ◦). By assumption, there exists a subgroup of (G, ◦) which is not a left ideal of (G, ·, ◦), so for the
Hopf–Galois structure on L/K associated with (G, ·, ◦), the Hopf–Galois correspondence is not surjective.
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Theorem 7.3.23. The following are equivalent:

• For all the Hopf–Galois structures on L/K, the Hopf–Galois correspondence is surjective.

• The Galois group (G, ◦) is cyclic, and for all primes p and q dividing the order of (G, ◦), we have that
p does not divide q − 1.

Proof. Suppose first that (G, ◦) is cyclic of order n and for all primes p and q dividing n, we have that p
does not divide q − 1. Consider a Hopf–Galois structure on L/K, with associated skew brace (G, ·, ◦). If n
is even, then n has no odd prime divisors, so the result follows from Example 7.3.20.

If instead n is odd, then by [160, Corollary 1.6], we have that (G, ·) is isomorphic to a semidirect product
of cyclic groups Ca ⋊ Cb, where a and b are coprime and ab = n. But by the assumption on the divisors of
the order of (G, ◦), this semidirect product is necessarily a direct product. In particular, (G, ·) is cyclic, and
we can apply [55, Corollary 4.3] to deduce that (G, ·, ◦) is isomorphic to a direct product of skew braces of
coprime odd prime power order. The assertion then follows from Corollary 7.3.4 and Example 7.3.19.

Conversely, suppose that for all the Hopf–Galois structures on L/K, the Hopf–Galois correspondence
is surjective. As this holds for the canonical non-classical structure, (G, ◦) is either abelian or Hamiltonian.
We proceed by exclusion.

Suppose first that (G, ◦) is Hamiltonian. Then there exists an abelian groupA such that (G, ◦) is isomor-
phic to the direct product of Q8 and A; see [84, Theorem 12.5.4]. As already mentioned, there exists a skew
brace (G′, ·, ◦) where (G′, ◦) ∼= Q8 and (G′, ·) is cyclic. By applying Corollary 7.3.3 and Lemma 7.3.22,
we derive a contradiction.

We deduce that (G, ◦) is necessarily abelian. Suppose that (G, ◦) is not cyclic. Then there exists a prime
p such that (G, ◦) is isomorphic to a direct product of the form Cpr × Cps × A, where 1 ≤ s ≤ r. Write σ
for a generator of Cpr and τ for a generator of Cps . In a slight variation of [154, Example 6.7], there exists
a skew brace (G′, ·, ◦) such that (G′, ◦) equals Cpr × Cps with the direct product operation and

(σi, τ j) · (σa, τ b) = (σi+a, τ j+b+ia).

Note that the subgroup Cpr × {1} of (G′, ◦) is not a subgroup of (G′, ·), so in particular it is not a left ideal
of (G′, ·, ◦). Again by Lemma 7.3.22, we find a contradiction.

We deduce that (G, ◦) is necessarily cyclic. Suppose that there exist primes p and q dividing the order
of (G, ◦) such that p divides q − 1. Let (G′, ◦) be the direct product of the Sylow q-subgroup Q and the
Sylow p-subgroup P of (G, ◦). By assumption on p and q, we can construct a non-trivial semidirect product
(G′, ·) of Q and P . By [83, Example 1.5], we have that (G′, ·, ◦) is a skew brace. Suppose that {1} × P is
a left ideal of (G′, ·, ◦). Then {1} × P is not a left ideal of (G′, ·op, ◦), because otherwise {1} × P would
be normal subgroup of (G′, ·). As (G, ◦) is isomorphic to the direct product of all its Sylow subgroups, we
find a contradiction from Lemma 7.3.22.

Remark 7.3.24. Recently, in [156], Stefanello and Tsang classified all groups (G, ·) such that for any skew
brace (G, ·, ◦) every subgroup of (G, ◦) is a left ideal. The classification of such groups is very similar to
the one in Theorem 7.3.23.
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Chapter 8
A Lazard correspondence for skew braces and
post-Lie rings

In [147], Smoktunowicz proved that the construction of the group of formal flows, originally developed
for pre-Lie algebras in [2], could be adapted to left nilpotent pre-Lie rings of prime power order pk, with
k + 1 < p, to obtain braces with the same additive structure. Recall from Corollary 8.6.4 that a skew brace
of prime power order is always left nilpotent. She also gives an inverse construction for strongly nilpotent
braces of order pk, with k < p − 1, whose strong nilpotency index is at most p − 1. This correspondence
was used in [127] to classify all strongly nilpotent braces of order p4, for p > 55, while the non-strongly
nilpotent ones of this order were classified earlier in [128]. In [143], Shalev and Smoktunowicz also gave
a construction that starts from a brace (A,+, ◦) of order pk, with k + 1 < p, in order to obtain a pre-Lie
ring on the quotient group (A,+)/{a ∈ A | p2a = 0}. Although the strong nilpotency condition is no
longer present, one cannot hope that this yields a correspondence, as the additive group is not preserved. We
also note that in [87], Iyudu gave a construction of the associated graded pre-Lie ring of a strongly nilpotent
brace.

It was known by Auslander [8] that from a regular affine action of a Lie group on Rn one obtains a pre-Lie
algebra by differentiation. Kim proved in [98] that a pre-Lie algebra is obtained from such a regular affine
action if and only if it is transitive. In [27], Burde, Dekimpe and Deschamps established a correspondence
between regular affine actions of connected, simply connected nilpotent Lie groups and certain post-Lie
algebras. Here too, left nilpotency plays a crucial role, as well as the fact that for a finite dimensional Lie
algebra g, we can naturally identify der(g) with the tangent space of Aut∞(g) at 1. Consequently, the
tangent space of Hol∞(G) at 1 can be identified with aff(g), for G a Lie group whose tangent space is g.
Note that a similar result does generally not hold for the Lazard correspondence. A first obstruction is that
for a Lazard Lie algebra g, the group Aut(g) and the Lie algebra der(g) are usually not nilpotent, so there is
no hope to relate them through the Lazard correspondence. The following example illustrates this.

Example 8.0.1. Consider a field K and let g be the trivial Lie algebra on Kn with filtration

Kn ⊇ {0} ×Kn−1 ⊇ {0}2 ×Kn−2 ⊇ . . . ⊇ {0}n−1 ×K × {0}n.

Then g is Lazard if K has characteristic 0 or n is smaller than the characteristic of K. The group of
automorphisms of g, viewed simply as a Lie algebra, is the group of invertible n × n-matrices over K,
which is not nilpotent and, in most cases, not even solvable. One could also consider the automorphisms of

147



148 CHAPTER 8. LAZARD CORRESPONDENCE FOR SKEW BRACES AND POST-LIE RINGS

g as a filtered Lie algebra, but then one finds the group of invertible upper triangular n × n-matrices over
K, which is always solvable, but not nilpotent. Similarly, the derivations of g, viewed as a Lie algebra, form
the Lie algebra of n× n-matrices over K, which is non-solvable. If we restrict to those derivations of g that
also map gi to gi, then we obtain the Lie algebra of upper triangular matrices, which is solvable, but not
nilpotent.

Bai, Guo, Sheng and Tang showed more generally how, starting from a regular affine action of a Lie
group on another Lie group, one obtains a post-Lie algebra through differentiation [15]. Conversely, also a
construction by formal integration was given to construct a skew brace starting from a post-Lie algebra of
characteristic 0 and with some completeness conditions.

The goal of this chapter is to develop a Lazard correspondence between post-Lie rings and skew braces,
and to discuss how the above-mentioned results and constructions follow from the obtained correspondence.
First, filtered Lie algebras and filtered groups are discussed in more detail in Sections 8.1 and 8.2. In
particular, we introduce semidirect sums and products and study how they behave with respect to the property
of being Lazard. In Section 8.3 we relate derivations and automorphisms of Lazard Lie algebras, and we
show that, when working in the right setting, the Lazard correspondence maps semidirect sums of Lazard
Lie algebras to semidirect products of Lazard groups. Note the similarity to how the tangent plane at 1 of
a semidirect product of Lie groups A ⋊ G can be identified with the semidirect sum a ⊕δ g where a and
g are the tangent spaces in 1 of A and G respectively. In particular, choosing the correct definitions of the
holomorph of a filtered group and the affine Lie ring of a filtered Lie ring, we find in Proposition 8.3.5 that
the Lazard correspondence relates these two objects. In Section 8.4 we then introduce the notion of Lazard
post-Lie rings and Lazard skew braces, and we obtain a functorial bijective correspondence between these
two families in Theorem 8.4.14 which is our principal result of this chapter. The notion of L-nilpotency
appears naturally when studying Lazard post-Lie rings and Lazard skew braces, and we further discuss this
in Sections 8.5 and 8.6. In particular, in Theorem 8.6.6 we prove that any left nilpotent skew brace with
a nilpotent additive group has a nilpotent multiplicative group and the nilpotency class can be bounded in
terms of the L-nilpotency class. This extends one implication of [55, Theorem 4.8]. In Section 8.7 we then
discuss implications on the theory of post-Lie rings and skew braces of prime power order. In particular,
we prove an analog of Theorem 1.4.34 by showing that for a fixed prime power pn there is a functorial
bijective correspondence between post-Lie rings of size pn and L-nilpotency class less than p and skew
braces satisfying the same restrictions. In Section 8.8 we study the other extremal case where R = R, in
particular we relate our results to the work of Burde, Dekimpe and Deschamps, and Bai, Guo, Shang and
Teng. We conclude this chapter by extending our correspondence to post-Lie rings and skew braces that can
be obtained as a completion of Lazard ones. Subsequently, we compare this to the work by Agrachev and
Gamkrelidze on the formal group of flows of a pre-Lie algebra, and to the formal integration of complete
post-Lie algebras as introduced by Bai, Guo, Sheng and Tang.

Throughout the whole chapter, algebras, Lie algebras and post-Lie algebras are taken over a commutative
ring R unless specified otherwise. In particular, all results for algebras, Lie algebras and post-Lie algebras
also hold for rings, Lie rings and post-Lie rings respectively, since this concerns the particular case R = Z.

All results for which no external reference is given are the author’s own work and are contained in the
preprint [159].

8.1 Filtered Lie algebras
For g a filtered Lie algebra, we denote by derf (g) the set of all derivations δ of the Lie algebra g such that
moreover δ(gi) ⊆ gi+1 for all i ≥ 1.
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Lemma 8.1.1. Let g be a filtered Lie algebra. Then derf (g) is a Lie subalgebra of der(g). Moreover, it is a
filtered Lie algebra for the filtration

derf (g)i = {δ ∈ derf (g) | δ(gj) ⊆ gi+j for all j ≥ 1}.

Proof. It is a direct consequence of its definition that derf (g)i is a submodule of derf (g) for each i ≥ 1.
Also, if δ ∈ derf (g)i and δ′ ∈ derf (g)j then δδ′ ∈ derf (g)i+j which implies the inclusion [derf (g)i, derf (g)j ] ⊆
derf (g)i+j .

Example 8.1.2. Let x be an element of a filtered Lie algebra g. Then the adjoint map adx where

adx : a→ a : y 7→ [x, y],

is contained in derf (g). More precisely, if x ∈ gi then adx ∈ derf (g)i.

Let g, a be filtered Lie algebras and let δ : g → derf (a) be a homomorphism of filtered Lie algebras.
Then, as in Proposition 1.3.18, we can consider the semidirect sum a⊕δ g. Recall that this is the direct sum
of the underlying modules together with the Lie bracket

[(a, x), (b, y)] = ([a, b] + δx(b)− δy(a), [x, y]),

for a, b ∈ a, x, y ∈ g.

Lemma 8.1.3. Let g, a be filtered Lie algebras and let δ : g → derf (a) be a homomorphism of filtered Lie
algebras. Then a⊕δ g is a filtered Lie algebra for the filtration given by (a⊕δ g)i = ai ⊕ gi for i ≥ 1.

Proof. Let i, j ≥ 1, a ∈ ai, b ∈ aj , x ∈ gi and y ∈ gj . Then it suffices to note that [a, b] ∈ ai+j and
[x, y] ∈ gi+j , and also δx(b), δy(a) ∈ ai+j since δ is a homomorphism of filtered Lie algebras.

Definition 8.1.4. Let f : a→ h, g : h→ g and h : g→ h be homomorphisms of filtered Lie algebras, then

0 a h g 0
f g

h

is a split exact sequence of filtered Lie algebras if

1. the image of f is precisely the kernel of g,

2. the composition gh is the identity map on g,

3. f induces an isomorphism of filtered Lie algebras a ∼= f(a).

Remark 8.1.5. It is important to note here that not every injective homomorphism of filtered Lie algebras
f : a→ h induces an isomorphism a ∼= f(a), the reason being that a bijective homomorphism is not always
an isomorphism. Indeed, a bijective homomorphism of filtered Lie algebras f : a→ h is an isomorphism if
moreover f(ai) = hi for all i ≥ 1. The same remark holds for filtered groups and algebras.

The following lemma is straightforward to verify.

Lemma 8.1.6. Let g, a be filtered Lie algebras and let δ : g → derf (a) be a homomorphism of filtered Lie
algebras. Then

0 a a⊕δ g g 0
ιa

prg

ιg

where ιa, ιg are the inclusion maps and prg is the projection map, is a split exact sequence of filtered Lie
algebras.
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Lemma 8.1.7. Let

0 a h g 0
f g

h

be a split exact sequence of filtered Lie algebras. Then there exists a homomorphism of filtered Lie algebras
δ : g→ derf (a) and an isomorphism of filtered Lie algebras ϕ : a⊕δ g→ h such that

h

0 a g 0

a⊕δ g

gf

ιg

h

ιg

prg
ϕ

commutes.

Proof. Define
δ : g→ derf (a) : x 7→ δx,

with δx(a) = [h(x), a] for all a ∈ a, where we identify a with f(a). Since f(a) = ker g is an ideal of h, the
map δx is indeed contained in derf (a). Also define

ϕ : a⊕δ g→ h : (a, x) 7→ f(a) + h(x).

The map ϕ clearly makes the diagram in the statement commute. Moreover, it is a linear bijection and

ϕ([(a, x), (b, y)]) = ϕ([a, b] + δx(b)− δy(a), [x, y])
= f([a, b] + δx(b)− δy(a)) + h([x, y])

= [f(a), f(b)] + [h(x), f(b)]− [h(y), f(a)] + [(h(x), h(y)]

= [f(a) + h(x), f(b) + h(y)]

= [ϕ(a, x), ϕ(b, x)]

for all a, b ∈ a, x, y ∈ g. It remains to prove that ϕ behaves well with respect to the filtrations. To see
this, we prove that hi = f(ai) + h(gi) for all i ≥ 1. Note that one inclusion is trivial since f and h are
homomorphisms of filtered Lie algebras. Now let f(a) + h(x) ∈ hi. Since g and h are homomorphisms of
filtered Lie algebras we find g(f(a) + h(x)) = x ∈ gi and h(x) ∈ hi. As a consequence, f(a) ∈ hi and
thus also a ∈ ai. We conclude that f(a) + h(x) ∈ f(ai) + h(gi) which proves the statement.

8.2 Filtered groups
For a filtered group G, we denote by Autf (G) the set of all group automorphisms ϕ such that ϕ(Gi) = Gi
and ϕ(g)g−1 ∈ Gi+1 for all i ≥ 1 and g ∈ Gi.

Lemma 8.2.1. Let G be a filtered group. Then Autf (G) is a subgroup of Aut(G). Moreover, it is a filtered
group for the filtration

Autf (G)i = {ϕ ∈ Autf (G) | ϕ(g)g−1 ∈ Gi+j for all j ≥ 1 and g ∈ Gj}.
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Proof. Let i, j ≥ 1, ϕ, ψ ∈ Autf (G)i and g ∈ Gj . Then

ϕ(ψ(g))g−1 =
(
ϕ(ψ(g))ψ(g)−1

)
ψ(g)g−1 ∈ Gi+j ,

and
ϕ−1(g)g−1 = (ϕ(ϕ−1(g))ϕ−1(g)−1)−1 ∈ Gi+j ,

which shows that Autf (G)i is a subgroup of Aut(G).
It remains to prove that [Autf (G)i,Autf (G)j ] is contained in Autf (G)i+j . Consider the semidirect

product G⋊Autf (G). We identify G and Autf (G) with the subgroups G× {1} and {1} ×Autf (G). For
g ∈ G and ϕ ∈ Autf (G) we find that the commutator of (1, ϕ) and (g, 1) is given by

[(1, f), (g, 1)] = (1, f)(g, 1)(1, f)−1(1, g)−1 = (f(g)g−1, 1). (8.1)

The filtration on Autf (G) is therefore defined in such a way that

[Autf (G)i, Gj ] ⊆ Gi+j ,

so in particular the subgroups Gi are normal in G⋊Autf (G). For any k ≥ 1,

[Autf (G)i, [Autf (G)j , Gk]] ⊆ [Autf (G)i, Gj+k] ⊆ Gi+j+k,

so the three subgroups lemma implies that

[Gk, [Autf (G)i,Autf (G)j ]] ⊆ Gi+j+k,

and thus we conclude that [Autf (G)i,Autf (G)j ] is indeed contained in Autf (G)i+j .

Example 8.2.2. Let g be an element of a filtered group G. Then conjugation by g is contained in Autf (G)
since ghg−1h−1 ∈ Gi+1 for all i ≥ 1 and h ∈ Gi. More precisely, if g ∈ Gi then we find that the
corresponding inner automorphism is contained in Autf (G)i.

Lemma 8.2.3. Let A,G be filtered groups and λ : G→ Autf (A) a homomorphism of filtered groups. Then
the semidirect product of groups A⋊λ G is a filtered group for the filtration

(A⋊λ G)i = Ai ⋊λ Gi.

Proof. For all i, j ≥ 1 we have

[Ai ⋊λ Gi, Aj ⋊λ Gj ] = [Ai, Aj ][Ai, Gj ][Aj , Gi][Gi, Gj ],

where we identify A and G with the corresponding subgroup of A ⋊λ G. Clearly [Ai, Aj ] ⊆ Ai+j and
[Gi, Gj ] ⊆ Gi+j . Since λ is a homomorphism of filtered groups, it follows from (8.1) that also [Ai, Gj ] ⊆
Ai+j and [Aj , Gi] ⊆ Ai+j . This concludes the proof.

Definition 8.2.4. Let f : A→ H , g : H → G and h : G→ H be homomorphisms of filtered groups. Then

1 A H G 1
f g

h

is a split exact sequence of filtered groups if
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1. the image of f is precisely the kernel of g,

2. the composition gh is the identity map on G,

3. f induces an isomorphism of filtered groups A ∼= f(A).

The following lemma is straightforward to verify.

Lemma 8.2.5. LetG,A be filtered groups and let λ : G→ Autf (A) be a homomorphism of filtered groups.
Then

1 A A⋊λ G G 1
ιA

prG

ιG

where ιA, ιG are the inclusion maps and prG is the projection map, is a split exact sequence of filtered
groups.

Lemma 8.2.6. Let

1 A H G 1
f g

h

be a split exact sequence of filtered groups. Then there exists a homomorphism of filtered groups λ : G →
Autf (A) and an isomorphism of filtered groups ϕ : A⋊λ G→ H such that

h

1 A G 1

A⋊λ G

gf

ιG

h

ιG

prG

ϕ

commutes.

Proof. The proof is completely analogous to the proof of Lemma 8.1.7.

8.3 Relating semidirect sums and products
For g a filtered Lie algebra we denote by Autf (g) the set of Lie algebra automorphisms ϕ of g such that
ϕ(x)− x ∈ gi+1 for all i ≥ 1 and x ∈ gi.

Lemma 8.3.1. Let g be a filtered Lie algebra. Then Autf (g) is a subgroup of Aut(g). Moreover, it is a
filtered group for the filtration

Autf (g)i = {ϕ ∈ Aut(g) | ϕ(x)− x ∈ gi+j for all j ≥ 1 and x ∈ gj}.

Proof. Consider the additive group (g,+) together with the filtration on g. Then Autf (g) is a subgroup of
Autf (g,+) as defined in Section 8.2. Since Autf (g)i = Autf (g)∩Autf (g,+)i, the statement follows.

Lemma 8.3.2. Let g be a Lazard Lie algebra. Then Autf (g) = Autf (Laz(g)) as filtered groups.
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Proof. We know by Theorem 1.4.27 that automorphisms of g and Laz(g), seen as filtered structures, co-
incide. It remains to show that Autf (g)i = Autf (Laz(g))i for all i ≥ 1. Let x, y ∈ g such that
x+ y ∈ gi \ gi+1, then

[x, y] + gi+1 = [x, y]− [x+ y, y] + gi+1 = gi+1,

hence x+ y + gi+1 = BCH(x, y) + gi+1 and thus BCH(x, y) ∈ gi \ gi+1. We find that x+ y ∈ gi if and
only if BCH(x, y) ∈ gi. In particular, for ϕ ∈ Autf (g) and x ∈ g we conclude that BCH(ϕ(x),−x) ∈ gi
if and only if ϕ(x)− x ∈ gi, from which the claim follows.

Lemma 8.3.3. Let g be a Lazard Lie algebra. Then also derf (g) is Lazard.

Proof. By Lemma 1.4.28, it is sufficient to prove that derf (g)i can be given the structure of a QPi -module,
with Pi the set of all prime numbers at most i. Let δ ∈ derf (g)i. Since then in particular, δ(g) ⊆ gi+1 we
can define for all r ∈ QPi ,

rδ : g→ g : x 7→ rδ(x),

which is also contained in derf (g)i. This gives derf (g)i the structure of a QPi -module.

It is well-known that the exponential and logarithmic maps induce a bijection between strict upper tri-
angular n × n-matrices and upper unitriangular n × n-matrices over Q. The same holds over fields of
characteristic p > 0 as long as n < p. The following lemma should be seen as a generalized version of this.
Note that this solves the problem that was discussed in the beginning of the chapter about there generally
not being a relation between Aut(g) and der(g) for an arbitrary (Lazard) Lie algebra.

Theorem 8.3.4. Let g be a Lazard Lie ring. Then

exp : Laz(derf (g))→ Autf (g)

is an isomorphism of filtered groups. In particular, Autf (g) is Lazard.

Proof. Since Endf (g)i is an ideal of Endf (g) for all i ≥ 1, we obtain the equality

exp(Endf (g)i) = 1 + Endf (g)i,

see also Example 1.4.8 and Lemma 1.4.30. It therefore remains to prove that exp(derf (g)) = Autf (g). The
statement then follows in combination with Proposition 1.4.24.

Let δ ∈ derf (g) and x, y ∈ g. We claim that

δn([x, y]) =

n∑
m=0

(
n

m

)
[δm(x), δn−m(y)], (8.2)

for n ≥ 0. Indeed, for n = 0 this is trivial, and by induction

δn+1([x, y]) = δ

(
n∑

m=0

(
n

m

)
[δm(x), δn−m(y)]

)

=

n∑
m=0

(
n

m

)
([δm+1(x), δn−m(y)] + [δm(x), δn+1−m(y)])

= [δn+1, y] + [x, δn+1(y)] +

n−1∑
m=0

((
n

m− 1

)
+

(
n

m

))
[δm(x), δn+1−m(y)]

=

n+1∑
m=0

(
n+ 1

m

)
[δm(x), δn+1−m(y)].
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We find

exp(δ)([x, y]) =

∞∑
n=0

n∑
m=0

1

n!

(
n

m

)
[δm(x), δn−m(y)] =

∞∑
l=0

∞∑
m=0

1

l!m!
[δm(x), δl(y)]

= [exp(δ)(x), exp(δ)(y)],

which proves that exp(δ) ∈ Autf (g) and thus the inclusion exp(derf (g)) ⊆ Autf (g) follows.
Conversely, let ϕ ∈ Autf (g) and set δ = log(ϕ), which we know is contained in Endf (g)1. We will

prove by induction on k that

δ([x, y]) + gi+j+k = [δ(x), y] + [x, δ(y)] + gi+j+k, (8.3)

for all i, j, k ≥ 1, x ∈ gi, y ∈ gj . Taking k large enough then yields δ ∈ derf (g). For k = 1, the statement
is trivial since δ ∈ Endf (g)1. Assume that (8.3) holds for some k ≥ 1. Then

δ([δr(x), δs(y)]) + gi+j+k+1 = [δr+1(x), δs(y)] + [δr(x), δs+1(y)] + gi+j+k+1, (8.4)

for r, s ≥ 0 such that r + s ≥ 1, since either δr(x) ∈ gi+1 or δs(y) ∈ gj+1.
We now prove by induction on n that

δn([x, y]) + gi+j+k+1 =

n∑
m=0

(
n

m

)
[δj(x), δn−m(y)] + gi+j+k+1, (8.5)

for all i, j ≥ 1, n ≥ 2, x ∈ gi and y ∈ gj . Applying δ on both sides of (8.3) yields

δ2([x, y]) + gi+j+k+1 = δ([δ(x), y]) + δ([x, δ(y)]) + gi+j+k+1,

so using (8.4) we indeed find that (8.5) holds for n = 2. Next, assume that (8.5) holds for some n ≥ 2, then
similar to the proof of (8.2) we find

δn+1([x, y]) ∈ δ

(
n∑

m=0

(
n

m

)
[δm(x), δn−m(y)] + gi+j+k+1

)

⊆
n∑

m=0

(
n

m

)
([δm+1(x), δn−m(y)] + [δm(x), δn+1−m(y)]) + gi+j+k+1

=

n+1∑
m=0

(
n+ 1

m

)
[δm(x), δn+1−m(y)] + gi+j+k+1,

where the inclusion follows from (8.4). This concludes the proof of (8.5) for all n ≥ 2, which we can now
use to obtain

ϕ([x, y]) + gi+j+k+1 = [x, y] + δ([x, y]) +

∞∑
n=2

n∑
m=0

1

n!

(
n

m

)
[δm(x), δn−m(y)] + gi+j+k+1

= [x, y] + δ([x, y]) +

∞∑
n=2

∞∑
m=0

1

n!m!
[δm(x), δn(y)] + gi+j+k+1,
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while we also know that

[ϕ(x), ϕ(y)] =

∞∑
n=0

∞∑
m=0

1

n!m!
[δm(x), δn(y)].

Comparing both, we find

δ([x, y]) + gi+j+k+1 = [δ(x), y] + [x, δ(y)] + gi+j+k+1.

This proves that (8.3) holds for k + 1 and thus concludes the proof.

Proposition 8.3.5. Let a, g be Lazard Lie rings and let δ : g → derf (a) be a homomorphism of filtered Lie
algebras. Then there is a unique filtered group isomorphism

γ : Laz(a⊕δ g)→ Laz(a)⋊λ Laz(g)

such that γ(a, 0) = (a, 0) and γ(0, x) = (0, x), where

λ : Laz(g)→ Autf (Laz(a)) : x 7→ λx,

with λx = exp(δx).

Proof. From Lemma 8.1.6 we know that

0 a a⊕δ g g 0
ιa

prg

ιg

is a split exact sequence of filtered Lie algebras. After application of the functor Laz, we obtain a split exact
sequence of filtered groups

1 Laz(a) Laz(a⊕δ g) Laz(g) 1
ιa

prg

ιg

which by Lemma 8.2.6 means there exists an isomorphism γ : Laz(a ⊕δ g) → Laz(a) ⋊λ Laz(g) with
γ(a, 0) = (a, 0) and γ(0, x) = (0, x) for all a ∈ a, x ∈ g. The action λ is indeed the one given in the
statement because of Lemma 1.4.31.

We continue with the same setting as Proposition 8.3.5. Since a × {0} is a normal subgroup of both
Laz(a⊕δ g) and Laz(a)⋊λ Laz(g), and γ(a× {0}) = a× {0}, we find that γ does not affect the second
component. Define V : a× g→ a as

γ(a, x) = (V (a, x), x).

Then in Laz(a)⋊λ Laz(g) we find

(V (a, x), 0) = (V (a, x), x)(0, x)−1 = γ(a, x)γ(0, x)−1 = γ(BCH((a, x), (0,−x))).
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Since

[(a, x), (0,−x)] = (−δ−x(a), 0)
= (δx(a), 0),

[(a, x), [(a, x), (0,−x)]] = [(a, x), (δx(a), 0)]

= ([a, δx(a)] + δ2x(a), 0),

[(0,−x), [(0,−x), (a, x)]] = [(0,−x), (−δx(a), 0)]
= (δ2x(a), 0),

[(0,−x), [(a, x), [(a, x), (0,−x)]]] = [(0,−x), ([a, δx(a)] + δ2x(a), 0)]

= (−δx([a, δx(a)])− δ3x(a), 0)
= (−[a, δ2x(a)]− δ3x(a), 0),

we can use (1.13) to find

V (a, x) = a+
1

2
δx(a) +

1

6
δ2x(a) +

1

12
[a, δx(a)] +

1

24
([a, δ2x(a)] + δ3x(a)) + . . . (8.6)

where further terms are of order at least 5.
Similarly, we define U : a× g→ a as

γ−1(a, x) = (U(a, x), x),

and we find
(U(a, x), 0) = (U(a, x), x) + (0,−x) = P ((a, x), (0,−x))),

with P as in (1.14), evaluated in the group Laz(a) ⋊λ Laz(g). We find the following group theoretic
commutators in Laz(a) ⋊λ Laz(g), where for readability we use juxtaposition for multiplication in the
groups Laz(a), Laz(g) and Laz(a)⋊λ Laz(g):

[(a, x), (0,−x)] = (a, x)(0,−x)(a, x)−1(0,−x)−1

= (a, x)(0,−x)(λ−1
x (a−1),−x)(0, x)

= (aλ−1
x (a−1), 0),

[(a, x), [(a, x), (0,−x)]] = [(a, x), (aλ−1
x (a−1), 0)]

= (aλx(aλ
−1
x (a−1))a−1λ−1

x (a)a−1, 0)

= (aλx(a)a
−2λ−1

x (a)a−1, 0),

[(a, x), [(a, x), [(a, x), (0,−x)]]] = [(a, x), (aλx(a)a
−2λ−1

x (a)a−1, 0)]

= (aλx(aλx(a)a
−2λ−1

x (a)a−1)a−1aλ−1
x (a−1)a2λx(a

−1)a−1, 0)

= (aλx(a)λ
2
x(a)λx(a

−2)aλx(a
−1)λ−1

x (a−1)a2λx(a
−1)a−1, 0),

[(0,−x), [(a, x), (0,−x)]] = [(0,−x), (aλ−1
x (a−1), 0)]

= (λ−1
x (aλ−1

x (a−1))λ−1
x (a)a−1, 0)

= (λ−1
x (a)λ−2

x (a−1)λ−1
x (a)a−1, 0),
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and

[(0,−x), [(0,−x), [(a, x),(0,−x)]]] = [(0,−x), (λ−1
x (a)λ−2

x (a−1)λ−1
x (a)a−1, 0)]

= (λ−1
x (λ−1

x (a)λ−2
x (a−1)λ−1

x (a)a−1)aλ−1
x (a−1)λ−2

x (a)λ−1
x (a−1), 0)

= (λ−2
x (a)λ−3

x (a−1)λ−2
x (a)λ−1

x (a−1)aλ−1
x (a−1)λ−2

x (a)λ−1
x (a−1), 0).

Explicitly, the terms of order less than 5 are given by

U(a, λx) = a(aλ−1
x (a−1))−

1
2 (aλx(a)a

−2λ−1
x (a)a−1)

1
12 (8.7)

(aλx(a)λ
2
x(a)λx(a

−2)aλx(a
−1)λ−1

x (a−1)a2λx(a
−1)a−1)−

1
24

(λ−2
x (a)λ−3

x (a−1)λ−2
x (a)λ−1

x (a−1)aλ−1
x (a−1)λ−2

x (a)λ−1
x (a−1))

1
24 · · ·

In the case that a is abelian, we have more explicit formulae for V and U .

Lemma 8.3.6. Let a, g be Lazard Lie algebras and let δ : g → derf (a) be a homomorphism of filtered Lie
algebras. If a is a trivial Lie algebra, then V and U simplify to

V (a, x) =

∞∑
k=1

1

k!
δk−1
x (a), (8.8)

U(a, x) =

∞∑
k=1

1

k
(id−λx)k−1(a). (8.9)

Proof. Similar to Example 1.3.20 we consider A = R⊕ a as a filtered algebra, where

(r, a)(s, b) := (rs, rb+ sa),

for r, s ∈ R and a, b ∈ a, and filtration A0 = A and Ai = {0} ⊕ ai for i ≥ 1. Then

ρ : a⊕δ g→ Endf (A,+) : (a, x) 7→ ρ(a,x),

with
ρ(a,x)(r, b) = (0, ra+ δx(b)),

is a homomorphism of filtered Lie algebras. The proof of this is precisely the same as given in Exam-
ple 1.3.20. Since (V (a, x), 0) = BCH((a, x), (0,−x)) in a⊕δ g, it follows from Proposition 1.4.24 that

ρ(V (a,x),0) = log(exp(ρ(a,x)) exp(ρ(0,−x))),

and since
exp(ρ(V (a,x),0))(1, 0) = (1, 0) + (0, V (a, x)) + 0 + 0 + . . . = (1, V (a, x)),

we find
(1, V (a, x)) = exp(ρ(a,x)) exp(ρ(0,−x))(1, 0).

Clearly exp(ρ(0,−x))(1, 0) = (1, 0) and thus

(1, V (a, x)) = exp(ρ(a,x))(1, 0) =

(
1,

∞∑
k=1

1

k!
δk−1
x (a)

)
,
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from which we obtain (8.8).
Similarly, since we know that

(U(a, x), 0) = P ((a, x), (0,−x)) = P ((a, 0)(0, x), (0,−x)),

where P is as in (1.16) considered in the group in Laz(a)⋊λ Laz(g), we can apply γ−1 in order to obtain
the equality

(U(a, x), 0) = BCH((a, 0), (0, x)) + (0,−x)),

in a⊕δ g. Applying ρ to this equation yields

ρ(U(a,x),0) = log(exp(ρ(a,0)) exp(ρ(0,x))) + ρ(0,−x),

in the Lazard algebra Endf (A,+) thus

(0, U(a, x)) = log(exp(ρ(a,0)) exp(ρ(0,x)))(1, 0) + ρ(0,−x)(1, 0)

= log(exp(ρ(a,0)) exp(ρ(0,x)))(1, 0).
(8.10)

Since for all n ∈ Z and b ∈ a we find exp(ρ(0,x))(n, b) = (n, λx(b)) and exp(ρ(a,0))(n, b) = (1, na), we
obtain for k > 0 that

(exp(ρ(a,0)) exp(ρ(0,x))− id)k(1, 0) = (exp(ρ(a,0)) exp(ρ(0,x))− id)k−1(0, a)

= (0, (λx − id)k−1(a)).

Combining this with (8.10), we find

(0, U(a, x)) = log(exp(ρ(a,0)) exp(ρ(0,x)))(1, 0)

=
∑
k=1

1

k
(−1)k+1(exp(ρ(a,0)) exp(ρ(0,x))− id)k(1, 0)

=

(
0,
∑
k=1

1

k
(−1)k+1(λx − ida)

k−1(a)

)

=

(
0,
∑
k=1

1

k
(ida−λx)k−1(a)

)
,

from which we obtain (8.9).

We now consider a particular case of the previous setting. Let a be a filtered Lie algebra. Define

afff (a) := a⊕δ derf (a),

where δ is the identity map on derf (g). Similarly, forA a filtered group we define Holf (A) as the semidirect
product

Holf (A) := A⋊λ Autf (A),

with λ the identity map on Autf (A).
Let us, from now on, assume that a is a Lazard Lie algebra. By Proposition 8.3.5, we have a filtered

group isomorphism
γ : Laz(afff (a))→ Laz(a)⋊ Laz(derf (a)).
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After identifying Laz(derf (a)) with Autf (a) as in Theorem 8.3.4 and Autf (a) with Autf (Laz(a)) as in
Lemma 8.3.2 we find an isomorphism

γ : Laz(afff (a))→ Holf (Laz(a)),

such that γ(a, 0) = (a, 0) and γ(0, δ) = (0, exp(δ)) for all a ∈ a and δ ∈ derf (a). It then follows from
Theorem 1.4.27 and Proposition 8.3.5 that γ yields a bijective correspondence between Lazard Lie subrings
of afff (a) and Lazard subgroups of Holf (Laz(a)).

Proposition 8.3.7. Let a be a Lazard Lie algebra and let g be a Lazard Lie subalgebra of afff (a). Then g is
t-injective if and only if the stabilizer of 0 under the action of γ(g) on Laz(a) is trivial.

Proof. Let g be as in the statement and assume that g is t-injective. Any element of γ(g) that fixes 0 is of
the form (0, λ), hence γ−1(0, λ) = (0, log(λ)). Since g is t-injective this implies log(λ) = 0 and thus we
find that λ = ida.

Conversely, assume that the stabilizer of 0 under the action of γ(g) is trivial and let (a, δ), (a, δ′) ∈ g.
Then (0, δ − δ′) ∈ g hence γ(0, δ − δ′) = (0, exp(δ − δ′)) ∈ γ(g). Since this element clearly fixes 0, we
conclude that exp(δ − δ′) = ida and thus δ = δ′.

Proposition 8.3.8. Let a be a Lazard Lie algebra and let g be a Lazard Lie subalgebra of afff (a). Then g is
t-surjective if and only if γ(g) is transitive.

Proof. Assume that g is t-surjective. Recall that V is by definition the composition of the projection

prLaz(a) : Holf (Laz(a))→ Laz(a),

with γ, hence it suffices to prove that V (g) = a. If this is not the case, there exists some a ∈ a and i ≥ 1
such that V (g) ∩ (a + ai) ̸= ∅ but V (g) ∩ (a + ai+1) = ∅. Let (b, δ) ∈ g such that V (b, δ) ∈ a + ai and
set c = a− V (b, δ). Since g is t-surjective, there exists some δ′ ∈ derf (a) such that (c, δ′) ∈ g . We find

c+ ai+1 = V (c, δ′) + ai+1

= exp(δ)(V (c, δ′)) + ai+1.

Also, since γ is a group isomorphism between Laz(afff (a)) and Holf (Laz(a)) we find

(V (BCH((b, δ), (c, δ′))), exp(δ) exp(δ′)) = γ(BCH((b, δ), (c, δ′)))

= γ(b, δ)γ(c, δ′)

= (V (b, δ), exp(δ))(V (c, δ′), exp(δ′))

= (BCH(V (b, δ), exp(δ)(V (c, δ′))), exp(δ) exp(δ′)).

Putting these two equalities together, we obtain

V (BCH((b, δ), (c′, δ′))) + ai+1 = BCH(V (b, δ), exp(δ)V (c′, δ′)) + ai+1

= BCH(V (b, δ), c) + ai+1

= V (b, δ) + c+ ai+1

= a+ ai+1.

We conclude that V (g) ∩ (a+ ai+1) is non-empty, which contradicts the earlier assumption.
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Conversely, assume that V (g) = a. If pra(g) ̸= a then there exists some a ∈ a and i ≥ 1 such that
pra(g)∩ (a+ ai) ̸= ∅ but pra(g)∩ (a+ ai+1) = ∅. Choose (b, δ) ∈ g such that b ∈ a+ ai. By assumption
there exists some (b′, δ′) ∈ g such that V (b′, δ′) = a− b. If j is such that b′ ∈ aj \ aj+1, then

b = V (b′, δ′) = b′ +
1

2
δ′(b′) + ... ∈ b′ + aj+1,

which implies that j = i. We find

a− b+ ai+1 = V (b′, δ′) + ai+1

= b′ + ai+1,

and thus

pra((b, δ) + (b′, δ′)) + ai+1 = a+ ai+1.

This contradicts the choice of a and i and thus we obtain that pra(g) = a.

From Propositions 8.3.7 and 8.3.8 we now obtain the main result of this section.

Theorem 8.3.9. Let a be a Lazard Lie algebra and let g be a Lazard Lie subalgebra of afff (a). Then g is
t-bijective if and only if γ(g) is regular.

Remark 8.3.10. As discussed in Section 1.5.3, transitive subgroups of the holomorph of a finite group play
an essential role in the theory of Hopf–Galois structures on separable field extensions. Let us shortly discuss
a potential application for Proposition 8.3.8 in Hopf–Galois theory.

Let A be a finite p-group for some prime p and let G be a Sylow p-subgroup of Aut(A). Since the
semidirect product A⋊G is still a p-group, its lower central series

γ1(A⋊G) ⊇ γ2(A⋊G) ⊇ . . .

terminates at some point. In particular, A has the structure of a filtered group for the filtration Ai = A ∩
γi(A ⋊ G) for i ≥ 1. Alternatively this filtration can be obtained by setting A1 = A and defining Ai+1 as
the subgroup of A generated by

{[a, b], g(a)a−1 | a ∈ Ai, b ∈ A, g ∈ G}.

This choice of filtration guarantees that G is a subgroup of Autf (A). Since Holf (A) has a finite filtration,
it is, in particular, nilpotent. Therefore, any element g ∈ {1} ⋊ Autf (A) of prime order q ̸= p centralizes
the p-subgroup A⋊ {1}, which implies that g is the identity automorphism. We conclude that Autf (A) is a
p-group and thus Autf (A) = G.

If Ap = {1}, which is for example always the case if |A| < pp, then A and Holf (A) are Lazard. In that
case, Proposition 8.3.8 states that transitive subgroups of Holf (A) are in a one-to-one correspondence with
t-surjective Lie subrings of afff (Laz

−1(A)). This potentially opens the door to structural or classification
results on Hopf–Galois structures on separable extensions of degree pn whose type is a p-group, where
n < p.
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8.4 The correspondence
Recall the correspondence described in Proposition 1.3.22 between post-Lie algebra structures on a Lie
algebra a and t-bijective Lie subalgebras of aff(a). We now define filtered post-Lie algebras in such a way
that this correspondence restricts to one between filtered post-Lie algebras and t-bijective Lie subalgebras
of afff (a).

Definition 8.4.1. A filtration on a post-Lie algebra (a, ▷) is a descending chain of left ideals

a = a1 ⊇ a2 ⊇ . . .

such that a is a filtered Lie algebra with respect to this filtration and a ▷ ai ⊆ ai+1 for all i ≥ 1.

Proposition 8.4.2. Let a be a filtered Lie algebra. Then there is a bijective correspondence between oper-
ations ▷ such that (a, ▷) is a filtered post-Lie algebra with respect to the filtration on a, and t-bijective Lie
subalgebras of afff (a).

Proof. Let a be a filtered Lie algebra and let (a, ▷) be a post-Lie algebra structure. Recall that its corre-
sponding Lie subalgebra of aff(a) is g = {(a,La) | a ∈ a}. We then see that g is contained in afff (a) if and
only if La ∈ derf (a) for all a ∈ a. This happens precisely if a ▷ ai ⊆ ai+1 for all i ≥ 1.

Recall from Section 1.3 that for a post-Lie algebra (a, ▷) we obtained the sub-adjacent Lie algebra
structure a◦ on the module a whose Lie bracket is given by

{a, b} = [a, b] + a ▷ b− b ▷ a,

for a, b ∈ a. Moreover, the map
a◦ → aff(a) : a 7→ (a,La),

induces an isomorphism between a◦ and the t-bijective Lie subalgebra of aff(a) associated to the post-Lie
algebra (a, ▷).

Lemma 8.4.3. Let (a, ▷) be a post-Lie algebra. Then a◦ is a filtered Lie algebra for the filtration

a◦i = {a ∈ ai | a ▷ aj ⊆ ai+j for all j ≥ 1}.

Proof. This follows directly by transferring the filtration of the associated t-bijective Lie subalgebra of
afff (a) onto a◦.

Definition 8.4.4. A Lazard post-Lie algebra is a filtered post-Lie algebra (a, ▷) such that both a and a◦ are
Lazard Lie algebras, where the filtration on a is the same one as on (a, ▷) and the filtration on a◦ is as in
Lemma 8.4.3. A map f : (a, ▷) → (b, ▷) between filtered post-Lie algebras is a homomorphism of filtered
post-Lie algebras if it is a post-Lie algebra homomorphism such that moreover f(ai) ⊆ bi and f(a◦i ) ⊆ b◦i
for all i ≥ 1.

Next, we follow a similar approach for skew braces. Here we recall the correspondence between skew
braces of the form (A, ·, ◦) and regular subgroups of Hol(A, ·) as described in Proposition 1.1.9. The defi-
nition of a filtered skew brace is now chosen in order to preserve this correspondence in the filtered setting.

Definition 8.4.5. A filtration on a skew brace (A, ·, ◦) is a descending chain of strong left ideals

A = A1 ⊇ A2 ⊇ . . . ,

such that (A, ·) is a filtered group for the given chain of ideals and A ∗Ai ⊆ Ai+1 for all i ≥ 1.
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Proposition 8.4.6. Let (A, ·) be a filtered group. Then there is a bijective correspondence between opera-
tions ◦ such that (A, ·, ◦) is a filtered skew brace for the filtration onA, and regular subgroups of Holf (A, ·).

Proof. Let (A, ·) be a filtered group and (A, ·, ◦) a skew brace structure. Recall that its corresponding regular
subgroup of Hol(A, ·) is given by G = {(a, λa) | a ∈ A}. We find that G is contained in Holf (A, ·) if and
only if λa ∈ Autf (A, ·) for all a ∈ A. This happens precisely if a ∗ b = λa(b) · b−1 ∈ Ai+1 for all a ∈ A
and b ∈ Ai.

Lemma 8.4.7. Let (A, ·, ◦) be a filtered skew brace. Then (A, ◦) is a filtered group for the filtration

(A, ◦)i = {a ∈ Ai | λa(b)b−1 ∈ Ai+j for all j ≥ 1, b ∈ Ai}.

Proof. This follows from transferring the filtration of the associated regular subgroup of Holf (A, ·) onto the
group (A, ◦), through the group isomorphism (A, ◦)→ {(a, λa) | a ∈ A}.

Definition 8.4.8. A Lazard skew brace is a filtered skew brace (A, ·, ◦) such that both (A, ·) and (A, ◦) are
Lazard groups, where the filtration (A, ·) is the same as on the skew brace and the filtration on (A, ◦) is
as in Lemma 8.4.7. A map f : (A, ·, ◦) → (B, ·, ◦) between filtered skew braces is a homomorphism of
filtered skew braces if it is a skew brace homomorphism such that moreover the inclusions f(Ai) ⊆ Bi and
f((A, ◦)i) ⊆ (B, ◦)i hold for all i ≥ 1.

Proposition 8.4.9. Let (a, ▷) be a Lazard post-Lie ring. Then

W : a→ a : a 7→ V (a,La)

is a bijective map and B(a, ▷) = (a, ·, ◦) with

a · b = BCH(a, b),

a ◦ b = a · exp(LΩ(a))(b),

and Ω :=W−1, is a Lazard skew brace with respect to the filtration of (a, ▷).

Proof. Let g be the t-bijective Lie subring of afff (a) associated to (a, ▷), which is Lazard since a◦ is as-
sumed to be Lazard. As in the statement, we define W as the composition of the bijection

a→ g : a 7→ (a,La),

and the map V : afff (a) → a as defined in Section 8.3. Since g is t-bijective and Lazard, it follows from
Theorem 8.3.9 that γ(g) is regular and thus V induces a bijection between γ(g) and a. We conclude that W
is a bijection.

Since γ(g) is a regular subgroup of Holf (Laz(a)), we can consider its corresponding Lazard skew brace
(a, ·, ◦) where (a, ·) = Laz(a). For a, b ∈ a, we have a ◦ b = a · λa(b) where λa ∈ Aut(a) is uniquely
determined by the fact that (a, λa) ∈ γ(g). Since

γ(g) = {(W (a), exp(La)) | a ∈ a},

we find that λa = exp(LΩ(a)).
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From (8.6) we obtain

W (a) = a+
1

2
(a ▷ a) +

1

6
(a ▷ (a ▷ a)) +

1

12
[a, a ▷ a] +

1

24
([a, a ▷ (a ▷ a)] + a ▷ (a ▷ (a ▷ a)) + . . . (8.11)

where further terms are of order at least 5. If we restrict Proposition 8.4.9 to pre-Lie rings, the following
more explicit statement follows from Lemma 8.3.6.

Proposition 8.4.10. Let (a, ▷) be a Lazard pre-Lie ring. Then

W : a→ a : a 7→
∞∑
k=1

1

k!
Lk−1
a (a)

is a bijective map and B(a, ▷) = (a,+, ◦) with

a ◦ b = a · exp(LΩ(a))(b),

and Ω :=W−1, is a Lazard brace with respect to the filtration of (a, ▷).

Proposition 8.4.11. Let (a, ▷) be a Lazard post-Lie ring and set (a, ·, ◦) = B(a, ▷). Then the map W :
Laz(a◦)→ (a, ◦) is an isomorphism of filtered groups.

Proof. It suffices to note that W is the composition of the filtered group isomorphisms

Laz(a◦)→ Laz(g) : a 7→ (a,La),

γ : Laz(g)→ γ(g) and prLaz(a) : γ(g)→ (a, ◦).

Proposition 8.4.12. Let (A, ·, ◦) be a Lazard skew brace. Then

Ω : A 7→ A : a 7→ U(a, λa)

is a bijection and L(A, ·, ◦) = (Laz−1(A, ·), ▷) with

a ▷ b = log(λW (a))(b),

and W := Ω−1, is a Lazard post-Lie ring with respect to the filtration on (A, ·, ◦).

Proof. Let G be the regular subgroup of Holf (A, ·) associated to the skew brace structure (A, ·, ◦). Then
G is Lazard since we assumed that (A, ◦) is Lazard. Note that Ω is the composition of the bijection A →
G : a 7→ (a, λa) and the map U : Hol(A, ·) → A with U as in Section 8.3. The map U induces a bijection
between G and A, since γ−1(G) is a t-bijective Lie subring of afff (Laz

−1(A, ·)), see Theorem 8.3.9. We
conclude that Ω is a bijection.

Since γ−1(G) is a t-bijective Lazard Lie subring of afff (Laz
−1(A, ·)), we can consider its associated

Lazard post-Lie ring (Laz−1(A, ·), ▷). For a, b ∈ A, we find that a ▷ b = La(b) where La is uniquely
determined by the fact that (a,La) ∈ γ−1(G). Since

γ−1(G) = {(Ω(a), log(λa)) | a ∈ A},

we find that La = log(λΩ−1(a)).
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From (8.7) we obtain

Ω(a) =a(a ◦ λ−1
a (a))◦−

1
2 (a ◦ λa(a)a◦−2 ◦ λ−1

a (a) ◦ a)◦ 1
12 (8.12)

◦ (a ◦ λa(a) ◦ λ2a(a) ◦ λx(a−2) ◦ a ◦ λa(a) ◦ λ−1
a (a) ◦ a◦2 ◦ λa(a) ◦ a)◦−

1
24

◦ (λ−2
a (a) ◦ λ−3

a (a) ◦ λ−2
a (a) ◦ λ−1

a (a) ◦ a ◦ λ−1
a (a) ◦ λ−2

a (a) ◦ λ−1
a (a))◦

1
24 · · · ,

where further factors are of degree 5 or more. If we restrict Proposition 8.4.12 to braces, the following more
explicit statement follows from Lemma 8.3.6.

Proposition 8.4.13. Let (A,+, ◦) be a Lazard brace. Then

Ω(a) =

∞∑
k=1

1

k
(idA−λa)k−1(a),

is a bijection and L(A,+, ◦) = (Laz−1(A,+), ▷) with

a ▷ b = log(λW (a))(b),

and W := Ω−1, is a Lazard pre-Lie ring with respect to the filtration on (A, ·, ◦).

Theorem 8.4.14. The constructions in Proposition 8.4.9 and Proposition 8.4.12 are mutually inverse and
functorial, and yield a correspondence between Lazard post-Lie rings and Lazard skew braces. The maps Ω
and W associated to a Lazard post-Lie ring (a, ▷) coincide with those associated to B(a, ▷).

Proof. Since both constructions rely on the correspondence between t-bijective Lazard Lie subrings of
afff (a) and regular Lazard subgroups of Holf (Laz(a)) given by γ and its inverse, it is clear that they
are mutually inverse and that their associated maps Ω and W coincide.

We prove the functoriality of B, the proof for L is analogous. Let (a, ▷) and (b, ▷) be Lazard post-Lie
rings and let f : (a, ▷) → (b, ▷) be a homomorphism of filtered post-Lie rings. Set (a, ·, ◦) = B(a, ▷)
and (b, ·, ◦) = B(b, ▷), and let Wa and Wb denote their respective maps W . By Theorem 1.4.27 the map
f : (a, ·) → (b, ·) is a group homomorphism. It remains to prove that f : (a, ◦) → (b, ◦) is a filtered group
homomorphism. From Proposition 8.4.11 we know that it is sufficient to prove the equality fWa = Wbf .
However, this follows from the fact that fLa = Lf(a)f for all a ∈ a and the fact that f is a filtered Lie ring
homomorphism, which implies that it behaves well with respect to the unique roots of elements.

Remark 8.4.15. Recall that an element a of a skew brace (A,+, ◦) is square-free if a ∗ a = 0. A skew brace
is square-free if all of its elements are square-free. Similarly, we say that an element a of a post-Lie ring
(a, ▷) is square-free if a ▷ a = 0, and (a, ▷) is square-free when all of its elements are square-free. Note
that the property of being square-free is preserved by B and L, and W = Ω = id in this case. Therefore,
these classes behave particularly well under the correspondence, and most of the computations involved are
trivial.

Proposition 8.4.16. Let (a, ▷) be a Lazard post-Lie ring and let b be a Lazard Lie subring of a. Then b is a
left ideal, strong left ideal or ideal in (a, ▷) if and only if it is so in B(a, ▷).

Proof. Clearly b is a subgroup of Laz(a). The statement for left ideals follows directly from the fact that
b, since it is Lazard, is invariant under {La | a ∈ a} if and only if it is invariant under {exp(La) | a ∈ a}.
This can be extended to the statement regarding strong left ideals if we take into account Lemma 1.4.31.
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Before proving the last part of the statement, we prove that if b is a left ideal of (a, ▷) then Ω(b) = b. We
obtain W (b) ⊆ b since for any b ∈ b the expression of W (b) only involves occurrences of b, manipulations
internal to the Lie ring b, and applications of Lb. Similarly, Ω(b) ⊆ b since for any b ∈ b the expression
for Ω(b) only involves occurrences of b, manipulations internal to the group Laz(b) and applications of
exp(LΩ(b)). Note that we do not need to know exp(LΩ(b)) explicitly since we know that exp(La)(b) ⊆ b
for all a ∈ a. We conclude that Ω(b) = b.

At last, still under the assumption that b is a left ideal of (a, ▷), we use the fact that W is a group
isomorphism between Laz(a◦) and (A, ◦) to find that b is an ideal of a◦ if and only ifW (b) = b is a normal
subgroup of (A, ◦). In particular, we can conclude that b is an ideal of (a, ▷) if and only if it is an ideal of
B(a, ▷).

Proposition 8.4.17. Let (a, ▷) be a Lazard post-Lie ring. Then the fix, socle and annihilator of (a, ▷)
coincide with that of B(a, ▷). In particular, (a, ▷) is right nilpotent if and only if B(a, ▷) is right nilpotent.

Proof. The first part of the statement follows from the fact thatW (a) = a whenever a▷a = 0 or λa(a) = a,
which in particular is the case when a is contained in the fix or socle. The second part of the statement now
follows from [1, Lemma 5.3 and 5.4] and the analogous statement for post-Lie rings.

Example 8.4.18. LetR be a Lazard ring and let La denote left multiplication by a. Then a = R1 is a Lazard
pre-Lie ring for a▷b = ab and filtration ai = Ri for i ≥ 1. In this case, the operation ◦ in (A,+, ◦) = B(a, ▷)
is given by a ◦ b = a+ ab+ b. Indeed, clearly W (a) = exp(a)− 1, hence Ω(a) = log(1+ a). We now find

a ◦ b = a+ exp(Llog(1+a))(b) = a+ ab+ b.

Conversely, starting from the brace (A,+, ◦) we find Ω(a) = log(1 + a) and thus W (a) = exp(a)− 1. We
recover the original multiplication as

a ▷ b = log(λW (a))(b) = log(L1+W (a))(b) = a+ log(Lexp(a))(b) = ab.

This is precisely the classical correspondence between two-sided braces and Jacobson radical rings as de-
scribed by Rump, see Proposition 1.1.14.

8.5 L-nilpotent post-Lie algebras
In light of Section 8.4, it is natural to ask whether every post-Lie algebra (a, ▷) admits a filtration and, in
particular, whether it admits a finite filtration. The natural candidate for a filtration is the following: we
set L1(a) = a and for i ≥ 1 we inductively define Li+1(a) as the subgroup of (a,+) (or equivalently,
submodule of a) generated by the set

{a ▷ b, [a, b] | a ∈ a, b ∈ Li(A)}.

We obtain a descending chain of strong left ideals

a = L1(a) ⊇ L2(a) ⊇ . . .

which we call the L-series of (a, ▷). If (a, ▷) is a pre-Lie algebra, then Li(a) = ai so we obtain the left
series as defined in Definition 1.3.24.

Lemma 8.5.1. Any post-Lie algebra (a, ▷) is a filtered post-Lie algebra for the filtration ai = Li(a).
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Proof. We show that [Li(a), Lj(a)] ⊆ Li+j(a) for all i, j ≥ 1. Consider the Lie subalgebra

h = {La | a ∈ a}

of derf (a) and as in Lemma 8.1.3 consider the semidirect sum t = a ⊕δ h where δ : h → derf (a) is the
inclusion map. Then we find

[(a,Lb), (c, 0)] = ([a, c] + b ▷ c),

for all a, b, c ∈ a. It follows that [t, t] = L2(a) ⊕ [h, h] or with the notation as in Lemma 1.4.4, γ2(t) =
L2(a)⊕ γ2(h). By induction one finds γi(t) = Li(a)⊕ γi(h). From Lemma 1.4.4 we get

[Li(a), Lj(a)]⊕ 0 = [Li(a)⊕ 0, Lj(a)⊕ 0] ⊆ Li+j(a)⊕ γi+j(h),

and thus we conclude [Li(a), Lj(a)] ⊆ Li+j(a). From the definition it is clear that a ▷ ai ⊆ ai+1 for all
i ≥ 1, so we have indeed constructed a filtration on (a, ▷).

The above constructed filtration is clearly the finest possible one. Therefore, if there exists some finite
filtration on (a, ▷), then also the descending series Li(a) terminates at some point.

Definition 8.5.2. A post-Lie algebra (a, ▷) is L-nilpotent if Lk+1(a) = 0 for some k ≥ 0. The minimal
such k, if it exists, is the L-nilpotency class of (a, ▷).

Lemma 8.5.3. Let (a, ▷) be a post-Lie algebra. Then (a, ▷) is L-nilpotent if and only if (a, ▷) is left nilpotent
and a is a nilpotent Lie ring.

Proof. From the definition of Li(a), it is clear that if (a, ▷) is L-nilpotent then it is left nilpotent and a is a
nilpotent Lie algebra.

Conversely, assume that (a, ▷) is left nilpotent and a is a nilpotent Lie algebra. Let

a = γ1(a) ⊇ . . . ⊇ γd+1(a) = {0}

denote the lower central series of a and let c be such that ac+1 = {0}, recall that this is the c+ 1-th term in
the left series of (a, ▷). Assume that Li(a) ⊆ γk(a) for some i, k ≥ 1, then [Li(a), a] ⊆ γk+1(a) and thus

Li+1(a) ⊆ (a ▷ Li(a)) + γk+1(a) ⊆ a2 + γk+1(a).

By induction on c we find
Li+c(a) ⊆ ac+1 + γk+1(a) = γk+1(a).

Since L1(A) ⊆ γ1(A) we conclude by induction on k that Ldc+1(a) ⊆ γd+1(a) = {0}.

Theorem 8.5.4. Let (a, ▷) be a post-Lie algebra of L-nilpotency class k. Then a◦ is nilpotent of class at
most k and the k-th term in the lower central series of a◦ is contained in Ann(a).

Proof. Let (a, ▷) beL-nilpotent of class k and consider (a, ▷) as a filtered post-Lie algebra where its filtration
is given by its L-series. Recall from Lemma 8.4.3 that this induces a filtration on a◦ explicitly given by

a◦i = {a ∈ Li(a) | a ▷ Lj(a) ⊆ Li+j(a) for all j ≥ 1}.

In particular, a◦k+1 ⊆ Lk+1(a) = 0, so indeed a◦ is nilpotent of class at most k. Also, for a ∈ a◦k we
find that a ▷ a = a ▷ L1(a) ⊆ Lk+1(a) = {0} hence a◦k is contained in the kernel of L. Since also
b ▷ a, [a, b] ∈ Lk+1(a) = 0 for all b ∈ a, we find that a◦k ⊆ Z(a) ∩ Fix(a), from which the statement
follows.
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Corollary 8.5.5. Let (a, ▷) be a post-Lie algebra. Then (a, ▷) is L-nilpotent if and only if the semidirect sum
a⊕L a◦ is a nilpotent Lie algebra. Moreover, in this case the L-nilpotency class of (a, ▷) coincides with the
nilpotency class of a⊕L a◦.

Proof. Similar to the lower central series of aff(a) as deduced in Lemma 8.5.1, the lower central series of
a⊕L a◦ is given by

γi(a⊕L a◦) = Li(a)⊕L γ
i(a◦).

The equivalence then follows from Theorem 8.5.4.

8.6 L-nilpotent skew braces
Similar to the previous section, we are interested in, whether given a skew brace (A, ·, ◦), there exists a finite
filtration on it.

Set L1(A) = A and let Li+1(A) be the subgroup of (A, ·) generated by

{a ∗ b, [a, b] | a ∈ A, b ∈ Li(A)},

where we recall that a ∗ b := a−1 · (a ◦ b) · b−1 and the commutator is to be interpreted in (A, ·). We obtain
a descending series of strong left ideals

A = L1(A) ⊇ L2(A) ⊇ . . .

which we call the L-series of (A, ·, ◦). Note that this series is the left-hand version of the series Rn(A,A)
as defined in [1]. Also, note that if A is a brace, then Li(A) = Ai, so we recover the left series as defined in
Definition 1.1.23.

Lemma 8.6.1. Any skew brace (A, ·, ◦) is a filtered skew brace for the filtration Ai = Li(A).

Proof. We show that the commutator [Li(A), Lj(A)] is contained in Li+j(A) for all i, j ≥ 1. Let

H = {λa | a ∈ A} ⊆ Aut(A, ·),

and consider the semidirect product T = (A, ·)⋊βH where β : H → Aut(A, ·) is the inclusion map. Since

[(1, λa), (b, 1)] = (a ∗ b, 1),

for all a, b ∈ A, it follows that [T, T ] = L2(A) × [H,H], or with the notation as in Lemma 1.4.2
γ2(T ) = L2(A)× γ2(H). By induction one finds γi(T ) = Li(A)× γi(H). By Lemma 1.4.2 we know that
[γi(T ), γj(T )] ⊆ γi+j(T ), so in particular

[Li(A), Lj(A)]× {0} = [Li(A)× {0}, Lj(A)× {0}] ⊆ Li+j(A)× γi+j(H),

thus [Li(a), Lj(a)] ⊆ Li+j(A). At last, it is clear from the definition that a ∗ Li(A) ⊆ Li+1(A) for all
a ∈ A. We conclude that the L-series indeed yields a filtration on (A, ·, ◦).

Note that the above filtration is the finest filtration one can consider. So if there exists some finite filtration
on a skew brace (A, ·, ◦), then the descending series Li(A) terminates at some point.

Definition 8.6.2. A skew brace (A, ·, ◦) is L-nilpotent if Lk+1(A) = {1} for some k ≥ 0. The minimal
such k, if it exists, is the L-nilpotency class of A.
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Lemma 8.6.3. Let (A, ·, ◦) be a skew brace. Then A is L-nilpotent if and only if A is left nilpotent and
(A, ·) is a nilpotent group.

Proof. From the definition of Li(A) it is clear that if (A, ·, ◦) is L-nilpotent, then it is left nilpotent and A is
a nilpotent group.

Conversely, assume that (A, ·, ◦) is left nilpotent and that (A, ·) is a nilpotent group. Let

A = γ1(A, ·) ⊇ . . . ⊇ γd+1(A, ·) = {0}

be the lower central series of (A, ·). Also, let c such that Ac+1 = {0}, recall that this is the c+ 1-th term in
the left series. Assume that Li(A) ⊆ γk(A, ·) for some i, k ≥ 1, then [Li(A), A] ⊆ γk+1(A, ·) hence

Li+1(A) ⊆ (A ∗ Li(a))γk+1(A, ·) ⊆ A2γk+1(A, ·).

By induction on c, we find
Li+c(A) ⊆ Ac+1γk+1(A, ·) = γk+1(A).

Since L1(A) ⊆ γ1(A), we conclude by induction on k that Ldc+1(A) ⊆ γd+1(A) = {0}.

Corollary 8.6.4. Every skew brace of prime power size is L-nilpotent.

Proof. Let (A, ·, ◦) be a skew brace of size pn. The group (A, ·) is nilpotent since it is a finite p-group. Also
from Theorem 1.1.24 it follows thatA is left nilpotent. The statement is now a consequence of Lemma 8.6.3.

Remark 8.6.5. Contrary to skew braces, post-Lie rings of prime power size are not automaticallyL-nilpotent.
Indeed, the trivial Lie ring structure on Z/p with n ▷ m = nm yields an example of a pre-Lie ring of size p
that is neither left nor right nilpotent.

Theorem 8.6.6. Let (A, ·, ◦) be an L-nilpotent skew brace of class k. Then (A, ◦) is nilpotent of class at
most k and the k-th term in the lower central series of (A, ◦) is contained in Ann(A).

Proof. Let (A, ·, ◦) be an L-nilpotent skew brace of class k and consider it as a filtered skew brace with the
filtration given by the L-series. As in Lemma 8.4.7, we find a filtration on (A, ◦) explicitly given by

(A, ◦)i = {a ∈ Li(A) | a ∗ Lj(A) ⊆ Li+j(A) for all j ≥ 1}.

Since (A, ◦)k+1 ⊆ Lk+1(A) = {1} we find that (A, ◦) is indeed nilpotent of class at most k. Also, for
a ∈ (A, ◦)k we find a ∗ A = a ∗ L1(A) ⊆ Lk+1(A) = {1} hence (A, ◦)k is contained in the socle of A.
Since moreover Lk(A) ⊆ Z(A, ·) ∩ Fix(A) we conclude that (A, ◦)k ⊆ Ann(A).

Corollary 8.6.7. Let (A, ·, ◦) be a skew brace. Then A is L-nilpotent if and only if the semidirect product
(A, ·)⋊λ (A, ◦) is a nilpotent group. Moreover, in this case the L-nilpotency class of (A, ·, ◦) coincides with
the nilpotency class of (A, ·)⋊λ (A, ◦).

Proof. Similar to the lower central series of Hol(A, ·) as deduced in Lemma 8.6.1, the lower central series
of (A, ·)⋊λ (A, ◦) is given by

γi((A, ·)⋊λ (A, ◦)) = Li(A)⋊λ γi(A, ◦).

The equivalence then follows from Theorem 8.6.6.
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8.7 Finite L-nilpotent skew braces
Let (A, ·, ◦) be a finite L-nilpotent skew brace, then by Proposition 1.1.25 we know that A is isomorphic
to a direct product of skew braces of prime power order. For this reason, we consider in this section only
structures of prime power order.

Theorem 8.7.1. Let pn be a prime power. The correspondence described in Theorem 8.4.14 yields a cor-
respondence between post-Lie rings of size pn and L-nilpotency class smaller than p and skew braces of
size pn and L-nilpotency class smaller than p, where all structures are considered with the filtration coming
from their L-series.

Proof. Recall from Proposition 1.4.33 that a filtered Lie ring or group of order pn is Lazard if and only
if the p-th term in its filtration is trivial. Assume we are given a post-Lie ring (a, ▷) of size pn and L-
nilpotency class smaller than p. We consider it with its filtration coming from the L-series, then a◦p ⊆ ap =
Lp(a) = {0} hence both a and a◦ are Lazard, meaning that (a, ▷) itself is Lazard. Therefore, we can apply
Proposition 8.4.9 in order to obtain a skew brace B(a, ▷) whose L-nilpotency class is smaller than p.

Conversely, given a skew brace (A, ·, ◦) of size pn and L-nilpotency class smaller than p we can also
consider it with its filtration coming from the L-series. Since (A, ◦)p ⊆ Ap = Lp(A) = {1} we find that
(A, ·, ◦) is Lazard hence Proposition 8.4.12 can be applied to obtain a Lie ring L(A, ·, ◦) whose L-nilpotency
class is smaller than p.

Proposition 8.7.2. Let (a, ▷) be a post-Lie ring of prime power size pn and L-nilpotency class smaller than
p. Then post-Lie subrings of (a, ▷) and skew subbraces of B(a, ▷) coincide. Similarly, left ideals, strong left
ideals and ideals of (a, ▷) and B(a, ▷) coincide.

Proof. This is a direct consequence of Proposition 8.4.16 and the fact that the L-nilpotency class of a post-
Lie subalgebra of (a, ▷) is at most the L-nilpotency class of (a, ▷).

Corollary 8.7.3. Let p be a prime and 1 ≤ n < p. The correspondence described in Theorem 8.4.14
yields a correspondence between L-nilpotent post-Lie rings of size pn and skew braces of size pn, where all
structures are considered with the filtration coming from their L-series.

Proof. Clearly, if (a, ▷) is an L-nilpotent post-Lie ring of size pn, then Ln+1(a) = {0} and a similar
statement holds for L-nilpotent skew braces of size pn. The statement now follows from Theorem 8.7.1,
taking into account Corollary 8.6.4.

Let (A, ·, ◦) be a skew brace and a ∈ A. Recall that for an integer n we denote the n-th power of a in
(A, ·) by an and its n-th power in (A, ◦) by a◦n. The following result extends Proposition 15 and Lemma
17 of [148] (note that these only appear in the preprint version and not in the published version [147]).

Proposition 8.7.4. Let (A, ·, ◦) be a skew brace of prime-power size pn and L-nilpotency class smaller than
p. Then for any k

{ap
k

| a ∈ A} = {a◦p
k

| a ∈ A},

and
{a ∈ A | ap

k

= 1} = {a ∈ A | a◦p
k

= 1},

and these sets are ideals of (A, ·, ◦).
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Proof. We prove the first part of the statement; the second part is analogous. By Theorem 8.7.1 we know
that there exists a Lazard post-Lie ring (a, ▷) such that (A, ·, ◦) = B(a, ▷). It follows from Proposition 8.7.2
that pka is an ideal of (A, ·, ◦). Since (A, ·) = Laz(a), we find pka = {apk | a ∈ A}. Also, from
Proposition 8.4.11 we obtain

W (pka) = {a◦p
k

| a ∈ A},

but since W (pka) = pka (see proof of Proposition 8.4.16), we get the desired equality.

8.7.1 IYB groups
Recall that a group G is an involutive Yang–Baxter (IYB) group if it is isomorphic to the permutation group
of an involutive finite set-theoretical solution of the YBE. Equivalently, a group (G, ◦) is IYB if there exists
some abelian group structure (G,+) such that (G,+, ◦) is a brace. It is an open problem to characterize all
such groups. It is well-known that finite IYB groups are solvable, see [73]. Many classes of finite groups
are known to be IYB. Examples of such classes are groups of nilpotency class 2 or A-groups, see [48, 51].
Conversely, if a group G is IYB, then so are its Sylow subgroups. In [10], Bachiller proved that for all but
a finite number of primes p there exists a p-group of order p10 that is not IYB. The main tools here were a
counterexample by Burde to a conjecture of Milnor [23] and the Lazard correspondence. Actually, he even
proved the stronger statement that for all but a finite number of primes p there exists a p-group of order p10

and exponent p that does not embed into the matrix group GL11(Fp). Together with the fact that for a brace
(A,+, ◦) of order p10 and p ≥ 11 the exponent of (A,+) and (A, ◦) coincide, see Proposition 8.7.4, this
indeed implies the earlier statement. Theorem 8.7.1 could be useful in the study of IYB p-groups, as we can
easily deduce the following statement from it.

Corollary 8.7.5. Let p be a prime and n < p. Then a group G of order pn is IYB if and only if Laz−1(G)
is isomorphic to the sub-adjacent Lie ring of some left nilpotent pre-Lie algebra.

The underlying philosophy here is precisely the same as that of Bachiller, but it allows us to be more
precise since there might be groups of order pn and exponent p that are not IYB but are embeddable in
GLn+1(Fp).

8.7.2 Differentiation using primitive roots of unity
At last, we shortly discuss and extend [147, Theorems 12 and 13]. Recall that, for n ≥ 1, a primitive n-th
root of unity of a ringR is an element ξ ∈ R such that ξn = 1 and ξk−1 is not a zero divisor for 1 ≤ k < n.
Since the group of invertible elements of a finite field of prime power order Fpn is cyclic, it has a primitive
(pn − 1)-th root of unity. The same holds for Z/pn; indeed, any element of order p − 1 in (Z/pn)× is a
primitive (p − 1)-th root of unity since its image in Z/p is a primitive (p − 1)-th root of unity. Recall that
[147, Theorems 12 and 13] states:

Theorem 8.7.6. Let (A,+, ◦) be a strongly nilpotent brace of prime power size pn and strong nilpotency
class k, with k, n < p− 1. Let ξ ∈ Z be a primitive (p− 1)-th root of unity modulo pn. Then (a, ▷) with a
the trivial Lie ring on the abelian group (A,+) and

a ▷ b = −(1 + p+ p2 + . . .+ pn−1)

p−2∑
i=0

((ξia) ∗ b)

is a pre-Lie ring such that B(a, ▷) = (A,+, ◦).



8.7. FINITE L-NILPOTENT SKEW BRACES 171

Therefore, in the setting of Theorem 8.7.6, it follows that

−(1 + p+ p2 + . . .+ pn−1)

p−2∑
i=0

((ξia) ∗ b) = log(λW (a))(b),

for all a, b ∈ A, since B provides an inverse construction of L. Before explaining why this equality holds,
we consider a similar phenomenon in a more general context. As usual, let R be a commutative ring.

Definition 8.7.7. A map f :M → N between R-modules is:

• homogeneous polynomial of degree k if f(rm) = rkf(m) for all r ∈ R, m ∈M .

• polynomial of degree less than k if it can be written as a sum f =
∑k−1
i=0 fi where fi is a homogeneous

polynomial of degree i.

Lemma 8.7.8. Let R be a ring and let M,N be R-modules. Let ξ ∈ R be a primitive n-th root of unity
where n is invertible in R and let f : M → N be polynomial of degree less than n, with homogeneous
decomposition f =

∑n−1
i=0 fi. Then

1

n

n−1∑
j=0

ξjkf(ξ−jm) = fk(m)

for all 0 ≤ k < n and m ∈M .

Proof. Let 0 ≤ k < n, then

1

n

n−1∑
j=0

ξjkf(ξ−jm) =
1

n

n−1∑
i=0

n−1∑
j=0

ξj(k−i)fi(m) = fk(m),

since 1
n

∑n−1
j=0 ξ

j(k−i) equals 0 if i ̸= k and it equals 1 if i = k.

For k = 1, it makes sense to see the above manipulation as taking the directional derivative of f through
m and subsequently evaluating at 0. Therefore, in the above setting, it is justified to introduce the notation

df :M → N : m 7→ 1

n

n−1∑
i=0

ξif(ξ−im).

Although the previous analogy is not explicitly mentioned, this technique plays a prominent role throughout
[146, 147]. We are now ready to prove an extension of [147, Theorems 12 and 13].

Proposition 8.7.9. Let pk be a prime power, ξ ∈ Z a primitive (p − 1)-th root of unity modulo pk. Let
(A, ·, ◦) be a filtered skew brace of order pk such that Ap = {1} and such that Ai ∗ Aj ⊆ Ai+j for all
i, j ≥ 1. Set (a, ▷) = L(A, ·, ◦). Then

a ▷ b = −(1 + p+ p2 + . . .+ pk−1)

p−2∑
i=0

ξiλξ−ia(b),

where the sum is taken in Laz−1(A, ·).
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Proof. By Theorem 8.7.1 we know that (A, ·, ◦) = B(a, ▷) for some Lazard post-Lie ring (a, ▷) of size pk.
In particular, a has a natural structure of a Z/pk-module. Since W (ai) = ai, it follows from Theorem 8.3.4
that the assumption on the filtration translates to ai ▷ aj ⊆ ai+j for all i, j ≥ 1.

Consider the map λ : a → End(a) : a 7→ λa. We claim that λ is polynomial of degree less than p − 1
and that, moreover, its degree 1 component is La. Indeed, from Proposition 8.4.9 we find

λta = exp(LW (ta)) =

∞∑
k=0

∞∑
i=1

1

k!i!
LkLi−1

ta (ta)
=

∞∑
k=0

∞∑
i=1

1

k!i!
tkiLkLi−1

a (a)
.

Clearly Li−1
a (a) ∈ ai. By the earlier mentioned condition on the filtration we have LkLi−1

a (a)
(b) ∈ Aki+1 for

all b ∈ a and thus LkLi−1
a (a)

= 0 for ki ≥ p− 1. Therefore, λ is polynomial of degree less than p− 1 and its
degree 1 component is La. From Lemma 8.7.8 we obtain dλ(a) = La which concludes the proof.

Remark 8.7.10. A filtration as in Proposition 8.7.9 exists precisely if A{p} = {1} where A{1} = A and
A{k+1} is the subgroup of (A, ·) generated by

{a ∗ b, a · b · a−1 · b−1 | a ∈ A{i}, b ∈ A{k+1−i}}.

For braces, this is precisely the chain of ideals A[k] used to define strong nilpotency as in Definition 1.1.29.

When R has characteristic pn, the degrees of the polynomial functions considered in Lemma 8.7.8 are
not directly bounded by p. On the other hand, in the formulae for exp and log no terms of degree p or more
are allowed in this case. It is therefore natural to ask whether the nilpotency condition in Proposition 8.7.9
can be relaxed under the assumption that an appropriate root of unity is present.

Question 8.7.11. Let (A,+, ◦) be an Fpn -brace (as in [46, Definition 2]) such thatA[pn] = 1 and let ξ ∈ Fpn
be a primitive (pn − 1)-th root of unity. Does the operation

a ▷ b =
1

pn − 1

pn−2∑
i=0

ξiλξ−ia(b)

yield a pre-Lie Fpn -algebra structure on the trivial Lie algebra (A,+)?

8.8 L-nilpotent post-Lie algebras over R
In [98], it is explained how one can differentiate a regular affine action of a Lie group on Rn in order to
obtain a pre-Lie algebra. A similar construction appears in [27] for a nilpotent Lie group acting affinely on
a nilpotent Lie group in order to obtain a t-bijective subgroup of the affine Lie algebra on the associated
Lie algebra. In [15], differentiation is used to obtain a post-Lie algebra from a post-Lie group. All of these
constructions coincide, up to the correspondences discussed in Sections 1.1.5 and 1.3.1, and the philosophy
is precisely the same as the one present in Sections 8.3 and 8.4.

Let G,A be connected Lie groups with associated Lie algebras g, a. Recall that Hol∞(A) denotes the
semidirect product A⋊Aut∞(A) where Aut∞(A) are the Lie group automorphisms of A. Since every Lie
group automorphism ofA yields an automorphism of a and der(a) is the Lie algebra associated to Aut∞(a),
we find that the Lie algebra associated to Hol∞(A) can be identified with a Lie subalgebra of aff(a). In
particular, any smooth group homomorphism f : G → Hol∞(A) yields a Lie algebra homomorphism
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df : g→ aff(a). If we assume that f corresponds to a regular action, then also df is injective and df(g) is a
t-bijective Lie subalgebra of aff(a).

If we assume that G,A are also simply connected, then Aut∞(A) ∼= Aut(a) and thus aff(a) is precisely
the Lie algebra associated to Hol∞(A). For every Lie algebra homomorphism ψ : g → aff(a) there exists
a unique smooth group homomorphism f : G → Hol(A) such that df = ψ. In other words, there is a
bijective correspondence between group homomorphism f : G→ Hol(A) and Lie algebra homomorphisms
ψ : g→ aff(a).

G Hol∞(A)

g aff(a)

f

ψ

exp exp

As before, we know that injectivity of f coincides with that of ψ. Also, if f(G) is regular, then ψ(g) is t-
bijective. However, it is generally not true that the inverse holds. As proved by Kim in [98], forA ∼= (Rn,+)
the inverse holds precisely when the pre-Lie algebra determined by ψ(g) is transitive; recall that this means
that the map x 7→ x ▷ y+ x is bijective for all y ∈ a. Burde, Dekimpe and Deschamps proved the following
result in [27, Theorem 3.1].

Theorem 8.8.1. Let G,A be connected, simply connected nilpotent Lie groups. Then, using the same
notation as above, the following are equivalent for a smooth group homomorphism f : G→ Hol∞(A):

1. f is injective and f(G) is a regular subgroup of Hol∞(A),

2. df is injective and df(g) is a t-bijective Lie subalgebra of aff(a) such that the corresponding post-Lie
algebra is left nil.

Which, using Proposition 1.3.26 and Lemma 8.5.3, can be reinterpreted as a statement about post-Lie
algebras and skew Lie braces.

Theorem 8.8.2. There is a bijective correspondence between L-nilpotent finite dimensional real post-Lie
algebras (a, ▷), and connected, simply-connected skew Lie braces (A, ·, ◦) such that (A, ·) and (A, ◦) are
nilpotent.

We now explain how the above construction is related to Theorem 8.4.14. Let G and A be connected,
simply connected nilpotent Lie groups and let f : G → Hol∞(A) be a smooth group homomorphism
satisfying the equivalent properties of Theorem 8.8.1. Let g and a be the Lie algebras associated to G and
A respectively. On a we consider the filtration ai = Li(a), coming from the post-Lie algebra associated
to df(g). In this way, df(g) is contained in afff (a). Keep in mind that from Proposition 1.3.26 we know
that the L-series terminates and thus a is Lazard with respect to this filtration, since we are working over R.
On g we consider the filtration gi = (df)−1(afff (a)i), which also makes g into a Lazard Lie algebra. As
in Proposition 1.4.39, we identify G with Laz(g) and A with Laz(a) through their respective exponential
maps. As in Proposition 8.3.5 we have the isomorphism γ : Laz(afff (a))

∼= Holf (Laz(a)) where a is
considered as a post-Lie ring. However, we want to consider a as a post-Lie algebra over R. If we do so,
then we see that γ restricts to a bijection between afff (a) (with a considered here as a post-Lie algebra over
R) and

Hol∞f (Laz(a)) := Holf (Laz(a)) ∩Hol∞(Laz(a)).
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This means that we can extend the previous commutative diagram to the following one, which shows that
indeed the correspondence in Theorem 8.8.2 is a specialized case of Theorem 8.4.14.

Laz(g) Hol∞f (Laz(a)) Hol∞(Laz(a))

g afff (a) aff(a)

f

df

id γ exp

Here we used the fact that the identity g → Laz(g) plays the role of the exponential map, see Proposi-
tion 1.4.39. Note that a priori, the assumptions on the skew Lie braces in Theorem 8.8.2 differ from the ones
imposed in Theorem 8.4.14. Since both constructions coincide and the conditions on the post-Lie algebras
are the same, we can deduce the following counterpart of Theorem 1.1.24. Alternatively, this can also be
obtained from [27, Theorem 2.1].

Theorem 8.8.3. Let (A, ·, ◦) be a connected, simply connected skew Lie brace such that (A, ·) is nilpotent.
Then (A, ·, ◦) is left nilpotent if and only if (A, ◦) is nilpotent.

8.9 Complete post-Lie rings and skew braces
As discussed in Section 1.4, the Lazard correspondence can be extended to completions of Lazard Lie rings
and completions of Lazard groups. Similarly, in [2] and [15], the notion of completeness appears for pre-Lie
and post-Lie algebras over a field of characteristic 0. In this section, we use the Lazard correspondence
obtained in Section 8.4 to also provide a correspondence between certain complete post-Lie algebras and
skew braces. Before we can give sense to the notion of completeness in this context, we prove that the
categories of filtered post-Lie rings and filtered skew braces are complete.

Proposition 8.9.1. The category of filtered post-Lie rings is complete.

Proof. It is sufficient to prove that it has all equalizers and small products. Let f, g : (a, ▷) → (b, ▷) be
homomorphisms of filtered post-Lie algebras. Then

{a ∈ a | f(a) = g(a)},

is a post-Lie subalgebra of (a, ▷). Together with the filtration coming from (a, ▷) and the inclusion map, this
is easily seen to indeed be the equalizer of the pair f, g.

Next, let (ai, ▷)j∈J be a small family of filtered post-Lie algebras. Then the product of sets
∏
j∈J aj

with pointwise operations and the filtration (
∏
j∈J aj)i =

∏
j∈J(aj)i is, together with the projection maps

the categorical product of (ai, ▷)j∈J .

As a specific case, let (ai, ▷)i≥1 be a family of post-Lie algebras and (fi : ai+1 → ai)i≥1 a family of
homomorphisms, then the limit of a diagram

. . . (a3, ▷) (a2, ▷) (a1, ▷)
f2 f1

can be explicitly realized as

lim←−(ai, ▷) = {(ai)i≥1 | ai ∈ ai, fi(ai+1) = ai for all i ≥ 1},

with the pointwise operations and filtration, together with the homomorphisms

lim←−(ai, ▷)→ (ak, ▷) : (ai)i≥1 7→ ak.
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Proposition 8.9.2. The category of filtered skew braces is complete.

Proof. It is sufficient to prove that it has all equalizers and small products. Let f, g : (A, ·, ◦)→ (B, ·, ◦) be
homomorphisms of filtered post-Lie algebras. Then

{a ∈ A | f(a) = g(a)},

is a skew subbrace of (A, ·, ◦). Together with the filtration coming from (A, ·, ◦) and the inclusion map, this
is easily seen to indeed be the equalizer of the pair f, g.

Next, let (Ai, ·, ◦)j∈J be a small family of filtered post-Lie algebras. Then the product of sets
∏
j∈J Aj

with pointwise operations and the filtration (
∏
j∈J Aj) =

∏
j∈J(Aj)i is, together with the projection maps,

the categorical product of ((Ai, ·, ◦))j∈J .

Let (Ai, ·, ◦)i≥1 be a family of filtered skew braces and let (fi : (Ai+1, ·, ◦)→ (Ai, ·, ◦))i≥1 be a family
of homomorphisms, then the limit of the diagram

. . . (A3, ·, ◦) (A2, ·, ◦) (A1, ·, ◦)
f2 f1

can be explicitly realized as

lim←−(Ai, ·, ◦) = {(ai)i≥1 | ai ∈ Ai, fi(ai+1) = ai for all i ≥ 1},

with the pointwise operations and filtration, together with the homomorphisms

lim←−(Ai, ·, ◦)→ (Ak, ·, ◦) : (ai)i≥1 7→ ak.

Definition 8.9.3. Let (a, ▷) be a filtered post-Lie algebra and let

I1 ⊇ I2 ⊇ I3 ⊇ . . .

be a descending chain of ideals of (a, ▷). Then (a, ▷) is complete with respect to this chain if the canonical
homomorphism (a, ▷)→ lim←−(a, ▷)/Ii is an isomorphism.

Definition 8.9.4. Let (A, ·, ◦) be a filtered skew brace and let

I1 ⊇ I2 ⊇ I3 ⊇ . . .

be a descending chain of ideals of (A, ·, ◦). Then (A, ·, ◦) is complete with respect to this chain if the
canonical homomorphism (A, ·, ◦)→ lim←−(A, ·, ◦)/Ii is an isomorphism.

Let (a, ▷) be a filtered post-Lie algebra and let Ik, k ≥ 1, be a descending chain of ideals of (a, ▷).
Assume that (a, ▷) is complete with respect to this chain of ideals and that, moreover, (a, ▷)/Ik is Lazard for
each k ≥ 1. We identify (a, ▷) with lim←−(A, ·, ◦)/Ik and define

B̂(lim←−(A, ·, ◦)/Ik) = lim←−B((A, ·, ◦)/Ik),

so explicitly

(ak + Ik)k≥1 · (bk + Ik)k≥1 = ((ak + Ik) · (bk + Ik))k≥1,

(ak + Ik)k≥1 ◦ (bk + Ik)k≥1 = ((ak + Ik) ◦ (bk + Ik))k≥1,
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where the operations on the right are taken in B((a, ▷)/Ik). In this way we obtain a filtered skew brace
B̂(a, ▷) with a descending chain of ideals Ik, k ≥ 1, such that B̂(a, ▷)/Ik = B((a, ▷)/Ik) for all k ≥ 1.

Conversely, let (A, ·, ◦) be a filtered skew brace together with a descending chain of ideals Ik, k ≥ 1.
Assume that (A, ·, ◦) is complete with respect to this chain of ideals and that moreover (A, ·, ◦)/Ik is Lazard
for all k ≥ 1. We identify (A, ·, ◦) with lim←−(A, ·, ◦)/Ik and define

L̂(lim←−(A, ·, ◦)/Ik) = lim←−L((A, ·, ◦)/Ik),

so explicitly

(akIk)k≥1 + (bkIk)i≥1 = ((akIk) + (bkIk))k≥1,

[(akIk)k≥1, (bkIk)i≥1] = ([(akIk), (bkIk)])k≥1,

(akIk)k≥1 ▷ (bkIk)i≥1 = ((akIk) ▷ (bkIk))k≥1,

where the operations on the right are taken in L((A, ·, ◦)/Ik). In this way we obtain a complete post-Lie
ring L(A, ·, ◦) such that the Ik form a descending chain of ideals and L̂(A, ·, ◦)/Ik = L((A, ·, ◦)/Ik) for all
k ≥ 1. These two constructions are clearly inverse.

Theorem 8.9.5. The constructions B̂ and L̂ as defined above yield a correspondence between:

• filtered post-Lie algebras (a, ▷) together with a descending chain of ideals Ik, k ≥ 1, such that (a, ▷)
is complete with respect to this chain and such that (a, ▷)/Ik is Lazard for all k ≥ 1.

• filtered skew braces (A, ·, ◦) together with a descending chain of ideals Ik, k ≥ 1, such that (A, ·, ◦)
is complete with respect to this chain and such that (A, ·, ◦))/Ik is Lazard for all k ≥ 1.

8.9.1 Group of formal flows
LetK be a field of characteristic 0. In [2] Agrachev and Gamkrelidze define a graded chronological algebra
as a graded vector space L =

⊕∞
i=1 Li over K with an operation ▷ such that (L, ▷) is a pre-Lie algebra

satisfying Li ▷ Lj ⊆ Li+j for all i, j ≥ 1. Starting from a graded chronological algebra L, the authors
construct the group of formal flows ofL in the following way. First the product ▷ is extended to the completed
vector space

L̂ :=

∞∏
i=1

Li,

as ( ∞∑
i=1

xi

)
▷

( ∞∑
i=1

yi

)
=

∞∑
i=2

i−1∑
j=1

xj ▷ yi−j

 .

Then the bijective map W : L̂→ L̂ is defined as

W (x) =

∞∑
k=1

1

k!
Lk−1
x (x),

where as usual Lx denotes left multiplication by x in L̂. This infinite sum is well-defined since on every
component Li it restricts to a finite sum. Next, Ω is defined as W−1 and at last the group operation on L̂ is
given by the map

x ◦ y = x+ exp(LΩ(x))(y).
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We now explain how this construction is related to the one given in Theorem 8.9.5. First of all, note
that (L̂, ▷) is a pre-Lie algebra over K. For every k ≥ 1, the product Ik =

∏∞
i=k Li is an ideal of L̂ since

L̂ ▷ Ik ⊆ Ik+1 ⊆ Ik and similarly Ik ▷ L̂ ⊆ Ik+1 ⊆ Ik. Moreover, (L̂, ▷) is complete with respect to the
ideals Ik. Since we have observed that L̂ ▷ Ik ⊆ Ik+1, the ideals Ik also yield a filtration on a such that
the induced filtration on the quotient (L̂, ▷)/Ik is finite and thus (L̂, ▷)/Ik is Lazard. Since (L̂, ◦)/Ii is the
multiplicative group of Laz((L̂, ▷)/Ii) for all i ≥ 1, we find that (L̂, ◦) as constructed by Agrachev and
Gamkrelidze is the second group operation of B̂(L̂, ▷).

8.9.2 Formal integration of post-Lie algebras
It requires some more work to see how Theorem 8.9.5 is related to the formal integration as described by
Bai, Guo, Sheng and Tang [15]. Again, let K be a field of characteristic 0. Bai, Guo, Sheng and Tang
associate a skew brace to any connected complete post-Lie algebra (a, ▷) over K. In our terminology, their
notion of a connected complete post-Lie algebra over K is a filtered post-Lie algebra (a, ▷) that satisfies two
additional conditions: the first one is that

ai ▷ aj ⊆ ai+j , (8.13)

for all i, j ≥ 0, which implies that ai is an ideal. Secondly, (a, ▷) must be complete with respect to the
chain of ideals ai. Note that (8.13) is the same condition that also appeared in Proposition 8.7.9 and in the
construction of the group of flows, and is equivalent to demanding that the filtration on a◦ coincides with the
one on a.

We explicitly recall the construction given in [15]: Let (a, ▷) be a filtered post-Lie algebra satisfying the
above assumptions. We consider the universal enveloping algebra U(a) as a filtered algebra as explained in
Example 1.4.12. On U(a) we define a new multiplication ⋆ which for a ∈ a, b ∈ U(a) is given by

a ⋆ b = ab+ La(b),

where La is the unique extension of the derivation La ∈ derf (a) to a derivation of the algebra U(a). In this
way, (U(a), ⋆) becomes a filtered algebra, where the filtration on U(a) is the same as before. This operation
is then extended to the completion Û(a) = lim←−U(a)/U(a)i in order to obtain a complete filtered algebra
(Û(a), ⋆). Since a is assumed to be complete and a ∩ U(a)i = ai for all i ≥ 1, we find that a still embeds
into Û(a). Define

Ω : a→ a : a 7→ (log⋆ exp(ai + Û(a)i))i≥1,

where log⋆ exp(ai+ai) denotes the element obtained by first taking the exponential map with respect to the
usual multiplication in U(a)/U(a)i, followed by the logarithmic map in (U(a), ⋆)/U(a)i. Note that here
we identify a with its image in Û(a). The resulting skew brace is then (a, ·, ◦) where

a · b = BCH(a, b),

a ◦ b = a · exp(LΩ(a))(b).

We claim that this is precisely the one obtained in Theorem 8.9.5 from the post-Lie algebra (a, ▷) and
descending chain of ideals Ii = ai. To see this, it is sufficient to prove that for any a ∈ a and i ≥ 1, the
element log⋆ exp(a + Û(a)i), seen in the quotient algebra U(a)/U(a)i, coincides with Ω(a + ai) with Ωi
the map associated to the post-Lie algebra (a, ▷)/ai as in Proposition 8.4.9.

As discussed in example Example 1.3.19, we have

ρ : aff(a)→ End(U(a),+) : (a, δ) 7→ ρ(a,δ),
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where ρ(a,δ)(b) = ab+ δ(b), is a homomorphism of Lie algebras. As before, we do not distinguish between
a derivation of a and its unique extension to a derivation of the algebra U(a). Note that if a ∈ ai and
δ ∈ derf (a)i, then also ρ(a,δ)(b) ∈ U(a)i for all b ∈ a. Therefore, ρ restricts to a filtered Lie algebra
homomorphism

ρ : afff (a)→ Endf (U(a),+) : (a, δ) 7→ ρ(a,δ).

This then yields a homomorphism of filtered Lie algebras

ρ′ : afff (a)/ afff (a)i → Endf (U(a)/U(a)i) : (a, δ) + afff (a)i 7→ ρ′(a,δ)+afff (a)i
,

with
ρ′(a,δ)+afff (a)i

(b+ U(a)i) = ρ(a,δ)(b) + U(a)i.

Recall that the operation ⋆ is defined by

a ⋆ b = ab+ La(b) = ρ(a,La)(b),

for all a ∈ a and b ∈ U(a). Working in the quotient ring (U(a), ⋆)/U(a)i we then find

(a+ U(a)i) ⋆ (b+ U(a)i) = ρ′(a,La)+afff (a)i
(b+ U(a)i),

and therefore
exp⋆(a+ U(a)i) = exp

(
ρ′(a,La)+afff (a)i

)
(1).

Since derivations map 1 to 0, also

exp⋆(a+ U(a)i) = exp
(
ρ′(a,La)+afff (a)i

)
exp

(
ρ′(0,−La)+afff (a)i

)
(1).

By Proposition 1.4.24 we find

exp
(
ρ′(a,La)+afff (a)i

)
exp

(
ρ′(0,−La)+afff (a)i

)
= exp

(
ρ′BCH((a,La)+afff (a)i,(0,−La)+afff (a)i)

)
= exp

(
ρ(Wi(a+ai),0)

)
,

where Wi is the map constructed on the Lazard skew brace (a, ▷)/ai as in Proposition 8.4.9. Putting every-
thing together, we find

exp⋆(a+ U(a)i) = exp
(
ρ(Wi(a+ai),0)

)
(1) = exp(Wi(a+ ai)),

which proves the claim.

Remark 8.9.6. Not every Lazard post-Lie algebra can be given a filtration satisfying the properties that
make it a connected complete post-Lie algebra in the sense of Bai, Guo, Sheng and Tang. Indeed, in the
finite dimensional case, a pre-Lie algebra admits such a filtration if and only if it is strongly nilpotent, see
also Remark 8.7.10. The pre-Lie algebra given in Example 1.3.31 gives a concrete example of a left nilpotent
pre-Lie algebra that is not strongly nilpotent.



Chapter 9
Skew braces of order p3

In this chapter, we classify all skew braces of order p3 for primes p > 3. A crucial tool here is Corollary 8.7.3,
from which it follows that this classification can be achieved by first classifying L-nilpotent post-Lie rings
of size p3 and then computing their corresponding skew braces through the Lazard correspondence.

Note that this classification is not new and was achieved by Zenouz in 2018 [124, 125], albeit his clas-
sification is given in the form of generating sets of the corresponding regular subgroups of the holomorph.
The author chose to include this classification in order to showcase concrete examples where the theory
developed in Chapter 8 is applied and to provide a more explicit list of skew braces of order p3, in the hope
that they will prove useful to others.

The classification of braces of size p3 was achieved by Bachiller in [9]. Puljić, Smoktunowicz and
Zenouz constructed all braces on the elementary abelian group of order p4, for p > 3, that are not right
nilpotent [128]. Subsequently, Puljić proved that these are the only non-right nilpotent braces of order p4

when p > 5 [126]. Later, in [127], Puljić constructed all strongly nilpotent post-Lie rings of order p4, for
p > 5, meaning that, modulo applying the group of flows construction, all right nilpotent braces of order p4,
for p > 55, are obtained. It should be noted that the very strong condition p > 55 stems from Theorem 8.7.6,
since the strong nilpotency index of a brace or order pn is only bounded from above by (n+1)n+1, see [147,
Corollary 19]. However, since the conditions of Corollary 8.7.3 are less strict than those of [147, Corollary
19], the strongly nilpotent post-Lie rings described in [127] actually yield all right nilpotent braces of order
p4 for p > 5.

On a related note, regular affine actions of connected, simply connected Lie groups on R2 were classified
by Kuiper [109]. For R3, the abelian group case was done by Baverman in his PhD thesis [22] and Fried and
Goldman obtained the general classification of those groups where the action factors through R3 ⋊ SL3(R)
[76], this includes the general case for nilpotent groups since these always act through unipotent matrices
[141, Theorem 1]. Regular affine actions of connected, simply connected nilpotent Lie groups on R4 were
classified by Kim in [98, 99], this was done through the classification of left nilpotent pre-Lie algebras.

For regular affine actions on non-abelian Lie groups, less explicit classification results are known. Let
us say that a pair (G,N), with G,N connected, simply connected Lie groups, is admissible if there exists
a regular affine action of G on N , or equivalently, if there exists a skew Lie brace (A, ·, ◦) with (A, ·)
isomorphic to N and (A, ◦) isomorphic to G. Since N is homeomorphic to its corresponding Lie algebra
n (through the exponential map), also G must be homeomorphic to n. Also Hol∞(N) has a faithful linear
representation, one can for example adapt the argument in [24, Proposition 6] (see also Proposition 1.4.39)
in order to conclude that the canonical faithful linear representation on U(n) descends to a faithful linear
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representation on the finite dimensional space U(n)/U(n)c+1, with c the nilpotency class of N . Therefore,
G has a faithful linear representation and it is homeomorphic to Rn, which by [25, Proposition 5.2] implies
that it is solvable. By a result of Dekimpe [69], for any solvable G there exists a nilpotent N such that
(G,N) is admissible. For 1 ≤ n ≤ 5 and G,N nilpotent of dimension n, the pair (G,N) is admissible
by the results in [27]. In [70], it is more generally proved which pairs (G,N) with G solvable and N
nilpotent are admissible in dimensions 3 and 4. Both of these results rely on solving the analogous question
for post-Lie algebras. Further, in [26, 28, 29, 31, 32] results are obtained relating the structure of the Lie
algebra a and the Lie algebra a◦ for a post-Lie algebra (a, ▷). In [32], a classification is given of all post-Lie
algebra structures (a, ▷) on the Heisenberg Lie algebra a such that also a◦ is isomorphic to the Heisenberg
Lie algebra, although one should note that this is not up to post-Lie algebra isomorphism.

As mentioned before, an explicit classification of braces of size p3 was obtained by Bachiller. Therefore,
we will restrict to skew braces with non-abelian additive groups and thus also to post-Lie rings on non-
trivial (but nilpotent) Lie rings. As discussed in Examples 1.4.36 and 1.4.37 there are two such non-abelian
nilpotent Lie rings of size p3, corresponding through the Lazard correspondence with the two extraspecial
groups of this size. The extraspecial group of exponent p corresponds to the Heisenberg Lie algebra, which
can be considered over any field K. Therefore, we give in Section 9.1 a general classification of L-nilpotent
post-Lie algebra structures on the Heisenberg Lie algebra over an arbitrary field K of characteristic different
from 2, together with their automorphism groups. In Section 9.2 we classify L-nilpotent post-Lie ring
structures on the extraspecial Lie ring of size p3 and characteristic p2. The classification from Section 9.1
is then used to obtain a classification of skew brace structures on the Heisenberg group over prime fields
whose characteristic is not 2 or 3, and similarly also skew Lie brace structures on the real Heisenberg group.
Similarly, in Section 9.4 we use the classification in Section 9.2 in order to obtain a complete classification
of skew braces on the extraspecial group of size p3 and exponent p2 for p > 3. All of the obtained skew
braces have underlying set (Z/p)3 or Z/p×Z/p2 and the operations are expressed as polynomial functions.

Throughout the whole section, we consider the elements of the vector space Kn as column vectors.
Linear endomorphisms of Kn are seen as n× n-matrices.

9.1 L-nilpotent post-Lie algebras on the Heisenberg Lie algebra

The following lemma is well-known for K a field of characteristic 0, but holds generally over any field. We
give a short proof.

Lemma 9.1.1. Let K be a field. Then, up to isomorphism, there exists precisely two left nilpotent pre-Lie
algebras of dimension 2.

1. The trivial pre-Lie algebra (K2, ▷) where ▷ is given by(
x1
y1

)
▷

(
x2
y2

)
=

(
0
0

)
,

with automorphism group GL2(K).

2. The pre-Lie algebra (K2, ▷) where ▷ is given by(
x1
y1

)
▷

(
x2
y2

)
=

(
0

x1x2

)
,
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with automorphism group

Aut(K2, ▷) =

{(
a 0
b a2

)
| a, b ∈ K, a ̸= 0

}
.

Proof. It is clear that the automorphism group of the trivial pre-Lie algebra on K2 is GL2(K). It is easily
seen that also the non-trivial operation as described in 2 yields a pre-Lie algebra since (P1) and (P2) are
trivially satisfied. If ϕ is an automorphism of this pre-Lie algebra, then it is at least of the form

ϕ =

(
a 0
b c

)
,

for a, b, c ∈ K with ac ̸= 0. We find

ϕ

(
x1
y1

)
▷ ϕ

(
x2
y2

)
=

(
0

a2x1x2

)
,

and

ϕ

((
x1
y1

)
▷

(
x2
y2

))
=

(
0

cx1x2

)
,

which forces c = a2.
Now, let us show that any non-trivial two-dimensional left nilpotent pre-Lie algebra is isomorphic to

the one given in the statement. Let (K2, ▷) be a non-trivial left nilpotent pre-Lie algebra. Then necessarily
L3(K2, ▷) = {0} and L2(K2, ▷) = Fix(K2, ▷) is 1-dimensional. Also, by Theorem 8.5.4 the sub-adjacent
Lie algebra is nilpotent hence abelian, implying that x ▷ y = y ▷ x for all x, y ∈ K2. Let e1, e2 ∈ K2 be
a basis with e2 ∈ L2(K2, ▷). It follows that e2 ▷ e2 = e1 ▷ e2 = e2 ▷ e1 = 0 and there exists a non-zero
a ∈ K such that e1 ▷ e1 = ae2. With respect to the basis e1, ae2, the pre-Lie algebra structure is then the
non-trivial one given in the statement.

Let K be an arbitrary field. Recall that the Heisenberg Lie algebra is the unique nilpotent non-abelian
Lie algebra of dimension 3. We will always implicitly assume it to have underlying vector space K3 and Lie
bracket x1y1

z1

 ,

x2y2
z2

 =

 0
0

x1y2 − x2y1,

 . (9.1)

The following lemma is well-known; we give a short proof for completeness’ sake.

Lemma 9.1.2. Let a be the Heisenberg Lie algebra over a field K. Then

Aut(a) =


a b 0
c d 0
e f ad− bc

 | a, b, c, d, e, f ∈ K, ad− bc ̸= 0

 .

Proof. Let a be the Heisenberg Lie algebra over a field K, then any automorphism ϕ of a maps its center to
itself. Therefore, a necessary condition is that ϕ is given by a matrix of the forma b 0

c d 0
e f g

 ,
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for some a, b, c, d, e, f, g ∈ K. We find

ϕ

x1y1
z1

 ,

x2y2
z2

 = ϕ

 0
0

x1y2 − y1x2

 =

 0
0

g(x1y2 − y1x2)

 ,

and ϕ
x1y1
z1

 , ϕ

x2y2
z2

 =

 ax1 + by1
cx1 + dy1

ex1 + fy1 + gz1

 ,

 ax2 + by2
cx2 + dy2

ex2 + fy2 + gz2


=

 0
0

(ax1 + by1)(cx2 + dy2)− (cx1 + dy1)(ax2 + by2)


=

 0
0

adx1y2 + bcy1x2 − bcx1y2 − ady1x2

 .

Both expressions coincide precisely when g = ad− bc, from which the statement follows.

Proposition 9.1.3. Let a be the Heisenberg Lie algebra over a field K whose characteristic is different from
2.

1. For any 0 ̸= α31 ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

1
2 (y1x2 − x1y2)

 ,

defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


(−1)i 0 0

c d 0
0 0 (−1)id

 | c, d ∈ K, d ̸= 0, i ∈ Z

 .

Two such post-Lie algebras, with parameters α31 and α′
31 respectively, are isomorphic if and only if

α−1
31 α

′
31 is a square in K.

2. For any 0 ̸= α31 ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

x1x2 +
1
2 (y1x2 − x1y2)

 ,

defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


(−1)i 0 0

c (−1)i 0
0 0 1

 | c ∈ K, i ∈ Z

 .

Two such post-Lie algebras, with parameters α31 and α′
31 respectively, are isomorphic if and only if

α−1
31 α

′
31 is a square in K.
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All of the described post-Lie algebras are L-nilpotent and have a zero socle. Up to isomorphism, every
L-nilpotent post-Lie algebra on a with zero socle is contained in precisely one of the two above families.

Proof. Let K be a field whose characteristic is different from 2 and let (a, ▷) be an L-nilpotent post-Lie
algebra on the Heisenberg Lie algebra with zero socle. We consider this as a filtered post-Lie algebra with
the filtration given by its L-series. Note that a◦ can not be abelian since otherwise

{0} ≠ Fix(a, ▷) ∩ Z(a) ⊆ Soc(a, ▷),

so {a, a} = Z(a◦) is a subspace of dimension 1. As {a, a} ⊆ a◦2 we find that a3 ̸= 0 since otherwise

{a, a} ▷ a ⊆ a◦2 ▷ a1 ⊆ a3 = {0},

which implies that the socle is non-trivial. It follows that dim a2 = 2, dim a3 = 1 and dim a4 = 0. Let
0 ̸= e2 ∈ Z(a◦), then e2 can not be contained in a3 since this would mean that e2 ∈ Soc(a). Since
a3 ⊆ Z(a), we can find e3 ∈ a3 and e1 ∈ a \ a2 such that [e1, e2] = e3. Also, we find

e1 ▷ e3 = e2 ▷ e3 = e3 ▷ e3 = 0,

and
0 = {e2, e3} = [e2, e3] + e2 ▷ e3 − e3 ▷ e2 = −e3 ▷ e2.

Since e2 ∈ {a, a} = Z(a◦), we know that

e3 ▷ e1 = e3 ▷ e1 − e1 ▷ e3 + [e3, e1] = {e3, e1} ∈ {a, a} = Ke2.

Hence e3 ▷ e1 = α31e2 for some α31 ∈ K. Since a◦ is non-abelian and {e1, e2, e3} is a basis of a, we find
that α31 ̸= 0.

We know that e1 ▷ e1 = α11e2 + β11e3 for some α11, β11 ∈ K. If α11 ̸= 0, then by replacing e1 by
e1 − α−1

31 α11e3 all of the earlier observations still hold but e1 ▷ e1 = β11e3. If β11 ̸= 0, then replacing e3
by β11e3 and e2 by β11e2 does also not change the earlier observations but ensures that e1 ▷ e1 = e3. So
without loss of generality β11 ∈ {0, 1}. At last, we know that e1 ▷ e2 = β12e3 for some β12 ∈ K and since
e2 ∈ a◦2 we find e2 ▷ e1 = β21z for some β21 ∈ K and e2 ▷ e2 = e2 ▷ e1 = 0.

Taking coordinates with respect to the basis e1, e2, e3 we find thatx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

β21y1x2 + β12x1y2 + β11x1x2

 .

Since we have ensured that [e1, e2] = e3, the Lie bracket with respect to this basis is still the one given in
(9.1).

We now determine for which choices of parameters α31, β12, β21, β11 the above operation yields a post-
Lie algebra. We find x1y1

z1

 ▷

x2y2
z2

 ,

x3y3
z3

 =

0
0
0

 ,

and
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x1y1
z1

 ▷

x2y2
z2

 ,

x3y3
z3

 =

 0
α31z1x2

β21y1x2 + β12x1y2 + β11x1x2

 ,

x3y3
z3


=

 0
0

−α31z1x2x3


= −

x2y2
z2

 ,

 0
α31z1x3

β21y1x3 + β12x1y3 + β11x1x3


= −

x2y2
z2

 ,

x1y1
z1

 ▷

x3y3
z3

 .
We conclude that (P1) is satisfied independently of the choice of parameters. Also,x1y1

z1

 ▷

x2y2
z2

 ▷

x3y3
z3

 =

 0
α31z1x2

β21y1x2 + β12x1y2 + β11x1x2

 ▷

x3y3
z3


=

 0
α31(β21y1x2 + β12x1y2 + β11x1x2)x3

β21α31z1x2x3

 ,

andx1y1
z1

 ▷

x2y2
z2

 ▷

x3y3
z3

 =

x1y1
z1

 ▷

 0
α31z2x3

β21y2x3 + β12x2y3 + β11x2x3

 =

 0
0

β12α31x1z2x3

 .

We find that (P2) is satisfied if and only if 0
α31(x1y2 − y1x2)x3

0

 =

 0
−α31(β21y1x2 + β12x1y2 + β11x1x2)x3

β12α31x1z2x3 − β21α31z1x2x3


−

 0
−α31(β21y2x1 + β12x2y1 + β11x2x1)x3

β12α31x2z1x3 − β21α31z2x1x3


=

 0
α31(β12 − β21)y1x2x3 + α31(β21 − β12)x1y2x3
−α31(β21 + β12)z1x2x3 + α31(β12 + β21)x1z2x3

 .

The third components agree if and only if β12 = −β21 and the second components agree if and only if
β21 − β12 = 1, or β21 = 1

2 . We conclude that for any choice of 0 ̸= α31 ∈ K, β11 ∈ {0, 1}, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

1
2 (y1x2 − x1y2) + β11x1x2

 .
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yields an L-nilpotent post-Lie algebra with zero socle on the Heisenberg Lie algebra, and that up to isomor-
phism any such post-Lie algebra is of this form.

It remains to determine for which choices of parameters we obtain isomorphic post-Lie algebras. Let
(a, ▷) be the post-Lie algebra determined by parameters α31, β11, and let (a, ▷′) be the post-Lie algebra
determined by parameters α′

31, β
′
11. Assume that ϕ : (a, ▷)→ (a, ▷′) is an isomorphism of post-Lie algebras.

Then in particular ϕ is an automorphism of a which maps a2 to itself, so by Lemma 9.1.2 we have

ϕ

xy
z

 =

 ax
cx+ dy

ex+ fy + adz

 ,

for a, c, d, e, f ∈ K with ad ̸= 0. We find

ϕ

x1y1
z1

 ▷

x2y2
z2

 = ϕ

 0
α31x1z2

1
2 (y1x2 − x1y2) + β11x1x2


=

 0
dα31z1x2

fα31z1x2 + ad
(
1
2 (y1x2 − x1y2) + β11x1x2

)
 ,

and

ϕ

x1y1
z1

 ▷′ ϕ

x2y2
z2

 =

 ax1
cx1 + dy1

ex1 + fy1 + adz1

 ▷′

 ax2
cx2 + dy2

ex2 + fy2 + adz2


=

 0
α′
31(ex1 + fy1 + adz1)ax2

1
2 ((cx1 + dy1)ax2 − ax1(cx2 + dy2)) + β′

11a
2x1x2


=

 0
α′
31(ex1 + fy1 + adz1)ax2

1
2ad(y1x2 − x1dy2) + β′

11a
2x1x2

 .

Looking at the second components of these expressions, we find that they coincide if and only if a2 =
α31(α

′
31)

−1 and e = f = 0. Substituting this and comparing the third components, we obtain the equality

1

2
ad(y1x2 − x1y2) + adβ11x1x2 =

1

2
ad(y1x2 − x1y2) + β′

11a
2x1x2.

If β11 = 1, this forces β′
11 ̸= 0 thus β′

11 = 1 and d = a. If β11 = 0 then it forces β′
11 = 0 with no

further restrictions on d. We conclude that (a, ▷) and (a, ▷′) are isomorphic if and only if β11 = β′
11 and

α31(α
′
31)

−1 is a square. Also, the automorphism groups for both the case β11 = 1 and β11 = 0 follow.

Corollary 9.1.4. Let K be a field of characteristic 2. Then every L-nilpotent post-Lie algebra on the
Heisenberg Lie algebra has non-zero socle.

Proof. This follows directly from the proof of Proposition 9.1.3 since the condition 2β21 = 1 appears as a
necessary condition.

Proposition 9.1.5. Let a be the Heisenberg Lie algebra over a field K.
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1. For any β12 ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
0

β12(x1y2 − y1x2)


defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


a b 0
c d 0
e f ad− bc

 | a, b, c, d, e, f ∈ K, ad− bc ̸= 0

 .

Different choices of β12 yield non-isomorphic post-Lie algebras.

2. For any β12 ̸= β21 ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
0

β12x1y2 − β21y1x2


defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


a 0 0
0 d 0
e f ad

 | a, d, e, f ∈ K, ad ̸= 0

 .

Two such post-Lie algebras, with parameters β12, β21 and β′
12, β

′
21 respectively, are isomorphic if and

only if {β12, β21} = {β′
12, β

′
21}.

3. For any β ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12(x1y2 − y1x2)


defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


a 0 0
c a 0
e f a2

 | a, c, e, f ∈ K, a ̸= 0

 .

Different choices of β12 yield non-isomorphic post-Lie algebras.

4. For any β22, β12 ∈ K such that the equation t2 + β12t+ β22 has no solutions over K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12x1y2 + β22y1y2


defines a post-Lie algebra (a, ▷) with automorphism group

Aut(a, ▷) =


a −cβ22 0
c a+ cβ12 0
e f a2 + acβ12 + c2β22

 | a, c, e, f ∈ K
 .

Different choices of β12, β22 yield non-isomorphic post-Lie algebras.
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All of the described post-Lie algebras are L-nilpotent, have a non-zero socle, and their retract is a trivial
post-Lie algebra. Up to isomorphism, every post-Lie algebra (a, ▷) with these properties is contained in
precisely one of the above families.

Proof. Let a be the Heisenberg Lie algebra over K and let (a, ▷) be an L-nilpotent post-Lie algebra with
non-zero socle such that (a, ▷)/Soc(a, ▷) is a trivial post-Lie algebra. Since the socle is contained in Z(a),
we know that its dimension is 1. The L-nilpotency of (a, ▷) implies that a ▷ Soc(a, ▷) is a strict subspace of
Soc(a, ▷) and thus a ▷ Soc(a, ▷) = {0}. It follows that Soc(a, ▷) = Ann(a, ▷). Let e1, e2, e3 be a basis of a
such that [e1, e2] = e3. With respect to this basis, the operation ▷ is necessarily given byx1y1

z1

 ▷

x2y2
z2

 =

 0
0

β11x1x2 + β12x1y2 − β21y1x2 + β22y1y2

 ,

for some β11, β12, β21, β22 ∈ K. Note that the minus sign in front of the term β21y1x2 is deliberate; the
reason for this will become clear later in the proof. In this case, since [a, a] = Ann(a) = L2(a), both (P1)
and (P2) trivially hold. We now distinguish different disjoint cases:

1. (a, ▷) is square-free: In this case we know that β11 = β22 = 0 since e1 ▷ e1 = e2 ▷ e2 = 0 and
β21 = β12 since also (e1 + e2) ▷ (e1 + e2) = 0. We find thatx1y1

z1

 ▷

x2y2
z2

 = β12

x1y1
z1

 ,

x2y2
z2

 ,
hence β12 is an invariant of the post-Lie algebra. It also follows that every automorphism of the Lie
algebra a is also an automorphism of (a, ▷).

2. (a, ▷) is not square-free but is generated (as a vector space) by its square-free elements: Without
loss of generality, β11 = β22 = 0. Note that β21 ̸= β12 since otherwise we are in the previous case.
Also, for all a, b, c ∈ K:

(ae1 + be2 + ce3) ▷ (ae1 + be2 + ce3) = ab(β12 + β21),

hence the set of square-free elements is (Ke1 +Ke3) ∪ (Ke2 +Ke3). Moreover, the set {β12, β21}
is an invariant of (a, ▷) since it is precisely the set

{β ∈ K | there exists some a ∈ a \ Soc(a, ▷) such that a ▷ b = β[a, b] for all b ∈ a}.

On the other hand, by swapping e1 and e2, also the roles of β12 and β21 swap. We therefore conclude
that up to isomorphism (a, ▷) is given byx1y1

z1

 ▷

x2y2
z2

 =

 0
0

β12x1y2 − β21y1x2

 ,

for a unique choice of two-element subset {β12, β21} ⊆ K.

Since
Ke1 +Ke3 = {a ∈ a | a ▷ b = β12[a, b]},
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and
Ke2 +Ke3 = {a ∈ a | a ▷ b = β21[a, b]},

any automorphism ϕ of (a, ▷) maps Ke1 +Ke3 and Ke2 +Ke3 into themselves and is therefore of
the form

ϕ

xy
z

 =

 ax
dy

ex+ fy + adx

 ,

where a, d, e, f ∈ K and ad ̸= 0. We find

ϕ

x1y1
z1

 ▷

x2y2
z2

 =

 0
0

ad(β12x1y2 − β21y1x2)

 ,

and

ϕ

x1y1
z1

 ▷ ϕ

x2y2
z2

 =

 ax1
dy1

ex1 + fy1 + adx1

 ▷

 ax2
dy2

ex2 + fy2 + adx2


=

 0
0

β12adx1y2 − β21ady1x2

 .

We conclude that

Aut(a, ▷) =


a 0 0
0 d 0
e f ad

 | a, d, e, f ∈ K, ad ̸= 0

 .

3. The square-free elements of (a, ▷) generate a subspace of dimension 2: Without loss of generality,
we may assume that e1 is not square-free but e2 is square-free, meaning that β11 ̸= 0 and β22 = 0. If
β12 ̸= β21, then

(e1−(β12 − β21)−1e2) ▷ (e1 − (β12 − β21)−1e2)

= e3 − (β12 − β21)−1β12e3 + (β12 − β21)−1β21e3

= 0,

which contradicts the assumption on the square-free elements. Therefore, β12 = β21. With respect to
the basis e1, β11e2, β11e3 we find that the operation is given byx1y1

z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12(x1y2 − y1x2)

 ,

for some β12 ∈ K. Moreover, β12 is characteristic since it is the unique element satisfying a ▷ b =
β12[a, b] for all a, b ∈ a with b ▷ b = 0.
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By Lemma 9.1.2, combined with the fact that the square-free elements are precisely the subspace
spanned by e2 and e3, we know that any automorphism ϕ of (a, ▷) is of the form

ϕ

xy
z

 =

 ax
cx+ dy

ex+ fy + adx

 ,

where a, c, d, e, f ∈ K and ad ̸= 0. For such a map ϕ we find

ϕ

x1y1
z1

 ▷

x2y2
z2

 =

 0
0

ad(x1x2 + β12(x1y2 − y1x2))

 ,

and

ϕ

x1y1
z1

 ▷ ϕ

x2y2
z2

 =

 ax1
cx1 + dy1

ex1 + fy1 + adx1

 ▷

 ax2
cx2 + dy2

ex2 + fy2 + adx2


=

 0
0

a2x1x2 + β12a(x1(cx2 + dy2)− (cx1 + dy1)x2)


=

 0
0

a2x1x2 + β12ad(x1y2 − y1x2)

 .

We conclude that ϕ is an automorphism if and only if a = d and thus

Aut(a, ▷) =


a 0 0
c a 0
e f a2

 | a, c, e, f ∈ K, a ̸= 0

 .

4. The only square-free elements are those contained in Soc(a, ▷): In this case, both β11 and β22 are
non-zero. Consider the basis e′1 = e1, e′2 = β11e2 − β21e1, e′3 = β11e3. Then still [e′1, e

′
2] = e′3 but

also
e′2 ▷ e

′
1 = β11β21e3 − β21β11e3 = 0,

and e′1 ▷ e
′
1 = e′3. We can therefore assume that (a, ▷) is of the formx1y1

z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12x1y2 + β22y1y2

 ,

for β12, β22 ∈ K and β22 ̸= 0. Such a post-Lie algebra contains a square-free element that is
not contained in the socle if and only if the equation t2 + β12t + β22 = 0 has a solution, since
(e′1 + te′2) ▷ (e

′
1 + te′2) = t2 + β12t+ β22e3.

Let (a, ▷) and (a, ▷′) be two such post-Lie algebras with parameters β12, β22 and β′
12, β

′
22 respectively.

We determine when ϕ ∈ Aut(a) yields an isomorphism ϕ : (a, ▷) → (a, ▷′). By Lemma 9.1.2 we
know that

ϕ

xy
z

 =

 ax+ by
cx+ dy

ex+ fy + (ad− bc)x

 ,
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where a, b, c, d, e, f ∈ K with ad− bc ̸= 0. We compute

ϕ

x1y1
z1

 ▷

x2y2
z2

 =

 0
0

(ad− bc)(x1x2 + β12x1y2 + β22y1y2)

 ,

and

ϕ

x1y1
z1

 ▷′ ϕ

x2y2
z2

 =

 ax1 + by1
cx1 + dy1

ex1 + fy1 + (ad− bc)x1

 ▷′

 ax2 + by2
cx2 + dy2

ex2 + fy2 + (ad− bc)x2


=

 0
0

(ax1 + by1)(ax2 + by2) + β′
12(ax1 + by1)(cx2 + dy2) + β′

22(cx1 + dy1)(cx2 + dy2)

 .

Comparing the coefficients of y1x2, x1y2, x1x2 and y1y2 we find the system of equations
0 = ab+ bcβ′

12 + cdβ′
22

(ad− bc)β12 = ab+ adβ′
12 + cdβ′

22

ad− bc = a2 + acβ′
12 + c2β′

22

(ad− bc)β22 = b2 + bdβ′
12 + d2β′

22

From the first two equations we obtain (ad− bc)β12 = (ad− bc)β′
12 thus β12 = β′

12.

If c = 0, then from the first equation we get ab = 0, hence b = 0 since otherwise this would contradict
the condition ad − bc ̸= 0. The third and fourth equation reduce to ad = a2 and adβ22 = d2β′

22,
hence a = d and β22 = β′

22.

Next, assume that c ̸= 0. Note that all equations are quadratic in a, b, c, d. This means that if we find a
solution (a, b, c, d), then also (κa, κb, κc, κd) is a valid solution for κ ∈ K. Therefore, we can search
for solutions with c = 1 and subsequently rescale them to obtain all solutions with c ̸= 0. We can use
the first equation and solve to d to obtain

d = −b(a+ β12)

β′
22

.

Note that this implies

ad− b = −ba
2 + aβ12 + β′

22

β′
22

.

Substituting this into the third equation, we find

−b
(
a2 + aβ12 + aβ′

22

β′
22

)
= a2 + aβ12 + β′

22,

and thus, using ad− b ̸= 0, we find b = −β′
22 and thus d = a+ β12. Substituting the expressions for

b and d in the last equation we then obtain

β22(a
2 + aβ12 + β′

22) = (β′
22)

2 − β′
22(a+ β12)β12 + (a+ β12)

2β′
22

= β′
22(β

′
22 + aβ12 + a2).
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Since β′
22 + aβ12 + a2 = ad− b ̸= 0, we conclude that β22 = β′

22. Therefore, after rescaling, we find
that if c ̸= 0 then the system of equations is equivalent to

β12 = β′
12

β22 = β′
22

b = −cβ22
d = a+ cβ12

.

If we allow c = 0 then we obtain the solutions obtained earlier. We conclude that β12, β22 are
invariants and

Aut(a, ▷) =


a −cβ22 0
c a+ cβ12 0
e f a2 + acβ12 + c2β22

 | a, c, e, f ∈ K
 .

Note that we do not need an assumption on the parameters a, c, e, f in order to guarantee invertibility
of the matrices, since we are working under the assumption that t2+ tβ12+β22 has no solutions over
K.

Proposition 9.1.6. Let a be the Heisenberg Lie algebra over a field K. For any β12, β21 ∈ K, the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
x1x2

β12x1y2 + β21y1x2


defines a post-Lie algebra with

Aut(a, ▷) =


a 0 0
c a2 0
e ac(β12 + β21) a3

 | a, c, e ∈ K, a ̸= 0

 .

All of these post-Lie algebras (a, ▷) are L-nilpotent, have a non-zero socle, and their retract is not a trivial
post-Lie algebra. Every post-Lie algebra with these properties is isomorphic to one of the above post-Lie
algebras for a unique choice of parameters β12, β21 ∈ K.

Proof. Let a be the Heisenberg Lie algebra on K and let (a, ▷) be an L-nilpotent post-Lie algebra with
non-zero socle such that its retract (a, ▷)/ Soc(a, ▷) is non-trivial. Similar to the proof of Proposition 9.1.5,
we find [a, a] = Z(a) = Ann(a, ▷). Combining this with Lemma 9.1.1, we know that we can find a basis
e1, e2, e3 of a such that [e1, e2] = e3 and such that the operation ▷ with respect to this basis is given byx1y1

z1

 ▷

x2y2
z2

 =

 0
x1x2

β11x1x2 + β12x1y2 + β21y1x2 + β22y1y2

 ,

for some β11, β12, β21, β22 ∈ K. If β11 ̸= 0, then we can instead consider the basis e1, e′2 := e2+β11e3, e3
over which e1 ▷ e1 = e′2 hence we can assume that β11 = 0.
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We find that (P1) is trivially satisfied since all terms equal 0. We findx1y1
z1

 ▷

x2y2
z2

 ▷

x3y3
z3

 =

 0
x1x2

β12x1y2 + β21y1x2 + β22y1y2

 ▷

x3y3
z3


=

 0
0

β21x1x2x3 + β22x1x2y3

 ,

and x1y1
z1

 ▷

x2y2
z2

 ▷

x3y3
z3

 =

x1y1
z1

 ▷

 0
x2x3

β12x2y3 + β21y2x3 + β22y2y3


=

 0
0

β12x1x2x3 + β22y1x2x3

 .

Therefore, (P2) is satisfied if and only if

β22y1x2x3 = β22y2x1x3,

which holds if and only if β22 = 0. Now let (a, ▷) and (a, ▷′) be post-Lie algebras given by the parameters
β12, β21 and β′

12, β
′
21 respectively. We will study when an automorphism of a is an isomorphism ϕ : (a, ▷)→

(a, ▷′). Since necessarily ϕ(L2(a)) = L2(a), it follows from Lemma 9.1.2 that

ϕ

xy
z

 =

 ax
cx+ dy

ex+ fy + adz

 ,

for a, c, d, e, f ∈ K and ad ̸= 0. We now compute

ϕ

x1y1
z1

 ▷

x2y2
z2

 = ϕ

 0
x1x2

β12x1y2 + β21y1x2

 =

 0
dx1x2

fx1x2 + ad(β12x1y2 + β21y1x2)

 ,

and

ϕ

x1y1
z1

 ▷′ ϕ

x2y2
z2

 =

 ax1
cx1 + dy1

ex1 + fy1 + adz1

 ▷′

 ax2
cx2 + dy2

ex2 + fy2 + adz2


=

 0
a2x1x2

aβ′
12x1(cx2 + dy2) + aβ′

21(cx1 + dy1)x2


=

 0
a2x1x2

ad(β′
12x1y2 + β′

21y1x2) + ac(β′
12 + β′

21)x1x2

 ,
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which holds if and only if a2 = d, β12 = β′
12, β21 = β′

21 and f = ac(β12 + β21). We therefore conclude
that different choices of β12, β21 provide non-isomorphic solutions and

Aut(a, ▷) =


a 0 0
c a2 0
e ac(β12 + β21) a3

 | a, c, e ∈ K, a ̸= 0

 .

Corollary 9.1.7. Let a be the Heisenberg Lie algebra over Fq , for q an odd prime power. Then there are
precisely 2q2 + q+4 isomorphism classes of L-nilpotent post-Lie algebras of the form (a, ▷). Among those,
there are:

• 4 isomorphism classes of post-Lie algebras whose socle is zero.

• q2+q isomorphism classes of post-Lie algebras with non-zero socle whose retract is a trivial post-Lie
algebra.

• q2 isomorphism classes of post-Lie algebras with non-zero socle whose retract is a non-trivial post-Lie
algebra.

Proof. The first and third parts follow directly from Proposition 9.1.3 and Proposition 9.1.6.
For the second part, we find that the first three families described in Proposition 9.1.5 yield q, q(q−1)

2 ,
and q isomorphism classes respectively. Let us now determine for how many pairs (a, b) ∈ F2

q , the equation
t2 + at+ b has no solutions over Fq . This equation has a solution if and only if the discriminant a2− 4b is a
square. Since by assumption 4 is invertible in Fq , we find that for any c ∈ Fq there are precisely q different
pairs (a, b) such that a2 − 4b = c. Indeed, every choice of a ∈ Fq yields a unique b ∈ Fq such that this
holds. Since Fq contains q−1

2 elements that are not a square, we find q(q−1)
2 choices of pairs (a, b) such that

the given equation has no solutions.

Remark 9.1.8. Let (a, ▷) be an post-Lie algebra over Q and let B = {x1, . . . , xn} be a basis of a. Express
the operations with respect to this basis and let k be a common multiple of all of the denominators appearing
in these expressions. Then, with respect to the basis kB = {kx1, . . . , kxn}, all operations are expressible
using only coefficients in Z. This means that the Z-linear span of kB, which we denote by P , is a post-Lie
subring of (a, ▷). For any prime p, we can consider the quotient (P, ▷)/pK in order to obtain a post-Lie
algebra over Fp. It would be interesting to better understand which post-Lie algebras over Fp can occur in
this way. Clearly, the post-Lie algebras over Fp in Propositions 9.1.3, 9.1.5 and 9.1.6 can all be obtained in
such a way. Considering the discussion in Section 8.7.1, a better understanding of this phenomenon could
help in the search for a counterexample of minimal dimension to Milnor’s conjecture [120].

9.2 L-nilpotent post-Lie rings on the extraspecial Lie ring of charac-
teristic p2

Let p be a prime. Recall that the extraspecial Lie ring of order p3 and characteristic p2 is the Lie ring on the
abelian group a = Z/p× Z/p2 with Lie bracket[(

x1
y1

)
,

(
x2
y2

)]
=

(
0

p(x1y2 − y1x2)

)
.
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Any group endomorphism ϕ of Z/p× Z/p2 is of the form

f

(
x
y

)
=

(
ax+ by
pcx+ dy

)
,

where a, b, c ∈ Z/p and d ∈ Z/p2, note that pc is indeed a well-defined element in Z/p2. We denote such
an endomorphism by the matrix (

a b
pc d

)
.

Such an endomorphism is bijective if it induces a bijection modulo p, meaning that ad ̸≡ 0 mod p. Recall
that we use the notation (Z/p2)× for the set of invertible elements of the ring Z/p2.

Lemma 9.2.1. Let a be the extraspecial Lie ring of size p3 and characteristic p2. Then

Aut(a) =

{(
1 b
pc d

)
| b, c ∈ Z/p, d ∈ (Z/p2)×

}
.

Proof. Let ϕ be an automorphism of the group (a,+), so given as above with a, b, c ∈ Z/p, d ∈ Z/p2 and
ad ̸= 0 modulo p. For it to be an automorphism of the Lie ring a, we need that

ϕ

[(
x1
y1

)
,

(
x2
y2

)]
=

(
0

dp(x1y2 − y1x2)

)
is equal to [

ϕ

(
x1
y1

)
, ϕ

(
x2
y2

)]
=

[(
ax1 + by1
pcx1 + dy1

)
,

(
ax2 + by2
pcx2 + dy2

)]
=

(
0

p((ax1 + by1)(pcx2 + dy2)− (pcx1 + dy1)(ax2 + by2))

)
=

(
0

pad(x1y2 − y1x2)

)
.

This happens if and only if a = 1.

Proposition 9.2.2. Let p be a prime and let a be the extraspecial Lie ring of size p3 and characteristic p2.

1. For any α12 ∈ Z/p, the operation(
x1
y1

)
▷

(
x2
y2

)
=

(
0

pα12(x1y2 − y1x2)

)
defines a post-Lie ring (a, ▷) with

Aut(a, ▷) =

{(
1 b
cp d

)
| b, c ∈ Z/p, d ∈ (Z/p2)×

}
.

Different choices of α12 yield non-isomorphic post-Lie rings.
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2. For any α12 ∈ Z/p, the operation(
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(α12(x1y2 − y1x2) + y1y2)

)
defines a post-Lie ring (a, ▷) with

Aut(a, ▷) =

{(
1 b
cp 1 + dp

)
| b, c, d ∈ Z/p

}
.

Different choices of α12 yield non-isomorphic post-Lie rings.

3. For any α12 ̸= α21 ∈ Z/p, the operation(
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(α12x1y2 − α21y1x2)

)
defines a post-Lie ring (a, ▷) with

Aut(a, ▷) =

{(
1 0
cp 1 + pd

)
| c, d ∈ Z/p

}
.

Different choices of α12 yield non-isomorphic post-Lie rings.

4. For any α12, α22 ∈ Z/p, the operation(
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(x1x2 + α12x1y2 + α22y1y2)

)
defines a post-Lie ring (a, ▷) with

Aut(a, ▷) =

{(
1 0
cp 1 + dp

)
| c, d ∈ Z/p

}
.

Different choices of α12, α22 ∈ Z/p yield non-isomorphic post-Lie rings.

All of the described post-Lie rings are L-nilpotent and satisfy the condition that a/(pa) is a trivial post-Lie
ring. Up to isomorphism, every post-Lie ring on a with these properties is contained in precisely one of the
above families.

Proof. Let a be the extraspecial Lie ring of size p3 and characteristic p2, and let (a, ▷) be anL-nilpotent post-
Lie ring such that (a, ▷)/(pa) is a trivial post-Lie ring. Let e1, e2 ∈ a be a linearly independent generating
set of (a,+) such that pe1 = p2e2 = 0. We can always rescale e1 in order to ensure that [e1, e2] = pe2.
With respect to this basis, we have(

x1
y1

)
▷

(
x2
y2

)
=

(
0

p(α11x1x2 + α12x1y2 − α21y1x2 + α22y1y2)

)
for some α11, α12, α21, α22 ∈ Z/p. Axioms (P1) and (P2) hold trivially for any choice of parameters since
all terms therein are 0.
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We now determine when two such post-Lie rings (a, ▷) and (a, ▷′), determined by the parameters
α11, α12, α21, α22 ∈ Z/p and α′

11, α
′
12, α

′
21, α

′
22 ∈ Z/p respectively, are isomorphic. From Lemma 9.2.1

we know that such an isomorphism ϕ : (a, ▷)→ (a, ▷′) is necessarily of the form

ϕ

(
x
y

)
=

(
x+ by
cpx+ dy

)
,

for b, c ∈ Z/p and d ∈ (Z/p2)×. We compute

ϕ

((
x1
y1

)
▷

(
x2
y2

))
= ϕ

(
0

p(α11x1x2 + α12x1y2 − α21y1x2 + α22y1y2)

)
=

(
0

dp(α11x1x2 + α12x1y2 − α21y1x2 + α22y1y2)

)
,

and

ϕ

(
x1
y1

)
▷′ ϕ

(
x2
y2

)
=

(
x1 + by1
cpx1 + dy1

)
▷′
(
x2 + by2
cpx2 + dy2

)
=

(
0

p(α′
11(x1 + by1)(x2 + by2) + dα′

12(x1 + by1)dy2 − α′
21dy1(x2 + by2) + d2α′

22y1y2)

)
=

(
0

p(α′
11x1x2 + (bα′

11 + dα′
12)x1y2 + (bα11 − dα′

21)y1x2 + (b2α′
11 + bdα′

12 − bdα′
21 + d2α′

22)y1y2)

)
.

From which we obtain the following equations in Z/p:
dα11 = α′

11,

dα12 = dα′
12 + bα′

11,

dα21 = dα′
21 − bα′

11,

dα22 = b2α′
11 + bd(α′

12 − α′
21) + d2α′

22.

We observe first of all that α11 = 0 if and only if α′
11 = 0, and therefore this yields an invariant of the

post-Lie ring. Let us use this invariant to consider two disjoint cases:

1. α11 = 0: In this case we find that α12 = α′
12 and α21 = α′

21. We further distinguish two disjoint
cases:

(a) α12 = α21: Under this assumption, we find that α22 = 0 if and only if α′
22 = 0, which leads to

another two disjoint subcases:

i. α22 = 0: The system of equations is trivially satisfied and the operation ▷ equals α12 times
the Lie bracket, therefore Aut(a, ▷) = Aut(a).

ii. α22 ̸= 0: We see that d = α22 and α′
22 = 1 yields a solution so without loss of generality,

α22 = 1. We find

Aut(a, ▷) =

{(
1 b
cp 1 + dp

)
| b, c, d ∈ Z/p

}
.



9.2. POST-LIE RINGS ON THE EXTRASPECIAL LIE RING OF CHARACTERISTIC p2 197

(b) α12 ̸= α21: Since α12 ̸= 0 or α21 ̸= 0, this forces d ≡ 1 mod p. Moreover, when b =
α22(α

′
12−α′

21)
−1 and α′

22 = 0 we find a solution of the system of equations. Therefore we may
assume that α22 = α′

22 = 0, which forces b = 0 and we find

Aut(a, ▷) =

{(
1 0
cp 1 + pd

)
| c, d ∈ Z/p

}
.

2. α11 ̸= 0: If we let d = α−1
11 , b = 0, α′

12 = α12, α′
21 = α21, α′

22 = α11α22 and α′
11 = 1 then the

system of equations is satisfied, so without loss of generality we may assume that α11 = α′
11 = 1

which forces d ≡ 1 mod p. Setting, b = −α21, α′
21 = 0, α′

12 = α12 + α21 and α′
22 = α22 − α2

21 +
α21(α12 + α21) also yields a solution, so we can moreover assume that α21 = α′

21 = 0. This forces
b = 0 and thus α12 = α′

12 and α22 = α′
22, and also we find

Aut(a, ▷) =

{(
1 0
cp 1 + dp

)
| c, d ∈ Z/p

}
.

Proposition 9.2.3. Let p be a prime and let a be the extraspecial Lie ring of size p3 and characteristic p2.
For any α22, β12, β21 ∈ Z/p with α22 ̸= 0, the operation(

x1
y1

)
▷

(
x2
y2

)
=

(
α22y1y2

p(β12x1y2 − β21y1x2)

)
,

defines a post-Lie ring (a, ▷) with

Aut(a, ▷) =

{(
1 b

bα−1
22 (β12 − β21)p (−1)i + dp

)
| b, d ∈ Z/p, i ∈ Z

}
.

Different choices of parameters α22, β12, β21 ∈ Z/p and α′
22, β

′
12, β

′
21 ∈ Z/p yield isomorphic post-Lie

rings if and only if β12 = β′
12, β21 = β′

21 and α−1
22 α

′
22 is a square in Z/p.

The above post-Lie rings are L-nilpotent and satisfy the condition that (a, ▷)/(pa) is a non-trivial post-
Lie ring. Every post-Lie ring with these properties is isomorphic to one of the above ones.

Proof. Let a be the extraspecial Lie ring of size p3 and characteristic p2 and let (a, ▷) be an L-nilpotent
post-Lie ring such that (a, ▷)/(pa) is non-trivial. By Lemma 9.1.1 know that we can find a generating set
e1, e2 of (a,+) such that e2 ▷ e2 ∈ e1 + pa. Also, since a ▷ (pa) is a strict subset of pa and thus equals {0},
we find that pa is contained in Fix(a, ▷). Combining these observations yields

0 = e2 ▷ (pe2) = p(e2 ▷ e2) = pe1,

thus e1 has order p. This implies that e2 has order p2 and that e1, e2 is a basis of (a,+). If necessary we can
rescale e1 in order to ensure [e1, e2] = pe2. With respect to the base e1, e2 we find that the operation ▷ is
given by (

x1
y1

)
▷

(
x2
y2

)
=

(
α22y1y2

p(β11x1x2 + β12x1y2 − β21y1x2 + β22y1y2)

)
with α22, β11, β12, β21, β22 ∈ Z/p and α22 ̸= 0. We find(

x1
y1

)
▷

[(
x2
y2

)
,

(
x3
y3

)]
=

(
0
0

)
,
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and[(
x1
y1

)
▷

(
x2
y2

)
,

(
x3
y3

)]
+

[(
x2
y2

)
,

(
x1
y1

)
▷

(
x3
y3

)]
=

(
0

pα22y1y2y3

)
+

(
0

−pα22y1y2y3

)
=

(
0
0

)
,

hence (P1) is trivially satisfied. Also((
x1
y1

)
▷

(
x2
y2

))
▷

(
x3
y3

)
=

(
α22y1y2

p(β11x1x2 + β12x1y2 − β21y1x2 + β22y1y2)

)
▷

(
x3
y3

)
=

(
0

pα22y1y2(β11x3 + β12y3)

)
,

and (
x1
y1

)
▷

((
x2
y2

)
▷

(
x3
y3

))
=

(
x1
y1

)
▷

(
α22y2y3

p(β11x2x3 + β12x2y3 − β21y2x3 + β22y2y3)

)
=

(
0

p(β11x1 + β21y1)α22y2y3

)
,

from which we obtain that (P2) holds if and only if the following equality holds in Z/p:

(β11x1 + β21y1)y2y3 − y1y2(β11x3 + β12y3) = (β11x2 + β21y2)y1y3 − y1y2(β11x3 + β12y3).

This equation holds if and only if β11 = 0. We now determine when two such post-Lie rings (a, ▷) and
(a, ▷′), determined by the parameters α11, β12, β21, β22 ∈ Z/p and α′

11, β
′
12, β

′
21, β

′
22 ∈ Z/p respectively,

are isomorphic. From Lemma 9.2.1 we know that such an isomorphism ϕ : (a, ▷)→ (a, ▷′) is of the form

ϕ

(
x
y

)
=

(
x+ by
cpx+ dy

)
,

for b, c ∈ Z/p and d ∈ (Z/p2)×. We calculate

ϕ

((
x1
y1

)
▷

(
x2
y2

))
= ϕ

(
α22y1y2

p(β12x1y2 − β21y1x2 + β22y1y2)

)
=

(
α22y1y2

pcα22y1y2 + dp(β12x1y2 − β21y1x2 + β22y1y2)

)
,

and

ϕ

(
x1
y1

)
▷′ ϕ

(
x2
y2

)
=

(
x1 + by1
cpx1 + dy1

)
▷′
(
x2 + by2
cpx2 + dy2

)
=

(
α′
22d

2y1y2
p(β′

12(x1 + by1)dy2 − β′
21dy1(x2 + by2) + β′

22d
2y1y2)

)
=

(
α′
22d

2y1y2
p(dβ′

12x1y2 + dβ′
21y1x2 + (b(β′

12 − β′
21) + d2β′

22)y1y2)

)
,

from which we get the following system of equations in Z/p:
α22 = d2α′

22

dβ12 = dβ′
12

dβ21 = dβ′
12

cα22 + dβ22 = b(β′
12 − β′

21) + d2β′
22

.
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This immediately implies that β12 = β′
12 and β21 = β′

21. Choosing b = 0, d = 1, c = −α−1
22 β22, α′

22 = α22

and β′
22 = 0 we find a solution of the system of equations. Therefore, we may assume that β22 = β′

22 = 0.
We find that up to isomorphism (a, ▷) is of the form(

x1
y1

)
▷

(
x2
y2

)
=

(
α22y1y2

p(x1x2 + β12x1y2 − β21y1x2)

)
,

for α22, β12, β21 ∈ Z/p with α22 ̸= 0. Two such post-Lie rings, with parameters α22, β12, β21 ∈ Z/p and
α′
22, β

′
12, β

′
21 ∈ Z/p respectively, are isomorphic if and only if β12 = β′

12, β21 = β′
21 and α−1

22 α
′
22 is a

square in Z/p. Also, it follows that Aut(a, ▷) is as given in the statement.

Corollary 9.2.4. Let p be a prime and let a be the extraspecial Lie ring of size p3 and characteristic p2.
Then there are precisely 4p2+p isomorphism classes of L-nilpotent post-Lie rings of the form (a, ▷). Among
those, there are:

• 2p2 + p isomorphism classes of post-Lie rings such that (a, ▷)/(pa) is a trivial post-Lie ring.

• 2p2 isomorphism classes of post-Lie rings such that (a, ▷)/(pa) is a non-trivial post-Lie ring.

Proof. From Proposition 9.2.2 we find p + p + p(p − 1) + p2 = 2p2 + 2 isomorphism classes and from
Proposition 9.2.3 we obtain 2p2 equivalence classes.

9.3 Skew braces on the Heisenberg group
Let K be a field and let a be the Heisenberg Lie algebra over K. Recall from Example 1.4.36 that through
the Lazard correspondence we obtain from a the Heisenberg group (K3, ·) = Laz(a) withx1y1

z1

 ·
x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 +
1
2 (x1y2 − y1x2)

 . (9.2)

Proposition 9.3.1. Let K = Q or K = Fp for a prime p > 3 and let (K3, ·) be the Heisenberg group over
K, with the operation given by (9.2).

1. For any 0 ̸= α31 ∈ K, the operationx1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2 + α31z1x2

z1 + z2


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(a, ▷) =


(−1)i 0 0

c d 0
0 0 (−1)id

 | c, d ∈ K, d ̸= 0, i ∈ Z

 .

Two such skew braces, with parameters α31 and α′
31 respectively, are isomorphic if and only if α−1

31 α
′
31

is a square in K.
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2. For any 0 ̸= α31 ∈ K, the operationx1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2 + α31z1x2 − 1

2α31x
2
1x2

z1 + z2 + x1x2


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(a, ▷) =


(−1)i 0 0

c (−1)i 0
0 0 1

 | c ∈ K, i ∈ Z

 .

Two such skew braces, with parameters α31 and α′
31 respectively, are isomorphic if and only if α−1

31 α
′
31

is a square in K.

The socle of the described skew braces is zero and, up to isomorphism, every skew brace (K3, ·, ◦) with this
property is contained in precisely one of the above families.

Proof. Let K = Q or K = Fp for p > 3 and let a be the Heisenberg Lie algebra over K. Recall that
Laz(a) = (K3, ·). Let us consider the two families of L-nilpotent post-Lie algebras on a given in Propo-
sition 9.1.3 and apply Proposition 8.4.9 to them, where we consider them as filtered Lie algebras with the
filtration coming from their L-series. Note that the third term in the L-series is 0 for all of these post-Lie
algebras, so they are indeed Lazard post-Lie algebras since 2 and 3 are invertible in K. It is important to
remark that the isomorphisms mentioned in Proposition 9.1.3 are isomorphisms of post-Lie algebras over
K. Since K is a prime field, any additive map f : a → a is automatically also K-linear. Therefore, when
considering post-Lie algebras over K, there is no distinction between isomorphisms as post-Lie rings and
isomorphisms as post-Lie algebras over K. This means that all information about isomorphisms and auto-
morphisms of the obtained skew braces can be directly recovered from Proposition 9.1.3. We now apply
explicitly the construction described in Proposition 8.4.9.

1. Consider the post-Lie algebra (a, ▷) with operationx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

1
2 (y1x2 − x1y2)

 ,

for some 0 ̸= α31 ∈ K. Then xy
z

 ▷

xy
z

 =

 0
α31xz

0

 ,

xy
z

 ▷

xy
z

 ▷

xy
z

 =

 0
0

− 1
2α31x

2z

 ,

and xy
z

 ,

xy
z

 ▷

xy
z

 =

 0
0

α31x
2z

 .
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Using (8.11) we find

W

xy
z

 =

xy
z

+
1

2

xy
z

 ▷

xy
z

+
1

6

xy
z

 ▷

xy
z

 ▷

xy
z


+

1

12

xy
z

 ,

xy
z

 ▷

xy
z


=

xy
z

+
1

2

 0
α31xz

0

+
1

6

 0
0

− 1
2α31x

2z

+
1

12

 0
0

α31x
2z


=

 x
y + 1

2α31xz
z

 .

The inverse of W is given by

Ω

xy
z

 =

 x
y − 1

2α31xz
z

 .

Let Lx,y,z denote the left ▷-multiplication by

xy
z

, then

exp(Lx1,y1,z1)

x2y2
z2

 =

x2y2
z2

+

 0
αz1x2

1
2 (y1x2 − x1y2)

+
1

2

 0
0

− 1
2αx1z1x2


=

 x2
y2 + αz1x2

z2 +
1
2 (y1x2 − x1y2)−

1
4αx1z1x2

 .
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Therefore we find B(a, ▷) = (K3, ·, ◦) withx1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1− 1
2α31x1z1,z1)

x2y2
z2


=

x1y1
z1

 ·
 x2

y2 + α31z1x2
z2 +

1
2 ((y1 −

1
2α31x1z1)x2 − x1y2)− 1

4α31x1z1x2


=

x1y1
z1

 ·
 x2

y2 + α31z1x2
z2 +

1
2 ((y1 − α31x1z1)x2 − x1y2)


=

 x1 + x2
y1 + y2 + α31z1x2

z1 + z2 +
1
2 ((y1 − α31x1z1)x2 − x1y2) + 1

2 (x1(y2 + α31z1x2)− y1x2)


=

 x1 + x2
y1 + y2 + α31z1x2

z1 + z2

 .

2. Now consider the operationx1y1
z1

 ▷

x2y2
z2

 =

 0
α31z1x2

x1x2 +
1
2 (y1x2 − x1y2)

 ,

for 0 ̸= α31 ∈ K. We find

W

xy
z

 =

xy
z

+
1

2

 0
α31xz
x2

+
1

6

 0
0

− 1
2α31x

2z

+
1

12

 0
0

α31x
2z

 =

 x
y + 1

2α31xz
z + 1

2x
2

 ,

whose inverse is given by

Ω

xy
z

 =

 x
y − 1

2α31xz +
1
4α31x

3

z − 1
2x

2

 .

Using the same notation as before, we find

exp(Lx1,y1,z1)

x2y2
z2

 =

x2y2
z2

+

 0
α31z1x2

x1x2 +
1
2 (y1x2 − x1y2)

+
1

2

 0
0

−α31x1z1x2


=

 x2
y2 + α31z1x2

z2 + x1x2 +
1
2 (y1x2 − x1y2)−

1
4α31x1z1x2

 .
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Therefore we find that B(a, ▷) = (K3, ·, ◦) is given byx1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1− 1
2α31x1z1+

1
4α31x3

1,z1−
1
2x

2
1

)x2y2
z2


=

x1y1
z1

 ·
 x2

y2 + α31(z1 − 1
2x

2
1)x2

z2 + x1x2 +
1
2 ((y1 −

1
2α31x1z1 +

1
4α31x

3
1)x2 − x1y2)− 1

4α31x1(z1 − 1
2x

2
1)x2


=

x1y1
z1

 ·
 x2

y2 + α31(z1 − 1
2x

2
1)x2

z2 + x1x2 +
1
2 (y1x2 − x1y2 − α31x1z1x2) +

1
4α31x

3
1x2


=

 x1 + x2
y1 + y2 + α31(z1 − 1

2x
2
1)x2

z1 + z2 + x1x2 +
1
2 (y1x2 − x1y2 − α31x1z1x2) +

1
4α31x

3
1x2 +

1
2 (x1(y2 + α31(z1 − 1

2x
2
1)x2)− y1x2)


=

 x1 + x2
y1 + y2 + α31z1x2 − 1

2α31x
2
1x2

z1 + z2 + x1x2

 .

Proposition 9.3.2. Let K = Q or K = Fp for p > 2 and let (K3, ·) be the Heisenberg group over K, with
the operation given by (9.2).

1. For any β12 ∈ K, the operationx1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 + β12(x1y2 − y1x2)


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(K3, ·, ◦) =


a b 0
c d 0
e f ad− bc

 | a, b, c, d, e, f ∈ K, ad− bc ̸= 0

 .

Different choices of β12 yield non-isomorphic skew braces.

2. For any β12 ̸= β21 ∈ K, the operationx1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 + β12x1y2 − β21y1x2


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(K3, ·, ◦) =


a 0 0
0 d 0
e f ad

 | a, d, e, f ∈ K, ad ̸= 0

 .

Two such skew braces, with parameters β12, β21 and β′
12, β

′
21 respectively, are isomorphic if and only

if {β12, β21} = {β′
12, β

′
21}.
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3. For any β12 ∈ K, the operationx1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β12(x1y2 − y1x2)


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(K3, ·, ◦) =


a 0 0
c a 0
e f a2

 | a, c, e, f ∈ K, a ̸= 0

 .

Different choices of β12 yield non-isomorphic skew braces.

4. For any β22, β12 ∈ K such that t2 + (β12 − 1
2 )t+ β22 has no solutions over K, the operation

x1y1
z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β12x1y2 − 1
2y1x2 + β22y1y2)


defines a skew brace (K3, ·, ◦) with automorphism group

Aut(K3, ·, ◦) =


a −cβ22 0
c a+ c(β12 − 1

2 ) 0
e f a2 + a(β12 − 1

2 ) + β22

 | a, c, e, f ∈ K
 .

Different choices of β12, β22 yield non-isomorphic skew braces.

All of the above skew braces are L-nilpotent, have non-zero socle, and their retract is a trivial brace. Up
to isomorphism, every skew brace (K3, ·, ◦) with these properties is contained in precisely one of the above
families.

Proof. Let K = Q or K = Fp for p > 2 and let a be the Heisenberg Lie algebra over K. We apply
Proposition 8.4.9 to the post-Lie algebras (a, ▷) described in Proposition 9.1.5. By a similar reasoning as in
Proposition 9.1.3, the isomorphisms and automorphisms can be recovered from Proposition 9.4.1. Note that
we do not need to explicitly computeW and Ω. Since we are only interested in LΩ(a), it is sufficient to know
W and Ω modulo the socle. However, all post-Lie algebras in Proposition 9.1.5 have a trivial retract, so we
know that W and Ω induce the identity map on (a, ▷)/ Soc(a, ▷). Therefore, we find a ◦ b = a · exp(La)(b)
for all a, b ∈ a.

1. Let x1y1
z1

 ▷

x2y2
z2

 =

 0
0

β12(x1y2 − y1x2)

 ,
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with β12 ∈ K. We find B(a, ▷) = (K3, ·, ◦) withx1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1,z1)

x2y2
z2


=

x1y1
z1

 ·
 x2

y2
z2 + β12(x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + β12(x1y2 − y1x2) + 1
2 (x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + β′
12(x1y2 − y1x2)

 ,

where at the end we set β′
12 = β12 +

1
2 .

2. Let x1y1
z1

 ▷

x2y2
z2

 =

 0
0

β12x1y2 − β21y1x2

 ,

with β12 ̸= β21 ∈ K. We find B(a, ▷) = (K3, ·, ◦) withx1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1,z1)

x2y2
z2


=

x1y1
z1

 ·
 x2

y2
z2 + β12x1y2 − β21y1x2


=

 x1 + x2
y1 + y2

z1 + z2 + β12x1y2 − β21y1x2 + 1
2 (x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + β′
12x1y2 − β′

21y1x2

 ,

where at the end we set β′
12 = β12 +

1
2 and β′

21 = β21 +
1
2 .

3. Let x1y1
z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12(x1y2 − y1x2)

 ,
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with β12 ∈ K. We find B(a, ▷) = (K3, ·, ◦) withx1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1,z1)

x2y2
z2


=

x1y1
z1

 ·
 x2

y2
z2 + x1x2 + β12(x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β12(x1y2 − y1x2) + 1
2 (x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β′
12(x1y2 − y1x2)

 ,

where at the end we set β′
12 = β12 +

1
2 .

4. Let x1y1
z1

 ▷

x2y2
z2

 =

 0
0

x1x2 + β12x1y2 + β22y1y2

 ,

with β22, β12 ∈ K such that t2 + β12t + β22 has no solutions over K. We find B(a, ▷) = (K3, ·, ◦)
with x1y1

z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1,z1)

x2y2
z2


=

x1y1
z1

 ·
 x2

y2
z2 + x1x2 + β12x1y2 + β22y1y2


=

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β12x1y2 + β22y1y2 +
1
2 (x1y2 − y1x2)


=

 x1 + x2
y1 + y2

z1 + z2 + x1x2 + β′
12x1y2 − 1

2y1x2 + β22y1y2)

 ,

where at the end we set β′
12 = β12 +

1
2 .

Proposition 9.3.3. Let K = Q or K = Fp for a prime p > 3 and let (K3, ·) be the Heisenberg group over
K, with the operation given by (9.2). Then for any β12, β21 ∈ K, the operationx1y1

z1

 ◦
x2y2
z2

 =

 x1 + x2
y1 + y2 + x1x2

z1 + z2 + β12x1y2 + β21y1x2 +
1
2 (β12 − β21)x

2
1x2


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defines a skew brace (K3, ·, ◦) with

Aut(K3, ·, ◦) =


a 0 0
c a2 0
e ac(β12 + β21) a3

 | a, c, e ∈ K, a ̸= 0

 .

These skew braces are L-nilpotent, have a non-zero socle, and their retract is a non-trivial brace. Every
skew brace (K3, ·, ◦) with these properties is isomorphic to one of the above ones for a unique choice of
parameters β12, β21 ∈ K.

Proof. Let K = Q or K = Fp for p > 3 and let a be the Heisenberg algebra over K. We consider the
family of post-Lie algebra described in Proposition 9.1.6. So (a, ▷) withx1y1

z1

 ▷

x2y2
z2

 =

 0
x1x2

β12x1y2 + β21y1x2

 ,

where β12, β21 ∈ K. Similar to Proposition 9.3.2, it is sufficient to know W and Ω modulo the socle. We
find that the maps W ′ and Ω′ associated to (a, ▷)/ Soc(a, ▷) are

W ′
(
x
y

)
=

(
x
y

)
+

1

2

(
0
x2

)
=

(
x

y + 1
2x

2

)
,

and

Ω′
(
x
y

)
=

(
x

y − 1
2x

2

)
.

It follows that B(a, ▷) = (a, ·, ◦) is given by

x1y1
z1

 ◦
x2y2
z2

 =

x1y1
z1

 · exp(Lx1,y1− 1
2x

2
1,z1

)

x2y2
z2


=

x1y1
z1

 ·
x2y2

z2

+

 0
x1x2

β12x1y2 + β21(y1 − 1
2x

2
1)x2

+
1

2

 0
0

β12x
2
1x2


=

x1y1
z1

 ·
 x2

y2 + x1x2
z2 + β12x1y2 + β21(y1 − 1

2x
2
1)x2 +

1
2β12x

2
1x2


=

 x1 + x2
y1 + y2 + x1x2

z1 + z2 + β12x1y2 + β21(y1 − 1
2x

2
1)x2 +

1
2β12x

2
1x2 +

1
2 (x1(y2 + x1x2)− y1x2)


=

 x1 + x2
y1 + y2 + x1x2

z1 + z2 + (β12 +
1
2 )x1y2 + (β21 − 1

2 )y1x2 +
1
2 (β12 − β21 + 1)x21x2


=

 x1 + x2
y1 + y2 + x1x2

z1 + z2 + β′
12x1y2 + β′

21y1x2 +
1
2 (β

′
12 − β′

21)x
2
1x2

 ,
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where in the end we set β′
12 = β12 +

1
2 and β′

21 = β21 − 1
2 .

Remark 9.3.4. The reason that in Propositions 9.3.1 to 9.3.3 we restrict to prime fields is such that the
information of the isomorphisms can be obtained directly from the corresponding post-Lie rings. The given
operations still yield skew braces for any fields of characteristic not 2 (or 3), but there is no reason that this
list should be complete in this case.

Proposition 9.3.5. The statements in Propositions 9.3.1 to 9.3.3 also hold for K = R if we change every
occurrence of skew brace by skew Lie brace and thus also demand that isomorphisms and automorphisms
are diffeomorphisms.

Proof. Let (a, ▷) and (a, ▷′) be post-Lie algebras over R. The functoriality of Theorem 8.4.14 implies that
post-Lie ring isomorphisms (a, ▷) → (a, ▷′) coincide with skew brace isomorphisms B(a, ▷) → B(a, ▷).
Since the manifold structures on (a, ▷) and B(a, ▷) are identical, this correspondence restricts to those iso-
morphisms that are also diffeomorphisms. We already know that any post-Lie ring isomorphism f : (a, ▷)→
(a, ▷′) is Q-linear, so if moreover it is a diffeomorphism then its R-linearity follows. Conversely, it is clear
that R-linearity implies that is a diffeomorphism.

Theorem 9.3.6. Let p > 3 be a prime. Up to isomorphism, Propositions 9.3.1 to 9.3.3 give a complete list
of skew braces whose additive group is isomorphic to the Heisenberg group of order p3.

Proof. Let p > 3 and let A = (K3, ·, ◦) be a skew brace of size p3 with (K3, ·) the Heisenberg group.
If Soc(A) = {0}, then up to isomorphism A is given in Proposition 9.3.2. If Soc(A) ̸= {0} then
Soc(A) = Z(K3, ·) and A/Soc(A) corresponds to one of the two post-Lie rings described in Lemma 9.1.1.
If A/ Soc(A) is trivial, then up to isomorphism A is given in Proposition 9.3.1 and else in Proposition 9.3.3.

Corollary 9.3.7. Let p > 3 be a prime. Then there are precisely 2p2 + p + 4 isomorphism classes of skew
braces of size p3 whose additive group is isomorphic to the Heisenberg group. Among those, there are:

• 4 isomorphism classes of skew braces whose socle is zero.

• p2 + p isomorphism classes of skew braces with non-zero socle whose retract is a trivial skew brace.

• p2 isomorphism classes of skew braces with non-zero socle whose retract is a non-trivial skew brace.

9.4 Skew braces on the extraspecial group of exponent p2

Let p > 2 be a prime and let a be the extraspecial Lie ring of order p3. Recall from Example 1.4.37
that through the Lazard correspondence we obtain the extraspecial group of order p3 and exponent p2.
Concretely, (Z/p× Z/p2, ·) = Laz(a) with(

x1
y1

)
·
(
x2
y2

)
=

(
x1 + x2

y1 + y2 +
1
2p(x1y2 − y1x2)

)
. (9.3)

Proposition 9.4.1. Let p > 2 be a prime and let (Z/p×Z/p2, ·) be the extraspecial group, with the operation
given by (9.3).
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1. For any α12 ∈ Z/p, the operation(
x1
y1

)
◦
(
x2
y2

)
=

(
x1 + x2

y1 + y2 + pα12(x1y2 − y1x2)

)
defines a skew brace (Z/p× Z/p2, ·, ◦) with

Aut(Z/p× Z/p2, ·, ◦) =
{(

1 b
cp d

)
| b, c ∈ Z/p, d ∈ (Z/p2)×

}
.

Different choices of α12 yield non-isomorphic skew braces.

2. For any α12 ∈ Z/p, the operation(
x1
y1

)
◦
(
x2
y2

)
=

(
x1 + x2

y1 + y2 + p(α12(x1y2 − y1x2) + y1y2)

)
defines a skew brace (Z/p× Z/p2, ·, ◦) with

Aut(Z/p× Z/p2, ·, ◦) =
{(

1 b
cp 1 + dp

)
| b, c, d ∈ Z/p

}
.

Different choices of α12 yield non-isomorphic skew braces.

3. For any α12 ̸= α21 ∈ Z/p, the operation(
x1
y1

)
▷

(
x2
y2

)
=

(
x1 + x2

y1 + y2 + p(α12x1y2 − α21y1x2)

)
defines a skew brace (Z/p× Z/p2, ·, ◦) with

Aut(Z/p× Z/p2, ·, ◦) =
{(

1 0
cp 1 + pd

)
| c, d ∈ Z/p

}
.

Different choices of α12 yield non-isomorphic skew braces.

4. For any α12, α22 ∈ Z/p, the operation(
x1
y1

)
◦
(
x2
y2

)
=

(
x1 + x2

y1 + y2 + p(x1x2 + α12x1y2 − 1
2y1x2 + α22y1y2)

)
defines a skew brace (Z/p× Z/p2, ·, ◦) with

Aut(Z/p× Z/p2, ·, ◦) =
{(

1 0
cp 1 + dp

)
| c, d ∈ Z/p

}
.

Different choices of α12, α22 ∈ Z/p yield non-isomorphic skew braces.

All of the above skew braces satisfy A2 ⊆ Z(A, ·). Up to isomorphism, every skew brace of the form
(Z/p× Z/p2, ·, ◦) with this property is contained in precisely one of the above families.
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Proof. We consider the 4 families of post-Lie rings on the extraspecial Lie ring a as described in Proposi-
tion 9.2.2. Note that all of the post-Lie rings (a, ▷) considered have the property that (a, ▷)/ Soc(a, ▷) is a
trivial brace, so it follows that a ◦ b = a · LΩ(a)(b) = a · La(b) for all a, b ∈ a.

1. Let (
x1
y1

)
▷

(
x2
y2

)
=

(
0

pα12(x1y2 − y1x2)

)
,

with α12 ∈ Z/p. Then B(a, ▷) = (Z/p× Z/p2, ·, ◦) is given by(
x1
y1

)
◦
(
x2
y2

)
=

(
x1
y1

)
· exp (Lx1,y1)

(
x2
y2

)
=

(
x1
y1

)
·
(

x2
y2 + pα12(x1y2 − y1x2)

)
=

(
x1 + x2

y1 + y2 + pα12(x1y2 − y1x2) + 1
2p(x1y2 − y1x2)

)
=

(
x1 + x2

y1 + y2 + pα′
12(x1y2 − y1x2)

)
,

where in the last step we set α′
12 = α12 +

1
2 .

2. Let (
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(α12(x1y2 − y1x2) + y1y2)

)
,

with α12 ∈ Z/p. Then B(a, ▷) = (Z/p× Z/p2, ·, ◦) is given by(
x1
y1

)
◦
(
x2
y2

)
=

(
x1
y1

)
· exp (Lx1,y1)

(
x2
y2

)
=

(
x1
y1

)
·
(

x2
y2 + p(α12(x1y2 − y1x2) + y1y2)

)
=

(
x1 + x2

y1 + y2 + p(α12(x1y2 − y1x2) + y1y2) +
1
2p(x1y2 − y1x2)

)
=

(
x1 + x2

y1 + y2 + p(α′
12(x1y2 − y1x2) + y1y2)

)
,

where in the last step we set α′
12 = α12 +

1
2 .

3. Let (
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(α12x1y2 − α21y1x2)

)
,
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with α12 ∈ Z/p. Then B(a, ▷) = (Z/p× Z/p2, ·, ◦) is given by(
x1
y1

)
◦
(
x2
y2

)
=

(
x1
y1

)
· exp (Lx1,y1)

(
x2
y2

)
=

(
x1
y1

)
·
(

x2
y2 + p(α12x1y2 − α21y1x2)

)
=

(
x1 + x2

y1 + y2 + p(α12x1y2 − α21y1x2) +
1
2p(x1y2 − y1x2)

)
=

(
x1 + x2

y1 + y2 + p(α′
12x1y2 − α′

21y1x2)

)
,

where in the last step we set α′
12 = α12 +

1
2 and α′

21 = α21 +
1
2 .

4. Let (
x1
y1

)
▷

(
x2
y2

)
=

(
0

p(x1x2 + α12x1y2 + α22y1y2)

)
,

with α12 ∈ Z/p. Then B(a, ▷) = (Z/p× Z/p2, ·, ◦) is given by(
x1
y1

)
◦
(
x2
y2

)
=

(
x1
y1

)
· exp (Lx1,y1)

(
x2
y2

)
=

(
x1
y1

)
·
(

x2
y2 + p(x1x2 + α12x1y2 + α22y1y2)

)
=

(
x1 + x2

y1 + y2 + p(x1x2 + α12x1y2 + α22y1y2) +
1
2p(x1y2 − y1x2)

)
=

(
x1 + x2

y1 + y2 + p(x1x2 + (α12 +
1
2 )x1y2 −

1
2y1x2 + α22y1y2)

)
=

(
x1 + x2

y1 + y2 + p(x1x2 + α′
12x1y2 − 1

2y1x2 + α22y1y2)

)
,

where in the last step we set α′
12 = α12 +

1
2 .

Proposition 9.4.2. Let p > 3 be a prime and let (Z/p×Z/p2, ·) be the extraspecial group, with the operation
given by (9.3). For any α22, β12, β21 ∈ Z/p with α22 ̸= 0, the operation(

x1
y1

)
◦
(
x2
y2

)
=

(
x1 + x2 + α22y1y2

y1 + y2 + p(β12x1y2 − β21y1x2 − 1
2 (β12 + β21)α22y

2
1y2)

)
defines a skew brace (Z/p× Z/p2, ·, ◦) with

Aut(Z/p× Z/p2, ·, ◦) =
{(

1 b
bα−1

22 (β12 − β21)p 1 + dp

)
| b, d ∈ Z/p

}
.

Different choices of parameters α22, β12, β21 and α′
22, β

′
12, β

′
21 yield isomorphic skew braces if and only if

β12 = β′
12, β21 = β′

21 and α−1
22 α

′
22 is a square in Z/p.

All of the above skew braces satisfy the condition that A2 ̸⊆ Z(A, ·) and, up to isomorphism, every skew
brace (Z/p× Z/p2, ·, ◦) with this property is isomorphic to one of the above.
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Proof. We apply the Lazard correspondence to the family of post-Lie rings in Proposition 9.2.3. Let a be
the extraspecial Lie ring of order p3 and let(

x1
y1

)
▷

(
x2
y2

)
=

(
α22y1y2

p(β12x1y2 − β21y1x2)

)
,

with α22, β12, β21 ∈ Z/p and α22 ̸= 0. Since pa ⊆ Soc(a, ▷), it suffices to compute W and Ω modulo pα.
We find

W

(
x
y

)
∈
(
x+ 1

2α22y
2

y

)
+ pa,

and

Ω

(
x
y

)
∈
(
x− 1

2α22y
2

y

)
+ pa.

Therefore, B(a, ▷) = (a, ·, ◦) is given by(
x1
y1

)
◦
(
x2
y2

)
=

(
x1
y1

)
· exp

(
Lx1− 1

2α22y21 ,y1

)(
x2
y2

)
=

(
x1
y1

)
·
((

x2
y2

)
+

(
α22y1y2

p(β12(x1 − 1
2α22y

2
1)y2 − β21y1x2)

)
+

1

2

(
0

−pβ21α22y
2
1y2

))
=

(
x1
y1

)
·
(

x2 + α22y1y2
y2 + p(β12(x1 − 1

2α22y
2
1)y2 − β21y1x2 − 1

2β21α22y
2
1y2)

)
=

(
x1
y1

)
·
(

x2 + α22y1y2
y2 + p(β12x1y2 − β21y1x2 − 1

2 (β12 + β21)α22y
2
1y2)

)
=

(
x1 + x2 + α22y1y2

y1 + y2 + p(β12x1y2 − β21y1x2 − 1
2 (β12 + β21)α22y

2
1y2 +

1
2 (x1y2 − y1(x2 + α22y1y2)))

)
=

(
x1 + x2 + α22y1y2

y1 + y2 + p((β12 +
1
2 )x1y2 − (β21 +

1
2 )y1x2 −

1
2 (β12 + β21 + 1)α22y

2
1y2)

)
=

(
x1 + x2 + α22y1y2

y1 + y2 + p(β′
12x1y2 − β′

21y1x2 − 1
2 (β

′
12 + β′

21)α22y
2
1y2)

)
,

where in the last step we set β′
12 = β12 +

1
2 and β′

21 = β21 +
1
2 .

Theorem 9.4.3. Let p > 3 be a prime. Up to isomorphism, Propositions 9.4.1 and 9.4.2 give a complete list
of skew braces on the extraspecial group of order p3 and exponent p2.

Corollary 9.4.4. Let p > 3 be a prime. Then there are precisely 4p2+p isomorphism classes of skew braces
of size p3 whose additive group is isomorphic to the extraspecial group of exponent p2. Among those, there
are:

• 2p2 + p isomorphism classes of post-Lie rings such that A2 ⊆ Z(A, ·).

• 2p2 isomorphism classes of post-Lie rings such that A2 ̸⊆ Z(A, ·).
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[50] F. Cedó, E. Jespers, and J. Okniński. Retractability of set theoretic solutions of the Yang–Baxter
equation. Advances in Mathematics, 224(6):2472–2484, 8 2010.



216 BIBLIOGRAPHY
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[128] D. Puljić, A. Smoktunowicz, and K. Nejabati Zenouz. Some braces of cardinality p4 and related
Hopf-Galois extensions. New York J. Math., 28:494–522, 2022.

[129] K. Reidemeister. Elementare Begründung der Knotentheorie. Abh. Math. Sem. Univ. Hamburg,
5(1):24–32, 1927.

[130] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1996.

[131] W. Rump. A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter
equation. Adv. Math., 193(1):40–55, 2005.

[132] W. Rump. Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra, 307(1):153–170,
2007.

[133] W. Rump. Classification of cyclic braces. J. Pure Appl. Algebra, 209(3):671–685, 2007.

[134] W. Rump. Classification of cyclic braces, II. Trans. Amer. Math., 372(1):305–328, 2019.

[135] W. Rump. Classification of indecomposable involutive set-theoretic solutions to the Yang–Baxter
equation. Forum Math., 32(4):891–903, 2020.

[136] W. Rump. One-generator braces and indecomposable set-theoretic solutions to the Yang–Baxter
equation. Proc. Edinb. Math. Soc. (2), 63(3):676–696, 2020.

[137] W. Rump. The classification of nondegenerate uniconnected cycle sets. Pacific J. Math., 323(1):205–
221, 2023.

[138] W. Rump. Primes in coverings of indecomposable involutive set-theoretic solutions to the Yang–
Baxter equation. Bull. Belg. Math. Soc. Simon Stevin, 30(2):260–280, 2023.



BIBLIOGRAPHY 221

[139] E. Sa̧siada and P. M. Cohn. An example of a simple radical ring. J. Algebra, 5:373–377, 1967.

[140] E. Schenkman. On the norm of a group. Illinois J. Math., 4:150–152, 1960.

[141] J. Scheuneman. Translations in certain groups of affine motions. Proc. Amer. Math. Soc., 47:223–228,
1975.

[142] D. Segal. The structure of complete left-symmetric algebras. Math. Ann., 293(3):569–578, 1992.

[143] A. Shalev and A. Smoktunowicz. From braces to pre-Lie rings. Proc. Amer. Math. Soc., 152(4):1545–
1559, 2024.

[144] A. Smoktunowicz. A note on set-theoretic solutions of the Yang–Baxter equation. J. Algebra, 500:3–
18, 2018.

[145] A. Smoktunowicz. On Engel groups, nilpotent groups, rings, braces and the Yang–Baxter equation.
Trans. Amer. Math. Soc., 370(9):6535–6564, 2018.

[146] A. Smoktunowicz. A new formula for Lazard’s correspondence for finite braces and pre-Lie algebras.
J. Algebra, 594:202–229, 2022.

[147] A. Smoktunowicz. On the passage from finite braces to pre-Lie rings. Adv. Math., 409:Paper No.
108683, 33, 2022.

[148] A. Smoktunowicz. On the passage from finite braces to pre-Lie rings. arXiv:2202.00085v3, 2022.

[149] A. Smoktunowicz. More on skew braces and their ideals. In Amitsur Centennial Symposium, volume
800 of Contemp. Math., pages 301–308. Amer. Math. Soc., 2024.

[150] A. Smoktunowicz and A. Smoktunowicz. Set-theoretic solutions of the Yang–Baxter equation and
new classes of R-matrices. Linear Algebra Appl., 546:86–114, 2018.

[151] A. Smoktunowicz and L. Vendramin. On skew braces (with an appendix by N. Byott and L. Ven-
dramin). J. Comb. Algebra, 2(1):47–86, 2018.

[152] A. Soloviev. Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation. Math. Res.
Lett., 7(5-6):577–596, 2000.

[153] F. Spaggiari. The mutually normalizing regular subgroups of the holomorph of a cyclic group of
prime power order. Comm. Algebra, 51(4):1623–1653, 2023.

[154] L. Stefanello and S. Trappeniers. On bi-skew braces and brace blocks. J. Pure Appl. Algebra,
227(5):Paper No. 107295, 22, 2023.

[155] L. Stefanello and S. Trappeniers. On the connection between Hopf-Galois structures and skew braces.
Bull. Lond. Math. Soc., 55(4):1726–1748, 2023.

[156] L. Stefanello and C. Tsang. Classification of the types for which every Hopf-Galois correspondence
is bijective. J. Algebra, 664:514–526, 2025.

[157] Y. P. Sysak. The adjoint group of radical rings and related questions. In Ischia group theory 2010,
pages 344–365. World Sci. Publ., Hackensack, NJ, 2012.



222 BIBLIOGRAPHY

[158] S. Trappeniers. On two-sided skew braces. J. Algebra, 631:267–286, 2023.

[159] S. Trappeniers. A Lazard correspondence for post-lie rings and skew braces. arXiv:2406.02475,
pages 1–20, 2024.

[160] C. Tsang. Hopf-Galois structures on cyclic extensions and skew braces with cyclic multiplicative
group. Proc. Amer. Math. Soc. Ser. B, 9:377–392, 2022.

[161] C. Tsang. Non-abelian simple groups which occur as the type of a Hopf-Galois structure on a solvable
extension. Bull. Lond. Math. Soc., 55(5):2324–2340, 2023.

[162] C. Tsang and C. Qin. On the solvability of regular subgroups in the holomorph of a finite solvable
group. Internat. J. Algebra Comput., 30(2):253–265, 2020.

[163] B. Vallette. Homology of generalized partition posets. J. Pure Appl. Algebra, 208(2):699–725, 2007.

[164] L. Vendramin. Problems on skew left braces. Adv. Group Theory Appl., 7:15–37, 2019.

[165] L. Vendramin and O. Konovalov. YangBaxter, combinatorial solutions for the Yang–Baxter equa-
tion, Version 0.10.6. https://gap-packages.github.io/YangBaxter, Jul 2024. GAP
package.

[166] C. Verwimp. Set-theoretic solutions of the Yang–Baxter equation and associated algebraic structures.
PhD thesis, Vrije Universiteit Brussel, 2022.

[167] E. B. Vinberg. The theory of homogeneous convex cones. Trudy Moskov. Mat. Obšč., 12:303–358,
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