
Topics for a bachelor’s thesis

Leandro Vendramin

In this document, you will find a selection of topics suitable for preparing your bachelor’s thesis under my super-
vision. Each topic includes a brief explanation and a few references. If you need more information, please feel free to
contact me.

FIGURE 1. Here is the list of theses I have supervised.

1. The Cauchy—Davenport theorem in finite groups
Let p be a prime number. If A and B are non-empty subsets of the set Z/p of integers modulo p, then |A+B| ≥

min{p, |A|+ |B|− 1}. This sharp bound is known as the Cauchy—Davenport theorem [35]. Remarkably, the theorem
can be generalized to any finite group! Reference: [2, 24].

2. Chebyshev curves and singular points
A classical theorem in the theory of plane curves states an irreducible algebraic curve C of degree n in P2(C) has

at most 1
2 (n− 1)(n− 2) singularities. It is a very natural question to ask whether, for each n, there exists irreducible

curves of degree n that have such maximal number of singularities. A concrete family of curves reaching that maximal
number of singularities can be constructed using Chebyshev polynomials. References: [13, 38].

3. The Schur–Zassenhaus theorem
Given a normal subgroupN ofG, can we reconstruct the structure ofG from that ofN andG/N? In general, no.

However, there is a crucial case where this problem has a beautiful solution: If the orders of N and G/N are coprime,
then G is a semidirect product of N and G/N . This is the celebrated Schur—Zassenhaus theorem. The proof is also
enjoyable. It reduces the problem to the case whereN is abelian; in that case, one uses some basic group cohomology!
Reference: [20].

4. Dedekind-finite rings
A ring is said to be a Dedekind-finite ring if ab = 1 implies ba = 1 for any two elements a and b. Several classes

of rings are known to be Dedekind-finite. There is a beautiful theorem of Kaplansky that states that if an element of a
ring has more than one right inverse, then it in fact has infinitely many. References: [25, 26, 39].

5. It is all about actions
The idea is to study an elementary theorem (yet compelling) proved not so long ago by Deaconescu and Walls

about divisibility relations among the set of orbits of actions by group automorphisms. The theorem is very elementary
and has friendly and highly non-trivial applications. References: [9, 10, 21].
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6. Hall’s Marriage theorem
Suppose that n persons apply to m jobs. Assume that each person applied to some jobs. When do we know that

every person will get a job? Hall’s theorem [17] answers the question. The result has several equivalent formulations
and almost infinitely many applications! References: [11, 18].

7. Derangements
A derangement is a permutation that has no fixed points. Everything about derangements is intriguing, even

counting them! They are intimately connected with many other topics in mathematics, including number theory, game
theory, enumerative combinatorics, and more. References: [5, 42, 43].

8. Permutation polynomials
Let K be a finite field (e.g., the field of integers modulo a prime number p). The project is about “permutation

polynomials”. A permutation polynomial f(X) ∈ K[X] such that the associated function x 7→ f(x) is bijective. In
1966, Carlitz presented a conjecture that motivated around 30 years of intensive research in permutation polynomials.
Although there was an immediate success in some special cases, progress was made slowly over the next three decades
until Carlitz’s conjecture was finally resolved in the affirmative by Fried, Guralnick, and Saxl in 1993. References:
[28, 29, 30].

9. Combinatorial Nullstellensatz
An algebraic approach to combinatorial problems involves capturing some combinatorial structures using poly-

nomials and arguing about their algebraic properties. This has led to simple solutions to several long-standing open
problems. One of the main tools in this context is Alon’s combinatorial NullStellensatz [34]. Examples of problems
that can be solved with Alon’s theorem are the Cauchy—Davenport theorem, and Kakeya’s conjecture for finite fields.
References: [15, 33].

10. Cross products only in dimensions three and seven
This astonishing claim follows quickly from a theorem of Hurwitz about the possibility of writing products of a

sum of squares as a sum of squares. There is a proof of the theorem based on linear algebra [8]. There is another proof
that uses the representation theory of finite groups [19].

11. Zsigmondy’s theorem
Zsigmondy’s theorem is a result that often proves useful in various number theory problems. It proves the existence

of primitive divisors of numbers of the form an−bn. And while this is an interesting result in itself, it is also a powerful
trick for solving mathematical contest problems. Reference: [46].

12. Ore’s conjecture
Is every element of a finite non-abelian simple group a commutator? The statement is Ore’s conjecture (1951).

The conjecture is now a theorem; it was proved in 2010 using sophisticated mathematics. However, it is exciting to
prove the conjecture for the alternating simple groups [36] and with the help of computers for sporadic simple groups.
Reference: [32].

13. The Brauer–Fowler theorem
There are (at most) finitely many simple groups with a centralizer of involutions of order n. The theorem is the

starting point for the classification of simple groups. References: [3, 22].

14. The Golod–Shafarevich theorem
Golod and Shafarevich proved this significant result in 1964. It results in non-commutative algebra, which solves

several challenging problems (e.g., the class field tower problem). In combinatorial group theory, finding a counterex-
ample to the generalized Burnside problem is crucial: For each prime p, there is an infinite groupG generated by three
elements in which each element has order a power of p. Reference: [19].
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15. Kaplansky’s conjectures in group rings
There are several open problems in ring theory known as Kaplansky’s conjectures [23]. Recently, Giles Gardam

found a two-page counterexample [14] to the celebrated conjecture on units of group algebras. This is just the story’s
beginning: several other open problems exist! References: [25, 37].

16. Far beyond the Cayley—Hamilton theorem
The Cayley–Hamilton theorem states that every square matrix satisfies its characteristic equation. The Amitsur–

Levitzki theorem deals with products of 2k matrices of size k2. The theorem is the starting point of a rich theory of
rings with polynomial identities. (Interesting note: As a young man, Levitzki went to Göttingen to study chemistry,
but attending a lecture by Emmy Noether converted him to mathematics.) References: [4, 40].

17. Graph theory and the Amitsur–Levitski theorem
The Amitsur—Levitzki theorem states that∑

σ∈S2n

sign(σ)Aσ(1) · · ·Aσ(2n) = 0

for allA1, . . . , A2n ∈ Mn(C). There is a beautiful graph-theoretic proof of this surprising result. References: [44, 45].

18. Prime number generators and the FRACTRAN programming language
FRACTRAN is a Turing-complete programming language invented by the mathematician John Conway. A FRAC-

TRAN program is an ordered list of positive rational numbers and an initial positive integer. In this fantastic language,
Conway learned how to write an astonishing prime number generator. Surprisingly, this FRACTRAN program is just
a list of 14 rational numbers! Reference: [7, 16].

19. Combinatorial invariants of knots
An elementary way of distinguishing knots is by reasonably coloring their arcs. Conjugacy classes of groups

provide natural colorings. More generally, one can use quandles to determine knots by coloring arcs. These structures
provide algebraic tools that serve as non-commutative colorings. Moreover, if we reasonably weigh each color, we
make our invariants even more potent and discover the homology of quandles! Reference: [6, 12].

20. The Jones polynomial
In 1984 Jones discovered a new invariant of knots. The invariant assigns to each oriented knot (or link) a Lau-

rent polynomial with integer coefficients. This invariant is surprisingly simple and extremely powerful. And Jones’
discovery was crucial in solving some old-and-famous 200-years-old conjectures. References: [1, 27].

21. The (curious history of the) Schwartz–Zippel lemma
The fundamental question of identity testing is: given a polynomial P (X1, . . . , Xn) of degree d, when is this

polynomial identically zero? An interesting approach to this question appeared independently in the works of Schwartz
[41], Zippel [47], De Millo and Lipton [31], and others. According to [30], the first instance of this result was proven
by Ore in 1922. The lemma also appears in the PhD thesis of Daniel Erickson from 1974. This lemma now has several
applications in pure mathematics.
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