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Key points assuming char k = 0.

1. If H is a fin.-dim. cocommutative Hopf algebra, then H ' kG.

2. If G is a finite group, then kG
kGYD is semisimple.

3. If (V, cq) is a braided vector space of diagonal type, then (the

connected components of) q ∈ list of [H].

4. If G is a finite simple group, then kG collapses.

5. If G is a finite group, V ∈ kG
kGYD and R is a finite-dimensional

pre-Nichols algebra of V , then R ' B(V ).
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1. Cocommutative fin.-dim. Hopf algebras, char k = p > 0.

Example. H = k[T ] is a Hopf algebra with ∆(T ) = T ⊗1+1⊗T .

Lemma. P(H) = ⊕n≥0 kT pn.

Proof. If A is a commutative k-algebra and a, b ∈ A, then

(a + b)p
n

= ap
n

+ bp
n

for all n ≥ 0. Hence ⊇; ⊆ follows from the

Newton’s binomial formula and the fact p|
(
n
k

)
=⇒ n = pj.

Corollary. B(n) = k[T ]/〈T pn〉 is a cocommutative Hopf algebra

of dimension pn with coradical k and P(B(n)) = ⊕0≤j≤n−1 kT pj.
Thus, B(n) is Nichols only if n = 1; B(1) ' B(V, τ) where

dimV = 1 and τ is the flip.

Thus 1, 3, 5. do not hold.
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Example. Let R be the graded dual of k[T ], with basis (ej)j≥0,

〈ej, T k〉 = δj,k. Then 〈ej · eh, T k〉 = 〈ej ⊗ eh,∆(T k)〉

= 〈ej ⊗ eh,
∑

0≤i≤k

(k
i

)
T i ⊗ T k−i〉 =

∑
0≤i≤k

(k
i

)
δj,iδh,k−i = δj+h,k

(k
j

)
.

Hence ej · eh =
(
j+h
j

)
ej+h.

Exercise. ∆(ej) =
∑

0≤i≤j ei ⊗ ej−i.
Show that the subalgebra of R generated by e1 is a Nichols

algebra.

Compute all Hopf subalgebras of R.

Exercise. Let N ∈ Z>0; H = k[T1, . . . , TN ] is a Hopf algebra with

∆(Tj) = Tj ⊗ 1 + 1 ⊗ Tj. Extend the discussion above to this

example.
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Example. A restricted Lie algebra is a pair (g, ( )[p]), where g is

a Lie algebra and ( )[p] : g → g is a map, called the p-operation,

that satisfies

(λx)[p] = λpx[p], ad
x[p] = (adx)p, (x+ y)[p] = x[p] + y[p] +

∑
i

si(x, y),

for all x, y ∈ g, λ ∈ k. The restricted enveloping algebra of

(g, ( )[p]) is

u(g) := U(g)/〈xp − x[p] : x ∈ g〉,

where U(g) is the enveloping algebra of g. The Hopf algebra u(g)

has coradical k; if dim g <∞, then

dim u(g) = (dim g)p <∞.

There are Lie algebras without p-structure but they can be em-

bedded in restricted Lie algebras.
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But there are more cocommutative finite-dimensional, even con-

nected, Hopf algebras.

2. Semisimplicity of kG
kGYD, G a finite group.

It is known that kG
kGYD is semisimple if and only if p 6 ||G|. Indeed,

kG
kGYD is semisimple if and only if kGg is semisimple for all g ∈ G.

If kG
kGYD is not semisimple, then any M ∈ kG

kGYDfd is a sum of

indecomposables, but these usually can not be classified (wild

representation type).
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Still, one may try to classify the simple objects in kG
kGYD; since

the socle of an indecomposable is simple, one may hope for

some control. However the determination of the simple objects

in RepG is usually much harder than in characteristic 0.
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The restricted Jordan plane (p odd). Let V(1,2) be a braided
vector space with basis {x, y} and braiding given by

c(x⊗ x) = x⊗ x, c(y ⊗ x) = x⊗ y,
c(x⊗ y) = (y + x)⊗ x, c(y ⊗ y) = (y + x)⊗ y.

Actually V = V(1,2) ∈ kZ/p
kZ/pYD: if g is generator of Z/p, take

V = Vg and let g act on V by a Jordan block.

Theorem. (Cibils, Lauve & Witherspoon) The Nichols algebra B(V )
is the quotient of T (V ) by the ideal generated by

xp, yp, yx− xy +
1

2
x2.

That is, B(V ) ' J/〈xp, yp〉, where J = T (V )/〈yx−xy+ 1
2x

2〉; this
is the restricted Jordan plane.
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The super Jordan plane (& its restricted version in odd char).
Assume that char k 6= 2. Let V(−1,2) be a braided vector space
with basis {x, y} and braiding

c(x⊗ x) = −x⊗ x, c(y ⊗ x) = −x⊗ y,
c(x⊗ y) = (−y + x)⊗ x, c(y ⊗ y) = (−y + x)⊗ y.

Let x21 = x2x1 + x1x2. The super Jordan plane is the algebra

sJ = k〈x1, x2|x2
1, x2x21 − x21x2 − x1x21〉

Theorem. (A.–Angiono–Heckenberger)

• If char k = 0, then B(V ) ' sJ. (and V ∈ kZ
kZYD).

• If char k = p > 2, then B(V ) ' sJ/〈x2p
2 , x

p
21〉, V ∈

kZ/2p
kZ/2pYD and

dim B(V ) = 4p2. This is the restricted super Jordan plane in
characteristic p.
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More generally, let V(ε, `), where ε ∈ k× and ` ∈ Z≥2, is a braided

vector space with basis (xi)i∈I` such that for i, j ∈ I`, 1 < j:

c(xi⊗x1) = εx1⊗xi, c(xi⊗xj) = (εxj + xj−1)⊗xi;

this is called a block. It can be realized in kZ
kZYD where for a

generator g of Z, V(ε, `) = V(ε, `)g, and g acts by a Jordan block.

Proposition, p odd. (A.–Angiono–Heckenberger)

dim B(V(ε,2)) <∞ if and only if ε = ±1.

Corollary. If ` > 2 and ε 6= ±1, then dim B(V(ε, `)) =∞.

Problem. If ` > 2 and ε = ±1, then dim B(V(ε, `)) =?

Problem. When GK-dim B(V(ε, `)) <∞?
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The Nichols algebra B(Lq(1,G )).. Let q ∈ k×, a ∈ Fp× and

r ∈ {1− p,2− p, . . . ,−2,−1} such that r ≡ 2a mod p.

The ghost is G := −r ∈ {1, . . . , p− 1}; since p is odd, G gives a.

The braided vector space Lq(1,G ) has basis b = {x1, y1, x2} and

(c(b⊗ b′))b,b′∈b =

 x1 ⊗ x1 (y1 + x1)⊗ x1 q x2 ⊗ x1
x1 ⊗ y1 (y1 + x1)⊗ y1 q x2 ⊗ y1

q−1x1 ⊗ x2 q−1(y1 + ax1)⊗ x2 x2 ⊗ x2

 .

Thus V1 := kx1 + ky1 ' V(1,2) and V2 := kx2 satisfy

c : Vi ⊗ Vj = Vj ⊗ Vi, i, j ∈ {1,2}.

Hence V1 and V2 are braided subspaces of V .
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Set z0 := x2, zn+1 := y1zn − qzny1, n > 0.

Lemma. [A-Angiono-Heckenberger] The Nichols algebra B(Lq(1,G ))

is generated by x1, y1, x2 with relations

y1x1 − x1y1 + 1
2x

2
1, x

p
1, y

p
1.

x1x2 = q x2x1,

z1+G = 0,

ztzt+1 = q−1 zt+1zt, 0 ≤t < G ,

z
p
t = 0, 0 ≤t ≤ G .

It has dim B(Lq(1,G )) = pG +3; indeed a PBW-basis is

B = {xm1
1 y

m2
1 z

nG
G . . . z

n1
1 z

n0
0 : 0 ≤ mi, nj < p}.
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3. Finite dimensional Nichols algebras of diagonal type.

Rank 2 [Heckenberger-Wang]: classified (5 tables for p = 2,3,5,7,
> 7).

Rank 3 [Wang]: classified (3 tables for p = 2,3, > 3).

Rank 4 [Wang]: classified.

Rank 5, 6, 7 [Yuan-Qian-Wang]: classified.

Rank > 7: open?
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Dynkin diagrams, p = 2 fixed parameters

1
q
◦ r◦ q, r ∈ k∗

2
q
◦ q−1 q

◦ q ∈ k∗ \ {1}

3
q
◦ q−1 1◦ 1◦ q 1◦ q ∈ k∗ \ {1}

4
q
◦ q−2 q2

◦ q ∈ k∗ \ {1}

5
q
◦ q−2 1◦

q−1

◦ q2 1◦ q ∈ k∗ \ {1}

6
ζ
◦ q−1 q

◦
ζ
◦ ζ−1q ζq−1

◦ ζ ∈ G′3, q ∈ k∗ \ {1, ζ, ζ2}

7
ζ
◦ ζ 1◦

ζ−1

◦ ζ−1 1◦ ζ ∈ G′3
10

ζ2

◦ ζ 1◦
ζ3

◦ ζ−1 1◦
ζ3

◦ ζ−2 ζ
◦ ζ ∈ G′9

11
q
◦ q−3 q3

◦ q ∈ k∗ \ {1}, q /∈ G′3
14

ζ
◦ ζ2 1◦

ζ−2

◦ ζ−2 1◦ ζ ∈ G′5
16

ζ5

◦ ζ−3 ζ
◦

ζ5

◦ ζ−2 1◦
ζ3

◦ ζ2 1◦
ζ3

◦ ζ4 ζ−4

◦ ζ ∈ G′15

17
ζ
◦ ζ−3 1◦

ζ−2

◦ ζ3 1◦ ζ ∈ G′7
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Dynkin diagrams, p = 3. fixed parameters

1 a aq r q, r ∈ k∗

2
q
◦ q−1 q

◦ q ∈ k∗ \ {1}

3
q
◦ q−1 −1◦ −1◦ q −1◦ q ∈ k∗ \ {−1,1}

4
q
◦ q−2 q2

◦ q ∈ k∗ \ {−1,1}

5
q
◦ q−2 −1◦

−q−1

◦ q2 −1◦ q ∈ k∗ \ {−1,1}, q /∈ G′4
6′

1◦ q q−1

◦ 1◦ q−1 q
◦ q ∈ k∗ \ {1,−1}

6′′′
1◦ −1 −1◦

9′
ζ
◦ ζ −1◦ 1◦ −ζ −1◦ 1◦ ζ 1◦ ζ ∈ G′4

11
q
◦ q−3 q3

◦ q ∈ k∗ \ {−1,1}

12
ζ
◦ −ζ −1◦

ζ2

◦ −ζ
−1−1◦

ζ2

◦ ζ ζ−1

◦ ζ ∈ G′8
13′

−ζ
◦ ζ−1 −1◦ 1◦ ζ −1◦ 1◦ ζ−1 −ζ2

◦
−ζ−1

◦ −ζ −ζ2

◦ ζ ∈ G′8
14

ζ
◦ ζ2 −1◦

−ζ−2

◦ ζ−2 −1◦ ζ ∈ G′5
15

ζ
◦ ζ−3 −1◦

−ζ−2

◦ ζ3 −1◦
−ζ−2

◦ −ζ
3 −1◦

−ζ
◦ −ζ

−3−1◦ ζ ∈ G′20

16′
1◦ −ζ

−1−ζ2

◦ 1◦ −ζ −1◦
ζ
◦ −ζ

−1−1◦
ζ
◦ −ζ

3−ζ−3

◦ ζ ∈ G′5
17

−ζ
◦ −ζ

−3−1◦
−ζ−2

◦ −ζ
3 −1◦ ζ ∈ G′7
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4. No finite group collapses in char p > 0.

Let G be a finite group and ρ ∈ IrrG of dimension d.

Then M = M(e, ρ) ∈ kG
kGYD is simple and has dimension d.

Notice that the braiding is the usual flip τ .

Hence B(M(e, ρ)) ' S(M)/〈Mp〉 has dimension pd and

H := B(M(e, ρ))#kG ' B(M(e, ρ)) o kG

is a pointed Hopf algebra with G(H) ' G and dimH = pd|G|.
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Similarly, if g ∈ G, O = OGg is a trivial rack and ε = trivial

representation of Gg, then M = M(O, ε) ∈ kG
kGYD is simple and

has dimension |O|.

Again, the braiding is the usual flip τ .

Hence B(M(O, ε)) ' S(M)/〈Mp〉 has dimension p|O| and

H := B(M(O, ε))#kG

is a pointed Hopf algebra with G(H) ' G and dimH = p|O||G|.
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Finally, there are partial results on pointed Hopf algebras over

abelian groups that have finite GK-dim .

One faces obstacles similar to those in positive characteristic.

Actually, the results in the former setting inspired results in the

latter.
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