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Key points assuming chark = 0.

1. If H is a fin.-dim. cocommutative Hopf algebra, then H ~ kG.

2. If G is a finite group, then F&YD is semisimple.

3. If (V,c%) is a braided vector space of diagonal type, then (the
connected components of) q € list of [H].

4. If G is a finite simple group, then kG collapses.

5. If G is a finite group, V € f&YD and R is a finite-dimensional
pre-Nichols algebra of V, then R~ ZA(V).



1. Cocommutative fin.-dim. Hopf algebras, chark = p > 0.

Example. H = k[T] is a Hopf algebra with A(T) =T®14+1QT.

Lemma. P(H) = @,>okT?".

Proof. If A is a commutative k-algebra and a,b € A, then

(a + b)P" = aP" 4+ bP" for all n > 0. Hence D; C follows from the
Newton’'s binomial formula and the fact p|(2’) = n=7p.

Corollary. B(n) = k[T]/(Tp") is @ cocommutative Hopf algebra
of dimension p™ with coradical k and P(B(n)) = ©o<j<n_1 kTP .
Thus, B(n) is Nichols only if n = 1; B(1) ~ £A(V,7) where
dimV =1 and 7 is the flip.

Thus 1, 3, 5. do not hold.



Example. Let R be the graded dual of k[T], with basis (e;), >0,
<€j,Tk> = 0j k- Then <€J . eh,Tk> = <€] X ey, A(Tk»

=(ej®en, ). <§>Ti®Tk_i>: 2 (l;)(sj»i‘shﬁ—i: J+h’“(k)
0<i<k 0<i<k /

i+h
Hence e, - ej, = (JJ; )ej_|_h.
EXercise. A(Gj) = ZOSZSJ e; X €j—i-
Show that the subalgebra of 'R generated by e; is a Nichols

algebra.
Compute all Hopf subalgebras of R.

Exercise. Let N € Z~q; H =Kk[T},...,Ty] is @ Hopf algebra with
A(T;) =T, ®1+1®T,. Extend the discussion above to this
example.



Example. A restricted Lie algebra is a pair (g, ( )IP1), where g is
a Lie algebra and ( )[p] . g — g is a map, called the p-operation,
that satisfies

Q)P = \PelPl ad )= (ada)?, (2 + )P = 2Pl 4y lP) 4+ 57 5:(a, ),
for all z,y € g, A € k. The restricted enveloping algebra of
CROLOEE

u(g) = U(g)/(zP — 2Pl : z e g),

where U(g) is the enveloping algebra of g. The Hopf algebra u(g)
has coradical k; if dimg < oo, then

dimu(g) = (dimg)? < .

There are Lie algebras without p-structure but they can be em-
bedded in restricted Lie algebras.



But there are more cocommutative finite-dimensional, even con-
nected, Hopf algebras.

2. Semisimplicity of ﬁggyp, G a finite group.
It is known that f&YVD is semisimple if and only if p }|G|. Indeed,
Egyp is semisimple if and only if kGY9 is semisimple for all g € G.

If <5YD is not semisimple, then any M € {&YD, is a sum of
indecomposables, but these usually can not be classified (wild
representation type).



Still, one may try to classify the simple objects in Egyp; since
the socle of an indecomposable is simple, one may hope for
some control. However the determination of the simple objects
in Rep G is usually much harder than in characteristic O.



The restricted Jordan plane (p odd). Let V(1,2) be a braided
vector space with basis {z,y} and braiding given by

clr®z) =R x, cly®z) =z Qy,
c(r®y) = (y+=z)Qm, c(y®y) =(wW+=z)Qy.

Actually V = V(1,2) € /PyD: if g is generator of Z/p, take
V =V, and let g act on V by a Jordan block.

Theorem. (Cibils, Lauve & Witherspoon) The Nichols algebra Z(V)
is the quotient of T'(V') by the ideal generated by

1
P, yP, yw—:vy+§w2-

That is, (V) ~ J/{(«P, yP), where J = T(V)/(yx—a:y—l—%x%; this
IS the restricted Jordan plane.



The super Jordan plane (& its restricted version in odd char).
Assume that chark %= 2. Let V(—1,2) be a braided vector space
with basis {z,y} and braiding

cr®@x) =—axRx, cly@zr) = -z Q v,
c(z®y) =(-y+z)Quz, c(y®y) =(-y+z)Qy.
Let o1 = xox1 + x125. The super Jordan plane is the algebra

. 2
sJ = ]k(xl, $2|$1, X211 — 21X — $1x21>

Theorem. (A.—Angiono—Heckenberger)
e If chark =0, then Z(V) ~sJ. (and V € (VD).

o If chark =p > 2, then B(V) ~ sJ/(x3",a%;), V € ;) 2PYD and

dim Z(V) = 4p2. This is the restricted super Jordan plane in
characteristic p.



More generally, let V(e £), where e € k* and £ € Z>, is a braided
vector space with basis (z;);er, such that for ¢,5 € I, 1 < j:

c(r;®r1) = ex1®;, c(r;®z;) = (exj + xj_1)Qx;;

this is called a block. It can be realized in YD where for a
generator g of Z, V(e, £) = V(e £)g, and g acts by a Jordan block.

Proposition, p odd. (A.—Angiono—Heckenberger)
dim Z(V(e,2)) < oo if and only if e = £1.

Corollary. If £ > 2 and ¢ = £+1, then dimZ(V(e, £)) = cc.
Problem. If £ > 2 and e = £+1, then dimZ(V (e, ¢)) =7

Problem. When GK-dim Z(V(e, £)) < co?
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The Nichols algebra #(£,(1,%)).. Let g € k™, a € F,* and

re{l—-—p,2—p,...,—2,—1} such that r =2a mod p.
The ghost is 9 .= —r e {1,...,p— 1}, since p is odd, ¥ gives a.

The braided vector space £4(1,%) has basis b = {z1,y1,z2} and

, ] ® 1 (y1 +x1)®x1  gqaro®x
(c(O@V)ppwes = | 1®@y1 (y1+21)Q®y1  qz2®uy1
¢ lri®x ¢ l(yr+ary) @ 20 @ 20

Thus V] :=kx1 + ky; ~V(1,2) and V5 := kxo satisfy

Hence V7 and V5 are braided subspaces of V.
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Set zp ‘=2, zp41 ‘= Y12n —qzny1, n > 0.

Lemma. [A-Angiono-Heckenberger] The Nichols algebra Z(£4(1,9))
is generated by x1,y1, x> With relations

Y1r1 — T1Y1 + %w%, .y
T1T2 = q X217,
2149 = 0,
ZtZp41 = g ? 2412t 0<t<¥,
zy = 0, 0<t<9¥.

It has dim Z(£,(1,%)) = p?13; indeed a PBW-basis is
B = {leyTQZ;g o 2717’1280 10 <my,n; < p}.
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3. Finite dimensional Nichols algebras of diagonal type.

Rank 2 [Heckenberger-Wang]: classified (5 tables for p = 2,3,5,7,
> 7).

Rank 3 [wang]: classified (3 tables for p = 2,3, > 3).
Rank 4 [wang]: classified.
Rank 5, 6, 7 [Yuan-Qian-Wang]: classified.

Rank > 7: open?
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Dynkin diagrams, p =2 fixed parameters
1 5 5 g, 7 €k*
2 §a 8 g € k*\ {1}
3 95 596 g €k*\ {1}
4 S g€k \ {1}
5 §15 %3 g €k \ {1}
6 §4g s g CeGh g ek \{1,(,¢%
7 §5 8 %<3 ¢ € G
I S K SN ¢ e G,
§°% g€k \{1}, ¢ ¢ G4
§ 8 G (e Gy
CoScor el gag cear,
§2 8 Gl Ceq,
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Dynkin diagrams, p = 3.

fixed parameters

1 qr q,r € k*
2| 648 g €k \ {1}
3|84 oL g€k \{-1,1}
4] §a2 geki\{-1,1}
5| & Le gek\{-1,1}, ¢¢ G
6| 6—L% 548 geki\{1,-1}
6" | 6—L7¢
o 63 §=C3 458 (ed,
11 | % gek\{-1,1}
12| 6535 6279 $ % ¢ eay
13| T F A CF 3 Y ceay
14 § ¢ _872 S ¢ €GL
15| 609 T8 Lt g ¢ € Gy
16/ | 555 o=t §=F ¢ € Gy
17 | o= 8 CeG




4. No finite group collapses in charp > 0.

Let G be a finite group and p € Irr G of dimension d.
Then M = M(e, p) € F&YD is simple and has dimension d.

Notice that the braiding is the usual flip 7.
Hence #(M(e,p)) ~ S(M)/{MP) has dimension p? and

H = B(M(e, p))#kG ~ B(M(e, p)) x kG
is a pointed Hopf algebra with G(H) ~ G and dim H = p4|G|.
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Similarly, if ¢ € G, O = Og is a trivial rack and & = trivial
representation of G9, then M = M(O,¢) € (GYD is simple and
has dimension |O].

Again, the braiding is the usual flip 7.
Hence B(M(O,¢e)) ~ S(M)/{(MP) has dimension pl®l and

H = AB(M(O,e¢e))#kG
is a pointed Hopf algebra with G(H) ~ G and dim H =p|O||G|.
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Finally, there are partial results on pointed Hopf algebras over
abelian groups that have finite GK-dim..

One faces obstacles similar to those in positive characteristic.

Actually, the results in the former setting inspired results in the
latter.
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