Pointed Hopf algebras over simple groups VIII. Pointed Hopf algebras in positive characteristic

Nicolás Andruskiewitsch
CIEM-CONICET, Córdoba, Argentina
Department of Mathematics and Data Science,
Vrije Universiteit Brussel, Belgium

VUB-Leerstoel 2025-2026

Vrije Universiteit Brussel, October 25, 2025.

Key points assuming char k = 0.

- **1.** If H is a fin.-dim. cocommutative Hopf algebra, then $H \simeq \Bbbk G$.
- **2.** If G is a finite group, then ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ is semisimple.
- **3.** If $(V, c^{\mathfrak{q}})$ is a braided vector space of diagonal type, then (the connected components of) $\mathfrak{q} \in \mathsf{list}$ of [H].
- **4.** If G is a finite simple group, then kG collapses.
- **5.** If G is a finite group, $V \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ and R is a finite-dimensional pre-Nichols algebra of V, then $R \simeq \mathscr{B}(V)$.

1. Cocommutative fin.-dim. Hopf algebras, char k = p > 0.

Example. $H = \mathbb{k}[T]$ is a Hopf algebra with $\Delta(T) = T \otimes 1 + 1 \otimes T$.

Lemma. $\mathcal{P}(H) = \bigoplus_{n>0} \mathbb{k} T^{p^n}$.

Proof. If A is a commutative k-algebra and $a,b\in A$, then $(a+b)^{p^n}=a^{p^n}+b^{p^n}$ for all $n\geq 0$. Hence $\supseteq;\subseteq$ follows from the Newton's binomial formula and the fact $p|\binom{n}{k}\Longrightarrow n=p^j$.

Corollary. $\mathcal{B}(n) = \mathbb{k}[T]/\langle T^{p^n} \rangle$ is a cocommutative Hopf algebra of dimension p^n with coradical \mathbb{k} and $\mathcal{P}(\mathcal{B}(n)) = \bigoplus_{0 \leq j \leq n-1} \mathbb{k} T^{p^j}$. Thus, $\mathcal{B}(n)$ is Nichols only if n = 1; $\mathcal{B}(1) \simeq \mathcal{B}(V, \tau)$ where $\dim V = 1$ and τ is the flip.

Thus **1**, **3**, **5**. do not hold.

Example. Let \mathcal{R} be the graded dual of $\mathbb{k}[T]$, with basis $(e_j)_{j\geq 0}$, $\langle e_j, T^k \rangle = \delta_{j,k}$. Then $\langle e_j \cdot e_h, T^k \rangle = \langle e_j \otimes e_h, \Delta(T^k) \rangle$

$$= \langle e_j \otimes e_h, \sum_{0 \le i \le k} {k \choose i} T^i \otimes T^{k-i} \rangle = \sum_{0 \le i \le k} {k \choose i} \delta_{j,i} \delta_{h,k-i} = \delta_{j+h,k} {k \choose j}.$$

Hence $e_j \cdot e_h = {j+h \choose j} e_{j+h}$.

Exercise. $\Delta(e_j) = \sum_{0 \le i \le j} e_i \otimes e_{j-i}$.

Show that the subalgebra of $\mathcal R$ generated by e_1 is a Nichols algebra.

Compute all Hopf subalgebras of \mathcal{R} .

Exercise. Let $N \in \mathbb{Z}_{>0}$; $H = \mathbb{k}[T_1, \dots, T_N]$ is a Hopf algebra with $\Delta(T_j) = T_j \otimes 1 + 1 \otimes T_j$. Extend the discussion above to this example.

Example. A restricted Lie algebra is a pair $(\mathfrak{g}, ()^{[p]})$, where \mathfrak{g} is a Lie algebra and $()^{[p]}: \mathfrak{g} \to \mathfrak{g}$ is a map, called the p-operation, that satisfies

$$(\lambda x)^{[p]} = \lambda^p x^{[p]}, \text{ ad}_{x^{[p]}} = (\text{ad}_x)^p, (x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_i s_i(x,y),$$

for all $x,y \in \mathfrak{g}$, $\lambda \in \mathbb{k}$. The restricted enveloping algebra of $(\mathfrak{g},()^{[p]})$ is

$$\mathfrak{u}(\mathfrak{g}) := U(\mathfrak{g})/\langle x^p - x^{[p]} : x \in \mathfrak{g} \rangle,$$

where $U(\mathfrak{g})$ is the enveloping algebra of \mathfrak{g} . The Hopf algebra $\mathfrak{u}(\mathfrak{g})$ has coradical \mathbb{k} ; if dim $\mathfrak{g} < \infty$, then

$$\dim\mathfrak{u}(\mathfrak{g})=(\dim\mathfrak{g})^p<\infty.$$

There are Lie algebras without p-structure but they can be embedded in restricted Lie algebras.

But there are more cocommutative finite-dimensional, even connected, Hopf algebras.

2. Semisimplicity of ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$, G a finite group.

It is known that ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ is semisimple if and only if $p \not||G|$. Indeed, ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ is semisimple if and only if ${}^{\Bbbk G}_{\mathfrak{Z}}\mathcal{YD}$ is semisimple for all $g \in G$.

If ${}_{\Bbbk G}^{KG}\mathcal{YD}$ is not semisimple, then any $M \in {}_{\Bbbk G}^{KG}\mathcal{YD}_{fd}$ is a sum of indecomposables, but these usually can not be classified (wild representation type).

Still, one may try to classify the simple objects in ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$; since the socle of an indecomposable is simple, one may hope for some control. However the determination of the simple objects in Rep G is usually much harder than in characteristic 0.

The restricted Jordan plane (p odd). Let V(1,2) be a braided vector space with basis $\{x,y\}$ and braiding given by

$$c(x \otimes x) = x \otimes x,$$
 $c(y \otimes x) = x \otimes y,$ $c(x \otimes y) = (y + x) \otimes x,$ $c(y \otimes y) = (y + x) \otimes y.$

Actually $V=\mathcal{V}(1,2)\in \frac{\Bbbk\mathbb{Z}/p}{\Bbbk\mathbb{Z}/p}\mathcal{Y}\mathcal{D}$: if g is generator of \mathbb{Z}/p , take $V=V_g$ and let g act on V by a Jordan block.

Theorem. (Cibils, Lauve & Witherspoon) The Nichols algebra $\mathcal{B}(V)$ is the quotient of T(V) by the ideal generated by

$$x^p, y^p, yx - xy + \frac{1}{2}x^2.$$

That is, $\mathscr{B}(V) \simeq J/\langle x^p, y^p \rangle$, where $J = T(V)/\langle yx - xy + \frac{1}{2}x^2 \rangle$; this is the *restricted* Jordan plane.

The super Jordan plane (& its restricted version in odd char).

Assume that char $\mathbb{k} \neq 2$. Let $\mathcal{V}(-1,2)$ be a braided vector space with basis $\{x,y\}$ and braiding

$$c(x \otimes x) = -x \otimes x, \qquad c(y \otimes x) = -x \otimes y,$$

$$c(x \otimes y) = (-y + x) \otimes x, \qquad c(y \otimes y) = (-y + x) \otimes y.$$

Let $x_{21} = x_2x_1 + x_1x_2$. The super Jordan plane is the algebra

$$sJ = \mathbb{k}\langle x_1, x_2 | x_1^2, x_2 x_{21} - x_{21} x_2 - x_1 x_{21} \rangle$$

Theorem. (A.–Angiono–Heckenberger)

- If char $\mathbb{k} = 0$, then $\mathscr{B}(V) \simeq sJ$. (and $V \in \mathbb{k}\mathbb{Z} \mathscr{YD}$).
- If $\operatorname{char} \mathbb{k} = p > 2$, then $\mathscr{B}(V) \simeq sJ/\langle x_2^{2p}, x_{21}^p \rangle$, $V \in \mathbb{k}\mathbb{Z}/2p \mathcal{YD}$ and $\dim \mathscr{B}(V) = 4p^2$. This is the restricted super Jordan plane in characteristic p.

More generally, let $\mathcal{V}(\epsilon,\ell)$, where $\epsilon \in \mathbb{k}^{\times}$ and $\ell \in \mathbb{Z}_{\geq 2}$, is a braided vector space with basis $(x_i)_{i \in \mathbb{I}_{\ell}}$ such that for $i,j \in \mathbb{I}_{\ell}$, 1 < j:

$$c(x_i \otimes x_1) = \epsilon x_1 \otimes x_i, \qquad c(x_i \otimes x_j) = (\epsilon x_j + x_{j-1}) \otimes x_i;$$

this is called a *block*. It can be realized in $\mathbb{R}^{\mathbb{Z}}_{\mathbb{R}}\mathcal{YD}$ where for a generator g of \mathbb{Z} , $\mathcal{V}(\epsilon,\ell) = \mathcal{V}(\epsilon,\ell)_g$, and g acts by a Jordan block.

Proposition, p **odd.** (A.-Angiono-Heckenberger) $\dim \mathcal{B}(\mathcal{V}(\epsilon,2)) < \infty$ if and only if $\epsilon = \pm 1$.

Corollary. If $\ell > 2$ and $\epsilon \neq \pm 1$, then dim $\mathscr{B}(\mathcal{V}(\epsilon, \ell)) = \infty$.

Problem. If $\ell > 2$ and $\epsilon = \pm 1$, then dim $\mathscr{B}(\mathcal{V}(\epsilon, \ell)) = ?$

Problem. When GK-dim $\mathscr{B}(\mathcal{V}(\epsilon,\ell)) < \infty$?

The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$.. Let $q \in \mathbb{k}^{\times}$, $a \in \mathbb{F}_p^{\times}$ and $r \in \{1-p,2-p,\ldots,-2,-1\}$ such that $r \equiv 2a \mod p$. The *ghost* is $\mathscr{G} := -r \in \{1,\ldots,p-1\}$; since p is odd, \mathscr{G} gives a.

The braided vector space $\mathfrak{L}_q(1,\mathscr{G})$ has basis $b = \{x_1,y_1,x_2\}$ and

$$(c(b \otimes b'))_{b,b' \in b} = \begin{pmatrix} x_1 \otimes x_1 & (y_1 + x_1) \otimes x_1 & q x_2 \otimes x_1 \\ x_1 \otimes y_1 & (y_1 + x_1) \otimes y_1 & q x_2 \otimes y_1 \\ q^{-1}x_1 \otimes x_2 & q^{-1}(y_1 + ax_1) \otimes x_2 & x_2 \otimes x_2 \end{pmatrix}.$$

Thus $V_1:=\Bbbk x_1+\Bbbk y_1\simeq \mathcal{V}(1,2)$ and $V_2:=\Bbbk x_2$ satisfy $c:V_i\otimes V_j=V_j\otimes V_i, \qquad \qquad i,j\in\{1,2\}.$

Hence V_1 and V_2 are braided subspaces of V.

Set $z_0 := x_2$, $z_{n+1} := y_1 z_n - q z_n y_1$, n > 0.

Lemma. [A-Angiono-Heckenberger] The Nichols algebra $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G}))$ is generated by x_1,y_1,x_2 with relations

$$y_1 x_1 - x_1 y_1 + \frac{1}{2} x_1^2,$$
 $x_1^p, y_1^p.$
 $x_1 x_2 = q x_2 x_1,$
 $z_{1+\mathscr{G}} = 0,$ $0 \le t < \mathscr{G},$
 $z_t z_{t+1} = q^{-1} z_{t+1} z_t,$ $0 \le t \le \mathscr{G}.$

It has dim $\mathscr{B}(\mathfrak{L}_q(1,\mathscr{G})) = p^{\mathscr{G}+3}$; indeed a PBW-basis is

$$B = \{x_1^{m_1} y_1^{m_2} z_{\mathscr{G}}^{n_{\mathscr{G}}} \dots z_1^{n_1} z_0^{n_0} : 0 \le m_i, n_j < p\}.$$

3. Finite dimensional Nichols algebras of diagonal type.

Rank 2 [Heckenberger-Wang]: classified (5 tables for p = 2, 3, 5, 7, > 7).

Rank 3 [Wang]: classified (3 tables for p = 2, 3, > 3).

Rank 4 [Wang]: classified.

Rank 5, 6, 7 [Yuan-Qian-Wang]: classified.

Rank > 7: open?

	Dynkin diagrams, $p = 2$	fixed parameters
1	$egin{pmatrix} q & r \ O & O \end{matrix}$	$q,r \in \mathbb{k}^*$
2	$ \overset{q}{\circ} \overset{q^{-1}}{\longrightarrow} \overset{q}{\circ} $	$q \in \mathbb{k}^* \setminus \{1\}$
3		$q \in \Bbbk^* \setminus \{1\}$
4	$ \begin{array}{c} q q^{-2} q^2 \\ O & O \end{array} $	$q \in \mathbb{k}^* \setminus \{1\}$
5	$ \overset{q}{\circ} \overset{q^{-2}}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}$	$q \in \Bbbk^* \setminus \{1\}$
6		$\zeta \in G_3', \ q \in \mathbb{k}^* \setminus \{1, \zeta, \zeta^2\}$
7		$\zeta \in G_3'$
10		$\zeta \in G_9'$
11	$ \begin{array}{c} q & q^{-3} & q^3 \\ O & & O \end{array} $	$q \in \mathbb{k}^* \setminus \{1\}, \ q \notin G_3'$
14	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G_5'$
16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G_{15}'$
17	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G_7'$

	Dynkin diagrams, $p = 3$.	fixed parameters
1	gr	$q,r \in \mathbb{k}^*$
2	$ \begin{array}{c} q & q^{-1} & q \\ 0 & & 0 \end{array} $	$q \in \mathbb{k}^* \setminus \{1\}$
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \in \mathbb{k}^* \setminus \{-1,1\}$
4	$ \begin{array}{c} q q^{-2} q^2 \\ 0 0 \end{array} $	$q \in \mathbb{k}^* \setminus \{-1,1\}$
5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \in \mathbb{k}^* \setminus \{-1,1\}$, $q \notin G_4'$
6′	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$q \in \mathbb{k}^* \setminus \{1, -1\}$
6′′′	$ \begin{array}{c c} 1 & -1 & -1 \\ 0 & -1 & 0 \end{array} $	
9′		$\zeta \in G_4'$
11	$ \begin{array}{c c} q & q^{-3} & q^3 \\ 0 & & 0 \end{array} $	$q \in \mathbb{k}^* \setminus \{-1,1\}$
12		$\zeta \in G_8'$
13′	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G_8'$
14		$\zeta \in G_5'$
15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G'_{20}$
16′	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in G_5'$ 15
17	$ \stackrel{-\zeta}{\circ} \stackrel{-\zeta^{-3}-1}{\circ} \stackrel{-\zeta^{-2}}{\circ} \stackrel{-\zeta^{-2}}{\circ} \stackrel{-1}{\circ} $	$\zeta \in G_7'$

4. No finite group collapses in char p > 0.

Let G be a finite group and $\rho \in \operatorname{Irr} G$ of dimension d. Then $M = M(e, \rho) \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ is simple and has dimension d.

Notice that the braiding is the usual flip τ .

Hence $\mathscr{B}(M(e,\rho)) \simeq S(M)/\langle M^p \rangle$ has dimension p^d and

$$H := \mathcal{B}(M(e,\rho)) \# \mathbb{k}G \simeq \mathcal{B}(M(e,\rho)) \rtimes \mathbb{k}G$$

is a pointed Hopf algebra with $G(H) \simeq G$ and $\dim H = p^d |G|$.

Similarly, if $g \in G$, $\mathcal{O} = \mathcal{O}_g^G$ is a trivial rack and $\varepsilon =$ trivial representation of G^g , then $M = M(\mathcal{O}, \varepsilon) \in {}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ is simple and has dimension $|\mathcal{O}|$.

Again, the braiding is the usual flip τ .

Hence $\mathscr{B}(M(\mathcal{O},\varepsilon))\simeq S(M)/\langle M^p\rangle$ has dimension $p^{|\mathcal{O}|}$ and

$$H := \mathcal{B}(M(\mathcal{O}, \varepsilon)) \# \mathbb{k} G$$

is a pointed Hopf algebra with $G(H) \simeq G$ and dim $H = p^{|\mathcal{O}|}|G|$.

Finally, there are partial results on pointed Hopf algebras over abelian groups that have finite GK-dim.

One faces obstacles similar to those in positive characteristic. Actually, the results in the former setting inspired results in the latter.