Pointed Hopf algebras over simple groups

VI. Collapsing. Nichols algebras over alternating groups

Nicolás Andruskiewitsch CIEM-CONICET, Córdoba, Argentina

Department of Mathematics and Data Science, Vrije Universiteit Brussel, Belgium

VUB-Leerstoel 2025-2026

Vrije Universiteit Brussel, October 20, 2025.

i. Nichols algebras of non-simple Yetter-Drinfeld modules (rank 2).

i.o Recall of the simple case.

Examples over solvable groups:

rack	cocycle	dim.	rack	cocycle	dim.
$Aff(\mathbb{F}_3,2)$	-1	12	\mathscr{T}	-1	72
$Aff(\mathbb{F}_5,2)$	-1	$1280 = 5.4^4$	9	χ	5,184
$Aff(\mathbb{F}_5,3)$	-1	$1280 = 5.4^4$	\mathcal{O}_2^4	-1	576
$Aff(\mathbb{F}_7,3)$	-1	$326,592 = 7.6^6$	\mathcal{O}_2^4	χ4	576
$Aff(\mathbb{F}_7,5)$	-1	$326,592 = 7.6^6$	\mathcal{O}_4^4	-1	576

Examples over non-solvable groups:

Rack: \mathcal{O}_2^5 , cocycles -1 or χ_5 , dimension 8, 294, 400.

i.i Classification.

We need the following observation. Given two racks Y and Z, a rack operation on $X:=Y\dot{\cup}Z$ such that (Y,Z) is a decomposition, is equivalent to a pair (ς,ϖ) of morphisms of racks $\varsigma:Y\to\operatorname{Aut} Z$, $\varpi:Z\to\operatorname{Aut} Y$ such that

$$y \triangleright \varpi_z(u) = \varpi_{\varsigma_y(z)}(y \triangleright u), \qquad \forall y, u \in Y, \ z \in Z,$$

$$z \triangleright \varsigma_y(w) = \varsigma_{\varpi_z(y)}(z \triangleright w), \qquad \forall y \in Y, \ z, w \in Z,$$

In this case we denote $X:=Y_{\varsigma}\coprod_{\varpi}Z$; ς is omitted if $\varsigma_y=\operatorname{id}_Z$ for all $y\in Y$, ϖ is omitted if $\varpi_z=\operatorname{id}_Y$ for all $z\in Z$.

Theorem A. [Heckenberger-Vendramin]

Let G be a finite non-abelian group and $V=V_1\oplus V_2\in {}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$, where V_1 and V_2 are simple, the support of V generates G and $c^2_{|V_1\otimes V_2|}\neq {}^{\sharp}$ id. Assume that $\dim \mathscr{B}(V)<\infty$. Then as a braided vector space, V is isomorphic to one of the Examples below.

Proof. Use the Weyl groupoid ···

In particular, assuming dim $V_1 \leq \dim V_2$, the pair (dim V_1 , dim V_2) belongs to

$$\{(1,3),(1,4),(2,2),(2,3),(2,4)\}.$$
 (1)

Decomposable racks and dimensions of the Nichols algebras.

Name	rack	dimension		
D4	$\{1,2\}_{(34)}\coprod_{(12)}\{3,4\}$	64		
D3-1a	$\mathcal{D}_3 \coprod \{4\}$	$10,368 = 3^4 2^7$		
D3-1b	<i>D</i> ₃ ∐{4}	$2,304 = 3^2 2^8$		
D3-2	$\mathcal{D}_{3(45)}\coprod_{(132),(123)}\mathbb{I}_{4,5}$	10,368, 2,304		
D4-2	$X = \mathcal{D}_{4(56)} \coprod_{\sigma_1, \sigma_2} \mathbb{I}_{5,6}$	$262,144 = 2^{1}8$		
T-1	<i>T</i> ∐{5}	$80,621,568 = 2^{12} \cdot 3^9$		

i.ii Examples (rank 2).

Example D4. Let $X = \mathcal{D}_4 = \mathbb{I}_2 \sigma \coprod_{\sigma} \mathbb{I}_2$, $\sigma \neq \text{id. Concretely, } X = \{1,2\}_{(34)} \coprod_{(12)} \{3,4\}$. Then $\mathbb{k}X = V_1 \oplus V_2$, where V_1 is spanned by $(x_i)_{i \in \mathbb{I}_2}$, while V_2 is spanned by $(x_j)_{j \in \mathbb{I}_{3,4}}$. Let $p,q,r,t \in \mathbb{k}^{\times}$, $p \neq 1 \neq q$, and $\epsilon, \epsilon' \in \mathbb{G}_2$. Define a braiding on $\mathbb{k}X$ by

$$c_{|V_{1}\otimes V_{1}} \text{ is of diagonal type with matrix } \begin{pmatrix} q & \varepsilon q \\ \varepsilon q & q \end{pmatrix},$$

$$c_{|V_{2}\otimes V_{2}} \text{ is of diagonal type with matrix } \begin{pmatrix} p & \varepsilon' p \\ \varepsilon' p & p \end{pmatrix},$$

$$\left(c(x_{i}\otimes x_{j})_{i\in\mathbb{I}_{2},j\in\mathbb{I}_{3,4}}\right) = \begin{pmatrix} x_{4}\otimes x_{1} & t^{2}x_{3}\otimes x_{1} \\ \varepsilon' x_{4}\otimes x_{2} & \varepsilon' t^{2}x_{3}\otimes x_{2} \end{pmatrix},$$

$$\left(c(x_{j}\otimes x_{i})_{j\in\mathbb{I}_{3,4},i\in\mathbb{I}_{2}}\right) = \begin{pmatrix} x_{2}\otimes x_{3} & r^{2}x_{1}\otimes x_{3} \\ \varepsilon x_{2}\otimes x_{4} & \varepsilon r^{2}x_{1}\otimes x_{4} \end{pmatrix}.$$

$$(2)$$

Theorem. [Graña]

Let $(V, c) = (\mathbb{k}\mathcal{D}, c)$ where c is given by (2). Then dim $\mathcal{B}(V) = 64$.

Proof. Up to a change of basis this is of diagonal type.

Example D3-1a.

Let $X = \mathcal{D}_3 \coprod \{4\}$. Then $\mathbb{k}X = V_1 \oplus V_2$, where V_1 is spanned by $(x_i)_{i \in \mathbb{I}_3}$, while V_2 is spanned by x_4 .

Let $\epsilon \equiv -1$, cocycle on \mathcal{D}_3 . Given $\omega \in \mathbb{k}^{\times}, \zeta \in \mathbb{G}_3, q_1, q_2 \in \mathbb{k}^{\times}$. define a braiding on $\mathbb{k}X$ by

$$c_{|V_1 \otimes V_1} = c^{\epsilon}, \qquad c(x_4 \otimes x_4) = -\omega x_4 \otimes x_4,$$

$$c(x_i \otimes x_4) = q_1 \zeta^{i-1} x_4 \otimes x_i, \quad c(x_4 \otimes x_i) = q_2 x_i \otimes x_4, \quad i \in \mathbb{I}_3.$$
(3)

Thus $kX = V_1 \oplus V_2$ is a decomposition of braided vector spaces where V_1 is $(k\mathcal{O}_2^3, c^{\epsilon})$, V_2 is a point with label $-\omega \in \mathbb{G}_6'$ and the braiding between them is prescribed in the second line of (3).

Theorem. If $\omega \in \mathbb{G}_3'$, $q_1q_2 = -\omega^2$ and $(V,c) = (\mathbb{k}(\mathcal{D}_3 \coprod \{4\}),c)$ where c is given by (3), then

$$\dim \mathscr{B}(V) = 10,368 = 3^4 2^7.$$

Example D3-1b.

Let $X = \mathcal{D}_3 \coprod \{4\}$ as in the previous Example.

Let $V = V_1 \oplus V_2$, where $V_1 = \mathbb{k}\mathcal{D}_3$ is spanned by $(x_i)_{i \in \mathbb{I}_3}$, but now V_2 is $\mathbb{k}x_4 \otimes \mathbb{k}^2$; let $y_4 = x_4 \otimes (1,0)$, $y_5 = x_4 \otimes (0,1)$.

Let $\zeta \in \mathbb{G}_3$, $q_1, q_2 \in \mathbb{k}^{\times}$. Define a braiding on $\mathbb{k}X$ by

$$c_{|V_1 \otimes V_1} = c^{\epsilon}, \qquad c_{|V_2 \otimes V_2} = -\tau,$$

$$c(x_i \otimes y_4) = \zeta^{i-1} y_5 \otimes x_i, \ c(x_i \otimes y_5) = q_1 \zeta^{2(i-1)} y_4 \otimes x_i,$$

$$c(y_4 \otimes x_i) = q_2 y_4 \otimes x_i, \quad c(y_5 \otimes x_i) = q_2 x_i \otimes y_5, \qquad i \in \mathbb{I}_3.$$

$$(4)$$

Thus $V=V_1\oplus V_2$ is a decomposition of braided vector spaces where V_1 is $(\Bbbk \mathcal{O}_2^3, c^{\epsilon})$, $V_2=(\Bbbk y_4\oplus \Bbbk y_5, -\tau)$.

Theorem. Let (V,c) be the braided vector space with c given by (4). Assume that $q_1q_2^2=1$. Then

$$\dim \mathscr{B}(V) = 2,304 = 3^2 2^8.$$

Example D3-2. Let $X = \mathcal{D}_{3}_{(45)} \coprod_{(132),(123)} \mathbb{I}_{4,5}$; let $\sigma = (132)$. Let $V = \mathbb{k}X = V_1 \oplus V_2$, where $V_1 = \mathbb{k}\mathcal{D}_3$ is spanned by $(x_i)_{i \in \mathbb{I}_3}$ and V_2 is spanned by x_4, x_5 .

Let $\zeta \in \mathbb{G}_3$, $a_1, q_1, q_2 \in \mathbb{k}^{\times}$. Define a braiding on V by

$$c_{|V_1 \otimes V_1} = c^{\epsilon}, \qquad c(x_i \otimes x_j) = a_1 \zeta^{2-\delta_{ij}} x_j \otimes x_i, \quad i, j \in \mathbb{I}_{4,5};$$

$$c(x_i \otimes x_4) = \zeta^{i-1} x_5 \otimes x_i, \quad c(x_i \otimes x_5) = q_1 \zeta^{2(i-1)} x_4 \otimes x_i,$$

$$c(x_4 \otimes x_i) = q_2 x_{\sigma(i)} \otimes x_4, \quad c(x_5 \otimes x_i) = q_2 x_{\sigma^{-1}(i)} \otimes x_5, \qquad i \in \mathbb{I}_3.$$

Theorem. Let (V,c) be the braided vector space as above.

- If $\zeta \in \mathbb{G}_3'$, $a_1 = -\zeta^2$ and $q_1 q_2^2 = \zeta^2$, then dim $\mathscr{B}(V, c) = 10,368$.
- If $\zeta = 1$, $a_1 = -1$ and $q_1 q_2^2 = 1$, then dim $\mathcal{B}(V, c) = 2,304$.

Example D4-2. Let $X = \mathcal{D}_{4(56)} \coprod_{\sigma_1, \sigma_2} \mathbb{I}_{5,6}$.

Here we number \mathcal{D}_4 as follows: $\mathcal{D}_4 = \{1,3\}_{\sigma} \coprod_{\sigma} \{2,4\}$, where $\sigma \neq \text{id}$; i.e.,, we change the numeration in Example D4 by $2 \leftrightarrow 3$. Also, $\sigma_1 = (1234)$, $\sigma_2 = (1432)$.

Let $V = \mathbb{k}X = V_1 \oplus V_2$, with $V_1 = \mathbb{k}\mathcal{D}_4$ spanned by $(x_i)_{i \in \mathbb{I}_4}$ and V_2 by x_5, x_6 . Let $q_1, q_2 \in \mathbb{k}^{\times}$, $\zeta_1, \zeta_2 \in \mathbb{G}_4$. Define $\mathfrak{q} \in Z^2(V, \mathbb{k}^{\times})$ by

$$(\mathfrak{q}_{ij})_{i,j\in\mathbb{I}_4} = \begin{pmatrix} -1 & -\zeta_1^2 & -\zeta_1^2 & -\zeta_1^2 \\ -1 & -1 & -1 & -1 & -\zeta_1^2 \\ -\zeta_1^2 & -1 & -1 & -1 \\ -\zeta_1^2 & -\zeta_1^2 & -\zeta_1^2 & -\zeta_1^2 \end{pmatrix},$$

$$(\mathfrak{q}_{ij})_{i,j\in\mathbb{I}_{5,6}} = \begin{pmatrix} -1 & -\zeta_2^3 \\ -\zeta_2^3 & -1 \end{pmatrix},$$

$$(\mathfrak{q}_{ij})_{i \in \mathbb{I}_{5,6}, j \in \mathbb{I}_{4}} = \begin{pmatrix} 1 & q_{2}\zeta_{1}^{3} & 1 & q_{2}\zeta_{1} \\ \zeta_{1}^{2} & q_{2}\zeta_{1}^{3} & 1 & q_{2}\zeta_{1}^{3} \end{pmatrix},$$

$$\mathfrak{q}_{ij} = \begin{cases} \zeta_{2}^{1-i}, & j = 5, \\ q_{1}\zeta_{2}^{i-1} & j = 6, \end{cases} \quad i \in \mathbb{I}_{4}.$$

Theorem.

Let $(V,c^{\mathfrak{q}})$ be the braided vector space with \mathfrak{q} given above. Assume that $\zeta_1\zeta_2=q_1q_2$ and $\zeta_2\in\mathbb{G}_4'$. Then

$$\dim \mathcal{B}(X,\mathfrak{q}) = 262, 144 = 2^{18}.$$

Example T-1. Let $X = \mathcal{T} \coprod \{5\}$.

Let $V = \mathbb{k}X = V_1 \oplus V_2$, where $V_1 = \mathbb{k}\mathcal{T}$ is spanned by $(x_i)_{i \in \mathbb{I}_4}$, and V_2 is $\mathbb{k}x_5$. Let $a, q_1, q_2 \in \mathbb{k}^{\times}$. Define a braiding on V by

$$c_{|V_1 \otimes V_1} = c^{\epsilon}, \qquad c_{|V_2 \otimes V_2} = a \text{ id},$$

$$c(x_i \otimes x_5) = q_1 x_5 \otimes x_i, \ c(x_5 \otimes x_i) = q_2 x_i \otimes x_5, \ i \in \mathbb{I}_4;$$

$$(5)$$

 $V=V_1\oplus V_2$ is a decomposition of braided vector spaces where V_1 is $(k\mathcal{T},c^\epsilon)$ (ϵ is the cocycle -1), $V_2=kx_5$ has dimension 1.

Theorem.

Let (V,c) be the braided vector space with c given by (5). Assume that $-q_1q_2 \in \mathbb{G}_3'$ and $aq_1q_2=1$. Then

$$\dim \mathcal{B}(X,\mathfrak{q}) = 80,621,568.$$

ii. Collapsing.

- ii.i Collapsing criteria. Notation: Let G be a finite group and \mathcal{O} a conjugacy class of G.
- G collapses if any finite-dimensional pointed Hopf algebra H with $G(H) \simeq G$ is isomorphic to the group algebra kG.
- \mathcal{O} falls if $\dim \mathscr{B}(V) = \infty \ \forall V \in {}_{\Bbbk G}^{\Bbbk G} \mathcal{YD}$ with supp $V = \mathcal{O}$.

Remark: G collapses if and only if every conjugacy class \mathcal{O} of G falls.

• \mathcal{O} collapses when $\dim \mathcal{B}(X,\sigma)=\infty$ for any 2-cocycle σ of any degree.

If the conjugacy class \mathcal{O} collapses, then it falls; the converse is not true.

Criteria: C, D, F. We say that \mathcal{O} is of type C, D, F when the corresponding property below holds:

(C) There are $H \leq G$ and $r, s \in H \cap \mathcal{O}$ such that

$$\begin{split} H &= \langle \mathcal{O}_r^H, \mathcal{O}_s^H \rangle, & \mathcal{O}_r^H \neq \mathcal{O}_s^H, & rs \neq sr, \\ \min\{|\mathcal{O}_r^H|, \, |\mathcal{O}_s^H|\} > 2, & \text{or} & \max\{|\mathcal{O}_r^H|, \, |\mathcal{O}_s^H|\} > 4. \end{split}$$

- (D) There are $r, s \in \mathcal{O}$ such that $\mathcal{O}_r^{\langle r,s \rangle} \neq \mathcal{O}_s^{\langle r,s \rangle} \& (rs)^2 \neq (sr)^2$.
- (F) There are $r_a \in \mathcal{O}$, $a \in \mathbb{I}_4$, such that $\mathcal{O}_{r_a}^{\langle r_a:a\in\mathbb{I}_4\rangle} \neq \mathcal{O}_{r_b}^{\langle r_a:a\in\mathbb{I}_4\rangle}$ and $r_ar_b \neq r_br_a$ for $a \neq b \in \mathbb{I}_4$.

Theorem. [A-Fantino-Graña-Vendramin, A-Carnovale-García] Let \mathcal{O} be a conjugacy class of a finite group G. If \mathcal{O} is either of type C, D or F, then \mathcal{O} collapses.

Sketch of the proof (type C). Let us say that a rack X is of type C when there are a decomposable subrack $Y = R \coprod S$ and elements $r \in R$, $s \in S$ such that

$$r \triangleright s \neq s,$$
 $R = \mathcal{O}_r^{\operatorname{Inn} Y}, \quad S = \mathcal{O}_s^{\operatorname{Inn} Y},$ (6)

$$\min\{|R|,|S|\} > 2$$
 or $\max\{|R|,|S|\} > 4$. (7)

If the conjugacy class \mathcal{O} is of type C, then so is the underlying rack. Let G be a finite group and $M \in {}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ such that X is isomorphic to a subrack of supp M. We will check that $\mathscr{B}(M)$ has infinite dimension.

Let $Y = R \coprod S$ be as in the definition above. Let $K = \langle Y \rangle \leq G$. Then $M_Y := \bigoplus_{y \in Y} M_y \in {}^K_K \mathcal{YD}$, with

$$M_R := \bigoplus_{x \in R} M_x$$
 and $M_S := \bigoplus_{z \in S} M_z$

being Yetter-Drinfeld submodules of M_Y ; then $R = \mathcal{O}_r^K$, $S = \mathcal{O}_s^K$. Let V, respectively W, be a simple Yetter-Drinfeld submodule of M_R , respectively M_S . Then

supp V = R (since supp V is stable under the conjugation of K), supp W = S and supp $(V \oplus W) = Y$, that generates K.

Now $(id - c_{W,V} c_{V,W})(V \otimes W) \neq 0$ because $rs \neq sr$.

We may assume that $\dim V \leq \dim W$. Now $\dim V \geq |R| > 2$ or $\dim W \geq |S| > 4$. Hence $(\dim V, \dim W)$ does not belong to the set (1). Thus $\dim \mathcal{B}(V \oplus W) = \infty$ by Theorem A and a fortiori $\dim \mathcal{B}(M) = \infty$.

Lemma. If a rack Z contains a subrack of type C, respectively projects onto a rack of type C, then Z is of type C.

$$Y \overset{\iota}{\longleftarrow} Z \qquad X \text{ or } Y \text{ of type C} \Longrightarrow Z \text{ of type C}.$$

Proof. By definition, if Y is of type C, then so is Z. Let $Y = R \coprod S \subset X$ be as in the definition of type C with $|R| \leq |S|$, |R| > 2 or |S| > 4. Fix $\widetilde{r}, \widetilde{s} \in Z$ such that $\pi(\widetilde{r}) = r$, $\pi(\widetilde{s}) = s$. Define recursively

$$R_{1} = \pi^{-1}(R), \ S_{1} = \pi^{-1}(S), \ Y_{1} = \pi^{-1}(Y), \ K_{1} = \langle \varphi_{y}, y \in Y_{1} \rangle \leq \operatorname{Inn} Z,$$

$$R_{2} = \mathcal{O}_{\widetilde{r}}^{K_{1}}, \quad S_{2} = \mathcal{O}_{\widetilde{s}}^{K_{1}}, \quad Y_{2} = R_{2} \coprod S_{2}, \ K_{2} = \langle \varphi_{y}, y \in Y_{2} \rangle \leq \operatorname{Inn} Z;$$

$$R_{j} = \mathcal{O}_{\widetilde{r}}^{K_{j-1}}, \quad S_{j} = \mathcal{O}_{\widetilde{s}}^{K_{j-1}}, \quad Y_{j} = R_{j} \coprod S_{j}, \quad K_{j} = \langle \varphi_{y}, y \in Y_{j} \rangle \leq \operatorname{Inn} Z.$$

Clearly, $R_1 \supseteq R_2 \supseteq \ldots$ and $S_1 \supseteq S_2 \supseteq \ldots$, hence $Y_i = R_i \coprod S_i$ is a rack decomposition. Now the sequence

$$Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_i \supseteq Y_{i+1} \supseteq \cdots$$

stabilizes because Z is finite. Let $i \in \mathbb{N}$ such that $Y_i = Y_{i-1}$; then

$$\widetilde{R} := R_i = R_{i-1} = \mathcal{O}_{\widetilde{r}}^{K_{i-1}} \text{ and } \widetilde{S} := S_i = S_{i-1} = \mathcal{O}_{\widetilde{S}}^{K_{i-1}}.$$

Thus $\widetilde{Y}:=\widetilde{R}\coprod\widetilde{S}$ is a subrack of Z that satisfies (6). We claim now that $\pi(Y_j)=Y$ for all $j\in\mathbb{N}$; hence $|R_j|\geq |R|>2$ or $|S_j|\geq |S|>4$, proving (7) for \widetilde{Y} .

Indeed, $\pi(R_1) = R$ because π is surjective.

Assume that $\pi(Y_j) = Y$; hence $\pi(R_j) = R$ and $\pi(S_j) = S$. Let $t \in R$. There exist $y_1, \ldots, y_h \in Y$ such that $y_1 \triangleright (y_2 \triangleright \cdots \triangleright (y_h \triangleright r) \ldots) = t$ by (7) for Y.

Pick $\widetilde{y}_1, \ldots, \widetilde{y}_h \in Y_j$ such that $\pi(\widetilde{y}_\ell) = y_\ell$, $\ell \in \mathbb{I}_h$. Then

$$\widetilde{y}_1 \triangleright (\widetilde{y}_2 \triangleright \cdots \triangleright (\widetilde{y}_h \triangleright \widetilde{r}) \dots) \in \mathcal{O}_{\widetilde{r}}^{K_j} = R_{j+1}, \quad \text{hence}$$

$$\pi(\widetilde{y}_1 \triangleright (\widetilde{y}_2 \triangleright \cdots \triangleright (\widetilde{y}_h \triangleright \widetilde{r}) \dots) = y_1 \triangleright (y_2 \triangleright \cdots \triangleright (y_h \triangleright r) \dots)$$

$$= t \in \pi(R_{j+1}).$$

ii.ii Collapsing alternating groups (and their conjugacy classes). Let $m \in \mathbb{Z}_{\geq 2}$.

Recall that the type of $\sigma \in \mathbb{S}_m$ being $(1^{n_1}, 2^{n_2}, \dots, m^{n_m})$ means that the action of σ on \mathbb{I}_m has n_1 fixed points, n_2 orbits with 2 elements and in general n_j orbits with j elements. Then $\sigma \in \mathbb{A}_m$ if and only if $\sum_{j \text{ even } m_j}$ is even.

Also, the conjugacy class $\mathcal{O}_{\sigma}^{\mathbb{S}_m}$ consists of all permutations with the same type as σ .

Let $\sigma \in \mathbb{A}_m \setminus \{e\}$ be of type $(1^{n_1}, 2^{n_2}, \dots, m^{n_m})$ and let $\mathcal{O} = \mathcal{O}_{\sigma}^{\mathbb{A}_m}$; thus \mathcal{O} is a simple rack when $m \geq 5$.

It is known that either $\mathcal{O}_{\sigma}^{\mathbb{S}_m}$ splits as a disjoint union of two orbits in \mathbb{A}_m , or $\mathcal{O}_{\sigma}^{\mathbb{S}_m} = \mathcal{O}_{\sigma}^{\mathbb{A}_m}$, which happens either when $n_i > 0$ for some i even, or else $n_i > 1$ for some i odd.

Theorem. [A-Fantino-Graña-Vendramin] Let $\sigma \in \mathbb{A}_m \setminus \{e\}$, $m \geq 5$. Assume that the type of σ is different from

 $(3^2); (2^2,3); (1^n,3); (2^4); (1,2^2); (1^2,2^2); (1,p); (p); (8)$ where p is prime. Then the rack \mathcal{O} is of type D, hence it collapses.

The classes of types (3^2) and $(1^n,3)$ collapse (are of type C).

Theorem. [Fantino] Let p be a prime number, $p \geq 5$, and $m \in \{p, p+1\}$. Let \mathcal{O} be a conjugacy class of p-cycles in \mathbb{A}_m .

- If m=p, then $\mathcal O$ is of type D if and only if $p\geq 13$ and $p=\frac{r^k-1}{r-1}$, with r a prime power and k is a natural number.
- If m=p+1, then $\mathcal O$ is of type D if and only if $p\geq 7$ and $p=\frac{r^k-1}{r-1}$, with r a prime power and k is a natural number.

Theorem. [A-Fantino-Graña-Vendramin] \mathbb{A}_m , $m \geq 5$, collapses.

Example. \mathbb{A}_5 collapses.

• The types of conjugacy classes of \mathbb{S}_5 are

$$(1^5)$$
, $(1^3, 2)$, $(1^2, 3)$, $(1, 2^2)$, $(1, 4)$, $(2, 3)$, (5) .

• The types of conjugacy classes of \mathbb{A}_5 are

$$(1^5), (1^2, 3), (1, 2^2), (5).$$

Remark. If G is any finite group, then $\dim \mathscr{B}(M(\{e\}, \rho)) = \infty$ and $\dim \mathscr{B}(M(\mathcal{O}_g, \varepsilon)) = \infty$. Here e is the unit and ε is the counit.

Indeed, in both cases we elements $0 \neq m \in M(\mathcal{O}_g, \rho)$ such that $c(m \otimes m) = m \otimes m$, thus dim $\mathscr{B}(\Bbbk m) = \infty$.

- $(1^2,3)$: This class is of type C.
- (5): Let σ be of type (5). We know that $\mathcal{O}_{\sigma}^{\mathbb{S}_5}$ splits as a disjoint union of two orbits in \mathbb{A}_5 . Hence there is $j \colon \sigma^j \in \mathcal{O}_{\sigma}^{\mathbb{A}_5} \setminus \{\sigma\}$; it can be shown that j = -1. Now the centralizer C of σ in \mathbb{A}_5 is $\langle \sigma \rangle \simeq \mathbb{Z}/5$, hence $\widehat{C} \simeq \mathbb{Z}/5$.

If $\rho = \varepsilon$ is trivial, then we know that $\dim \mathscr{B}(M(\mathcal{O}_{\sigma}, \rho)) = \infty$. If $\rho \neq \varepsilon$ is non-trivial, then $\omega := \rho(\sigma)$ has order 5. Let $U = \mathbb{k}\sigma \oplus \mathbb{k}\sigma^{-1}$; this is a braided vector space of Cartan type but not of finite type. Hence $\dim \mathscr{B}(U) = \infty$ and $\mathscr{B}(M(\mathcal{O}_{\sigma}, \rho)) = \infty$.

 $(1,2^2)$: similar.

ii.iii Conjugacy classes of symmetric groups. Let $\sigma \in \mathbb{S}_m \setminus \mathbb{A}_m$ be of type $(1^{n_1}, 2^{n_2}, \dots, m^{n_m})$ and $\mathcal{O} = \mathcal{O}_{\sigma}^{\mathbb{S}_m}$; \mathcal{O} is a simple rack.

Theorem. [A-Fantino-Graña-Vendramin] If the type of σ is different from

$$(2,3);$$
 $(2^3);$ $(1^n,2),$ (9)

then the rack \mathcal{O} is of type D, hence it collapses.

Example. To see that S_5 collapses, it remains to discard the class of type (2,3).

Example. To see that \mathbb{S}_6 collapses, it remains to discard the class of type $(1^4, 2)$ and cocycle either -1 or χ_6 ; this last is the famous FK(6).

Notice that for σ of type $(1^4,2)$ and μ of type (2^3) , the racks $\mathcal{O}_{\sigma}^{\mathbb{S}_6}$ and $\mathcal{O}_{\mu}^{\mathbb{S}_6}$ are isomorphic via the outer automorphism of \mathbb{S}_6 .