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I. Nichols algebras of non-simple Yetter-Drinfeld modules
(rank 2).
1.0 Recall of the simple case.

Examples over solvable groups:

rack cocycle dim. rack | cocycle | dim.
Aff(F3,2) | —1 12 T —1 72
Aff(Fs,2) | —1 1280 = 5.4% T X 5,184
Aff(Fs,3) | —1 1280 = 5.4% o35 —1 576
Aff(F7,3) | -1 |[326,592=7.6°| O3 Ya 576
Aff(F7,5) | -1 |326,592=7.6°| Of —1 576

Examples over non-solvable groups:
Rack: @3, cocycles —1 or x5, dimension 8,294, 400.



1.1 Classification.

We need the following observation. Given two racks Y and Z, a
rack operation on X := Y UZ such that (Y, Z) is a decomposition,
is equivalent to a pair (¢, @) of morphisms of racks ¢ : Y — Aut Z,
w . 4 — AutY such that

y>wy(u) = wgy(z)(ybu), Yyu €Y, z € Z,
2> gy(w) = ng(y)(zbw), VyeyY, z,we€ Z,

In this case we denote X (=Y ][, Z; ¢ is omitted if ¢y = idy for
all y e Y, w is omitted if @, = idy for all z € Z.



Theorem A. [Heckenberger-Vendramin]

Let G be a finite non-abelian group and V = V; @ V5 € F&yD,
where V7 and V5, are simple, the support of V generates G and
2 #+ id. Assume that dim#Z(V) < co. Then as a braided
V1®@Vs T .

vector space, V is isomorphic to one of the Examples below.

Proof. Use the Weyl groupoid - --

In particular, assuming dim V7 < dim V5, the pair (dimVq,dim V5)
belongs to

{(1,3),(1,4),(2,2),(2,3),(2,4)}. (1)



Decomposable racks and dimensions of the Nichols algebras.

Name rack dimension
D4 {1,2}(34)I(12){3, 4} 64
D3-1a D3 ][{4} 10,368 = 342/
D3-1b D3 11{4} 2,304 = 3229
D3-2 | D3 (45)11(132).(123) 14,5 10,368, 2,304
D4-2 | X = D4 (56)1101,0, 5,6 262,144 = 218
T-1 T 11{5} 80,621,568 = 21< . 3%




I.ii Examples (rank 2).

Example D4. Let X =Dy =1Ios][[,1p, 0 #id. Concretely, X =
{1,2}(34)]_[(12){3,4}. Then kX = V7 & Vo, where Vj is spanned
by (z;);cr,, While V5 is spanned by ($j)j€]1374. Let p,q,7,t € k%,
p# 1% q, and ¢, € € G,. Define a braiding on kX by

ViV is of diagonal type with matrix <€qq €qq> |

ep p
T4Rxq t2$3®ib1
exa@xo  t?r3@x5 )’
THRx3 r2w1®a:3
exoQrs  erx1QT4 )

. . . . p €p
VeV, 1S Of diagonal type with matrix :
(2)

(c(@i®))icry jels a) = <

(c(zj@2) jet 4 ic1,) = <



Theorem. [Grafia]

Let (V,c¢) = (kD, c) where cis given by (2). Thendim A(V) = 64.

Proof. Up to a change of basis this is of diagonal type.



Example D3-1a.

Let X = D3[[{4}. Then kX = V7 & V5, where V7 is spanned by
(z3)ier5, While V5 is spanned by x4.

Let ¢ = —1, cocycle on D3. Given w € k*,¢ € G3,q1,90 € k*.

define a braiding on kX by
C‘V]_(X)Vl — CE’ C($4®CB4) — —wx4®x4,
c(z;®x4) = q1¢" tea@a;, c(x4®a;) = qox;Qxs, i € 3.

(3)

Thus kX = V7 & V5 is a decomposition of braided vector spaces
where Vy is (kO3,c%), Va is a point with label —w € Gj and the
braiding between them is prescribed in the second line of (3).

Theorem. If w € G}, qiqp = —w? and (V,¢) = (k(D3]I{4}),¢)
where c is given by (3), then

dim Z(V) = 10,368 = 342",



Example D3-1b.

Let X =D3][{4} as in the previous Example.

Let V = Vi ® Vs, where Vi = kD3 is spanned by (z;);cr,, but now
Vs is kxa @ k2; let ya = 24®(1,0), y5 = 24®(0,1).

Let ¢ € G3, q1,9> € k*. Define a braiding on kX by

“vievy = ¢, oV, — 1
c(z;Qys) = T Lys@ai, o(z;Qys) = q1¢2 0 Vya@;, (4)
c(y4®x;) = @pya®x;, c(YysQx;) = qox;Qys, i € 3.

Thus V. = V] & Vo is a decomposition of braided vector spaces
where Vi is (kO3,c), Vo = (kys ® kys, —7).

Theorem. Let (V,c) be the braided vector space with ¢ given
by (4). Assume that q1¢5 = 1. Then

dim Z(V) = 2,304 = 3228,



Example D3-2. Let X = D3 (45>H(132)7(123) 1[4,5; let o = (132).
Let V = kX = Vi @V, where Vi = kD3 is spanned by (z;);cl,
and V5 is spanned by x4, 5.

Let ¢ € G3, a1,q91,9> € k*. Define a braiding on V by

viev; = ¢ c(zi®;) = a1(* %z;@z;, 0,5 € las;
c(z;074) = T las@m;, o(z;@zs5) = 1¢20 Yoy,
c(Za®T;) = @254, c(T58T;) = qax,-1(,®Ts, i € 3.

Theorem. Let (V,c¢) be the braided vector space as above.

o If { € G5, a1 = —(¢? and q1¢5 = ¢?, then dim %(V,c) = 10, 368.

e If (=1, a; = —1 and ¢q1¢53 = 1, then dim %(V,c) = 2,304.
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Example D4-2. Let X = D4 (56)1ls1,0,156-

Here we number D4 as follows: D4 = {1,3}+11,{2,4}, where
o #* id; i.e.,, we change the numeration in Example D4 by 2 + 3.

Also, o1 = (1234), 0o = (1432).

Let V =kX = Vi @ Vo, with V; = kD4 spanned by (x;);er, and
Vo by x5,76. Let q1,q2 € kX, (1,(o € G4. Define q € Z2(V,k*) by

(-1 ¢ ¢ —Ci

) I I R T —e
(qZJ)i,jE]I4_ _CQ 1 1 —1 |’
\—c% -3 ¢ -1

1 —(3
(9ij)i jelse = <—CS _12> :
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(G ict. - el = 1 qzCi 1 g2C1
WOEls6IEA TR g 1 qf)]

1—i -

¢, j=5,

Gj =1 %01 v € lg.
q1Co j =6,

Theorem.
Let (V,c9) be the braided vector space with q given above. As-
sume that ¢1{» = q1¢2 and (2 € G, . Then

dim Z(X,q) = 262,144 = 218,
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Example T-1. Let X =T T[{5}.
Let V = kX = V3 & Vo, where V7 = kT is spanned by (x;);c1y.
and V5 is kxs. Let a,q1,9> € k*. Define a braiding on V by

— € —_ 1
C‘V]_(X)Vl = cC, C|V2®V2 = aQa |d, (5)
c(2;Qx5) = 1257, c(T5Qx;) = qox;Qxs5, ¢ € lg;

V =V7 & V5 is a decomposition of braided vector spaces where
Vi is (kT,c¢) (e is the cocycle —1), Vo = kxg has dimension 1.

Theorem.
Let (V,c) be the braided vector space with ¢ given by (5). Assume
that —g192 € G5 and agqigp = 1. Then

dim #(X,q) = 80,621, 568.

13



ii. Collapsing.
Ii.1 Collapsing criteria. Notation: Let G be a finite group and
O a conjugacy class of G.

e (G collapses if any finite-dimensional pointed Hopf algebra H
with G(H) ~ G is isomorphic to the group algebra kG.

o O falls if dimZB(V) = oo VV € fGYD with supp V = 0.

Remark: G collapses if and only if every conjugacy class O of G
falls.

e O collapses when dim #(X,o0) = oo for any 2-cocycle o of any
degree.

If the conjugacy class O collapses, then it falls; the converse is
not true.
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Criteria: C, D, F. We say that O is of type C, D, F when the
corresponding property below holds:

(C) There are H < G and r,s € HN O such that

H= (0 ofy, o £ ol rs # sr,
min{|O0/|, 10|} > 2, or max{|0;|, |0} > 4.

(D) There are r, s € O such that O = O & (rs)2 £ (s1)2.

F) There are rq € O, a € Ig, such that Oﬁra:aeh) = Oﬁra:a@“
a b
and rqry = rprq for a = b € ly.
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Theorem. [A-Fantino-Grafia-Vendramin, A-Carnovale-Garcia]
Let O be a conjugacy class of a finite group G. If O is either of
type C, D or F, then O collapses.

Sketch of the proof (type C). Let us say that a rack X is of
type C when there are a decomposable subrack Y = R]J[S and
elements r € R, s € S such that

r> s Z£ s, R = O}ﬂnnY’ S = OL””Y, (6)
min{|R|,|S|} > 2 or max{|R|,|S|} > 4. (7)
If the conjugacy class O is of type C, then so is the underlying
rack. Let G be a finite group and M € fSYD such that X is

isomorphic to a subrack of supp M. We will check that (M)
has infinite dimension.
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Let Y = R][S be as in the definition above. Let K = (Y) < G.
Then My = &,y My € BYD, with

being Yetter-Drinfeld submodules of My; then R = OX, § = 0K,
Let V, respectively W, be a simple Yetter-Drinfeld submodule of
Mp, respectively Mg. Then

suppV = R (since supp V is stable under the conjugation of K),
suppW = S and supp(V @ W) =Y, that generates K.

Now (id —cy yeyw)(V ® W) # 0 because rs # sr.

We may assume that dimV < dimW. Now dimV > |R| > 2 or
dimW > |S| > 4. Hence (dimV,dimW) does not belong to the
set (1). Thus dimA(V & W) = oo by Theorem A and a fortiori
dim B(M) = oo.
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Lemma. If a rack Z contains a subrack of type C, respectively
projects onto a rack of type C, then Z is of type C.

Y «+ -7 X orY of type C = Z of type C.

&

X

Proof. By definition, if Y is of type C, then so is ~Z.

Let Y = R][[S C X be asin the definition of type C with |R| < |5],
|R| > 2 or |S| > 4. Fix 7,5 € Z such that n(7) = r, w(5) = s.
Define recursively

Ry=n"'(R), Sy=n (), i =n" (Y) K1 = (py,y €Y1

) <InnZ,
Kl Kl Yo =Ry []S2, Ko = (py,y € Y2) <InnZ
)

I/\ I/\

Ro = , P2 =
Rj:O,FJ 1, Sj:Ovaj 1, Y']:R] i Sj, Kj=<g0y,y€Y < Inn Z.
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Clearly, Ri D Ry D ... and S1 D 5> 2O ..., hence Y, = R;][S; is a
rack decomposition. Now the sequence

Yi2Y 2 2Y;2Y41 2.
stabilizes because 7 is finite. Let ¢ € N such that Y; = Y,_1; then
. 1 : K1
R =R,=R;, 1= and S 1= Sizsi_leg :
Thus Y := R][S is a subrack of Z that satisfies (6). We claim

now that n(Y;) = Y for all j € N; hence |R;| > |R| > 2 or
1S;| > |S| > 4, proving (7) for Y.

19



Indeed, n(R1) = R because = is surjective.
Assume that n(Y;) =Y, hence n(R;) = Rand n(S;) = S. Lett ¢

R. There exist y1,...,y, € Y such that y1>(yo>- - ->(ypbr)...) =1t
by (7) for Y.

Pick y1,...,9x € Y; such that n(yy) =y, £ €1;. Then

- - - " K
g1> (Gob > (gp>7)...) € 027 = Rjqq, hence
(Y1 > (@b > (gp>7r)...) =y1>(yo>--->(yp>7)...)
=t€7T(Rj_|_1).
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li.li Collapsing alternating groups (and their conjugacy classes).
Let m € ZZQ'

Recall that the type of ¢ € S;, being (1™1, 272 . m™m) means
that the action of o on I;;; has nq fixed points, no orbits with 2
elements and in general oy orbits with 3 elements. Then o € Ay,

if and only if >°; eyenm; is even.

Also, the conjugacy class O§m consists of all permutations with
the same type as o.

Let o € Am\{e} be of type (11,2"2, ... m™) and let O = O4m:
thus O is a simple rack when m > 5.

It is known that either (9§m splits as a disjoint union of two orbits
in A, or O3m = O4m  which happens either when n; > 0 for some
1 even, or else n; > 1 for some ¢ odd.
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Theorem. [A-Fantino-Grafia-Vendramin] Let o € Ay \{e}, m > 5.
Assume that the type of o is different from

(3%); (2%,3); (1%,3); (2%); (1,27); (1%,2%); (L,p); (p); (8)
where p is prime. Then the rack O is of type D, hence it collapses.

The classes of types (32) and (17, 3) collapse (are of type C).

Theorem. [Fantino] Let p be a prime number, p > 5, and m €
{p,p+ 1}. Let O be a conjugacy class of p-cycles in Ay,.

rk_1
r—1"

o If m=p, then Oisof type D ifand only if p > 13 and p =
with r a prime power and k is a natural number.

e If m=p+4+ 1, then O is of type D if and only if p > 7 and

k_ : : :
p= 7;_11, with r a prime power and k is a natural number.
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Theorem. [A-Fantino-Grafia-Vendramin] A,,, m > 5, collapses.
Example. Ag collapses.

e [The types of conjugacy classes of Sg are

(1°), (13,2), (12,3), (1,22), (1,4), (2,3), (5).

e The types of conjugacy classes of Ag are

(1°), (12,3), (1,22), (5).

Remark. If G is any finite group, then dim Z(M ({e},p)) = oo
and dim Z(M(Og,e)) = co. Here e is the unit and ¢ is the counit.

Indeed, in both cases we elements 0 = m € M(Ogy, p) such that
c(lm ® m) = m ®m, thus dim Z(km) = co.
23



(12,3): This class is of type C.

(5): Let o be of type (5). We know that (’)§5 splits as a disjoint
union of two orbits in As. Hence there is j: o/ € O§5 \ {o},; it
can be shown that j = —1. Now the centralizer C of o in Ag is
(c) ~7/5, hence C ~7/5.

If p = ¢ is trivial, then we know that dim Z(M (Og,p)) = .
If p %= e is non-trivial, then w = p(o) has order 5. Let U =
ka@ka—l; this is a braided vector space of Cartan type but not
of finite type. Hence dim A(U) = oo and B(M (O, p)) = oo.

(1,22): similar.
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be of type (171,2"2 ... . m™m) and O = Om; O is a simple rack.

Theorem. [A-Fantino-Grafia-Vendramin] If the type of o is different
from

(2,3); (23); (1", 2), (9)
then the rack O is of type D, hence it collapses.

Example. To see that Sg collapses, it remains to discard the
class of type (2,3).

Example. To see that Sg collapses, it remains to discard the
class of type (14,2) and cocycle either —1 or X6, this last is the
famous FK(6).

Notice that for o of type (1%4,2) and u of type (23), the racks
Os¢ and 056 are isomorphic via the outer automorphism of Sg.
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