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i. Nichols algebras of non-simple Yetter-Drinfeld modules

(rank 2).

i.o Recall of the simple case.

Examples over solvable groups:

rack cocycle dim. rack cocycle dim.

Aff(F3,2) −1 12 T −1 72
Aff(F5,2) −1 1280 = 5.44 T χ 5,184
Aff(F5,3) −1 1280 = 5.44 O4

2 −1 576
Aff(F7,3) −1 326,592 = 7.66 O4

2 χ4 576
Aff(F7,5) −1 326,592 = 7.66 O4

4 −1 576

Examples over non-solvable groups:

Rack: O5
2, cocycles −1 or χ5, dimension 8,294,400.
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i.i Classification.

We need the following observation. Given two racks Y and Z, a
rack operation on X := Y ∪̇Z such that (Y, Z) is a decomposition,
is equivalent to a pair (ς,ϖ) of morphisms of racks ς : Y → AutZ,
ϖ : Z → AutY such that

y ▷ ϖz(u) = ϖςy(z)(y ▷ u), ∀y,u ∈ Y, z ∈ Z,

z ▷ ςy(w) = ςϖz(y)(z ▷ w), ∀y ∈ Y, z, w ∈ Z,

In this case we denote X := Y ς
∐
ϖ Z; ς is omitted if ςy = idZ for

all y ∈ Y , ϖ is omitted if ϖz = idY for all z ∈ Z.
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Theorem A. [Heckenberger-Vendramin]

Let G be a finite non-abelian group and V = V1 ⊕ V2 ∈ kG
kGYD,

where V1 and V2 are simple, the support of V generates G and
c2|V1⊗V2

̸= id. Assume that dimB(V ) < ∞. Then as a braided
vector space, V is isomorphic to one of the Examples below.

Proof. Use the Weyl groupoid · · ·

In particular, assuming dimV1 ≤ dimV2, the pair (dimV1,dimV2)
belongs to

{(1,3), (1,4), (2,2), (2,3), (2,4)}. (1)
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Decomposable racks and dimensions of the Nichols algebras.

Name rack dimension

D4 {1,2}(34)
∐
(12){3,4} 64

D3-1a D3
∐
{4} 10,368 = 3427

D3-1b D3
∐
{4} 2,304 = 3228

D3-2 D3 (45)
∐
(132),(123) I4,5 10,368, 2,304

D4-2 X = D4 (56)
∐
σ1,σ2 I5,6 262,144 = 218

T-1 T
∐
{5} 80,621,568 = 212 · 39
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i.ii Examples (rank 2).

Example D4. Let X = D4 = I2 σ
∐
σ I2, σ ̸= id. Concretely, X =

{1,2}(34)
∐
(12){3,4}. Then kX = V1 ⊕ V2, where V1 is spanned

by (xi)i∈I2, while V2 is spanned by (xj)j∈I3,4. Let p, q, r, t ∈ k×,
p ̸= 1 ̸= q, and ϵ, ϵ′ ∈ G2. Define a braiding on kX by

c|V1⊗V1
is of diagonal type with matrix

(
q εq
εq q

)
,

c|V2⊗V2
is of diagonal type with matrix

(
p ε′p
ε′p p

)
,

(
c(xi⊗xj)i∈I2,j∈I3,4

)
=

(
x4⊗x1 t2x3⊗x1
ε′x4⊗x2 ε′t2x3⊗x2

)
,

(
c(xj⊗xi)j∈I3,4,i∈I2

)
=

(
x2⊗x3 r2x1⊗x3
εx2⊗x4 εr2x1⊗x4

)
.

(2)
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Theorem. [Graña]

Let (V, c) = (kD, c) where c is given by (2). Then dimB(V ) = 64.

Proof. Up to a change of basis this is of diagonal type.
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Example D3-1a.

Let X = D3
∐
{4}. Then kX = V1 ⊕ V2, where V1 is spanned by

(xi)i∈I3, while V2 is spanned by x4.

Let ϵ ≡ −1, cocycle on D3. Given ω ∈ k×, ζ ∈ G3, q1, q2 ∈ k×.
define a braiding on kX by

c|V1⊗V1
= cϵ, c(x4⊗x4) = −ωx4⊗x4,

c(xi⊗x4) = q1ζ
i−1x4⊗xi, c(x4⊗xi) = q2xi⊗x4, i ∈ I3.

(3)

Thus kX = V1 ⊕ V2 is a decomposition of braided vector spaces

where V1 is (kO3
2, c

ϵ), V2 is a point with label −ω ∈ G′
6 and the

braiding between them is prescribed in the second line of (3).

Theorem. If ω ∈ G′
3, q1q2 = −ω2 and (V, c) = (k(D3

∐
{4}), c)

where c is given by (3), then

dimB(V ) = 10,368 = 3427.
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Example D3-1b.

Let X = D3
∐
{4} as in the previous Example.

Let V = V1⊕V2, where V1 = kD3 is spanned by (xi)i∈I3, but now

V2 is kx4 ⊗ k2; let y4 = x4⊗(1,0), y5 = x4⊗(0,1).

Let ζ ∈ G3, q1, q2 ∈ k×. Define a braiding on kX by

c|V1⊗V1
= cϵ, c|V2⊗V2

= −τ,

c(xi⊗y4) = ζi−1y5⊗xi, c(xi⊗y5) = q1ζ
2(i−1)y4⊗xi,

c(y4⊗xi) = q2y4⊗xi, c(y5⊗xi) = q2xi⊗y5, i ∈ I3.

(4)

Thus V = V1 ⊕ V2 is a decomposition of braided vector spaces

where V1 is (kO3
2, c

ϵ), V2 = (ky4 ⊕ ky5,−τ).

Theorem. Let (V, c) be the braided vector space with c given

by (4). Assume that q1q
2
2 = 1. Then

dimB(V ) = 2,304 = 3228.
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Example D3-2. Let X = D3 (45)
∐
(132),(123) I4,5; let σ = (132).

Let V = kX = V1 ⊕ V2, where V1 = kD3 is spanned by (xi)i∈I3
and V2 is spanned by x4, x5.

Let ζ ∈ G3, a1, q1, q2 ∈ k×. Define a braiding on V by

c|V1⊗V1
= cϵ, c(xi⊗xj) = a1ζ

2−δijxj⊗xi, i, j ∈ I4,5;

c(xi⊗x4) = ζi−1x5⊗xi, c(xi⊗x5) = q1ζ
2(i−1)x4⊗xi,

c(x4⊗xi) = q2xσ(i)⊗x4, c(x5⊗xi) = q2xσ−1(i)⊗x5, i ∈ I3.

Theorem. Let (V, c) be the braided vector space as above.

• If ζ ∈ G′
3, a1 = −ζ2 and q1q

2
2 = ζ2, then dimB(V, c) = 10,368.

• If ζ = 1, a1 = −1 and q1q
2
2 = 1, then dimB(V, c) = 2,304.
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Example D4-2. Let X = D4 (56)
∐
σ1,σ2 I5,6.

Here we number D4 as follows: D4 = {1,3} σ
∐
σ{2,4}, where

σ ̸= id; i.e.,, we change the numeration in Example D4 by 2 ↔ 3.

Also, σ1 = (1234), σ2 = (1432).

Let V = kX = V1 ⊕ V2, with V1 = kD4 spanned by (xi)i∈I4 and

V2 by x5, x6. Let q1, q2 ∈ k×, ζ1, ζ2 ∈ G4. Define q ∈ Z2(V, k×) by

(qij)i,j∈I4 =


−1 −ζ21 −ζ21 −ζ21
−1 −1 −1 −ζ21
−ζ21 −1 −1 −1
−ζ21 −ζ21 −ζ21 −1

 ,

(qij)i,j∈I5,6 =

(
−1 −ζ32
−ζ32 −1

)
,
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(qij)i∈I5,6,j∈I4 =

(
1 q2ζ

3
1 1 q2ζ1

ζ21 q2ζ
3
1 1 q2ζ

3
1

)
,

qij =

ζ
1−i
2 , j = 5,

q1ζ
i−1
2 j = 6,

i ∈ I4.

Theorem.
Let (V, cq) be the braided vector space with q given above. As-
sume that ζ1ζ2 = q1q2 and ζ2 ∈ G′

4 . Then

dimB(X, q) = 262,144 = 218.
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Example T-1. Let X = T
∐
{5}.

Let V = kX = V1 ⊕ V2, where V1 = kT is spanned by (xi)i∈I4,
and V2 is kx5. Let a, q1, q2 ∈ k×. Define a braiding on V by

c|V1⊗V1
= cϵ, c|V2⊗V2

= a id,

c(xi⊗x5) = q1x5⊗xi, c(x5⊗xi) = q2xi⊗x5, i ∈ I4;
(5)

V = V1 ⊕ V2 is a decomposition of braided vector spaces where

V1 is (kT , cϵ) (ϵ is the cocycle −1), V2 = kx5 has dimension 1.

Theorem.

Let (V, c) be the braided vector space with c given by (5). Assume

that −q1q2 ∈ G′
3 and aq1q2 = 1. Then

dimB(X, q) = 80,621,568.
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ii. Collapsing.

ii.i Collapsing criteria. Notation: Let G be a finite group and

O a conjugacy class of G.

• G collapses if any finite-dimensional pointed Hopf algebra H

with G(H) ≃ G is isomorphic to the group algebra kG.

• O falls if dimB(V ) = ∞ ∀V ∈ kG
kGYD with supp V = O.

Remark: G collapses if and only if every conjugacy class O of G

falls.

• O collapses when dimB(X,σ) = ∞ for any 2-cocycle σ of any

degree.

If the conjugacy class O collapses, then it falls; the converse is

not true.
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Criteria: C, D, F. We say that O is of type C, D, F when the
corresponding property below holds:

(C) There are H ≤ G and r, s ∈ H ∩ O such that

H = ⟨OH
r ,OH

s ⟩, OH
r ̸= OH

s , rs ̸= sr,

min{|OH
r |, |OH

s |} > 2, or max{|OH
r |, |OH

s |} > 4.

(D) There are r, s ∈ O such that O⟨r,s⟩
r ̸= O⟨r,s⟩

s &(rs)2 ̸= (sr)2.

(F) There are ra ∈ O, a ∈ I4, such that O⟨ra:a∈I4⟩
ra ̸= O⟨ra:a∈I4⟩

rb
and rarb ̸= rbra for a ̸= b ∈ I4.
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Theorem. [A-Fantino-Graña-Vendramin, A-Carnovale-Garćıa]

Let O be a conjugacy class of a finite group G. If O is either of

type C, D or F, then O collapses.

Sketch of the proof (type C). Let us say that a rack X is of

type C when there are a decomposable subrack Y = R
∐
S and

elements r ∈ R, s ∈ S such that

r ▷ s ̸= s, R = OInnY
r , S = OInnY

s , (6)

min{|R|, |S|} > 2 or max{|R|, |S|} > 4. (7)

If the conjugacy class O is of type C, then so is the underlying

rack. Let G be a finite group and M ∈ kG
kGYD such that X is

isomorphic to a subrack of suppM . We will check that B(M)

has infinite dimension.

16



Let Y = R
∐
S be as in the definition above. Let K = ⟨Y ⟩ ≤ G.

Then MY := ⊕y∈YMy ∈ K
KYD, with

MR := ⊕x∈RMx and MS := ⊕z∈SMz

being Yetter-Drinfeld submodules of MY ; then R = OK
r , S = OK

s .

Let V , respectively W , be a simple Yetter-Drinfeld submodule of

MR, respectively MS. Then

suppV = R (since suppV is stable under the conjugation of K),

suppW = S and supp(V ⊕W ) = Y , that generates K.

Now (id−cW,V cV,W )(V ⊗W ) ̸= 0 because rs ̸= sr.

We may assume that dimV ≤ dimW . Now dimV ≥ |R| > 2 or

dimW ≥ |S| > 4. Hence (dimV,dimW ) does not belong to the

set (1). Thus dimB(V ⊕ W ) = ∞ by Theorem A and a fortiori

dimB(M) = ∞.
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Lemma. If a rack Z contains a subrack of type C, respectively

projects onto a rack of type C, then Z is of type C.

Y � � ι //Z
π
����

X

X or Y of type C =⇒ Z of type C.

Proof. By definition, if Y is of type C, then so is Z.

Let Y = R
∐
S ⊂ X be as in the definition of type C with |R| ≤ |S|,

|R| > 2 or |S| > 4. Fix r̃, s̃ ∈ Z such that π(r̃) = r, π(s̃) = s.

Define recursively

R1 = π−1(R), S1 = π−1(S), Y1 = π−1(Y ), K1 = ⟨φy, y ∈ Y1⟩ ≤ InnZ,

R2 = OK1
r̃

, S2 = OK1
s̃

, Y2 = R2
∐

S2, K2 = ⟨φy, y ∈ Y2⟩ ≤ InnZ;

Rj = OKj−1
r̃

, Sj = OKj−1
s̃

, Yj = Rj

∐
Sj, Kj = ⟨φy, y ∈ Yj⟩ ≤ InnZ.
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Clearly, R1 ⊇ R2 ⊇ . . . and S1 ⊇ S2 ⊇ . . . , hence Yi = Ri
∐
Si is a

rack decomposition. Now the sequence

Y1 ⊇ Y2 ⊇ · · · ⊇ Yi ⊇ Yi+1 ⊇ . . .

stabilizes because Z is finite. Let i ∈ N such that Yi = Yi−1; then

R̃ := Ri = Ri−1 = OKi−1
r̃

and S̃ := Si = Si−1 = OKi−1
s̃

.

Thus Ỹ := R̃
∐
S̃ is a subrack of Z that satisfies (6). We claim

now that π(Yj) = Y for all j ∈ N; hence |Rj| ≥ |R| > 2 or

|Sj| ≥ |S| > 4, proving (7) for Ỹ .
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Indeed, π(R1) = R because π is surjective.

Assume that π(Yj) = Y ; hence π(Rj) = R and π(Sj) = S. Let t ∈
R. There exist y1, . . . , yh ∈ Y such that y1▷(y2▷· · ·▷(yh▷r) . . . ) = t

by (7) for Y .

Pick ỹ1, . . . , ỹh ∈ Yj such that π(ỹℓ) = yℓ, ℓ ∈ Ih. Then

ỹ1 ▷ (ỹ2 ▷ · · · ▷ (ỹh ▷ r̃) . . . ) ∈ OKj

r̃
= Rj+1, hence

π(ỹ1 ▷ (ỹ2 ▷ · · · ▷ (ỹh ▷ r̃) . . . ) = y1 ▷ (y2 ▷ · · · ▷ (yh ▷ r) . . . )

= t ∈ π(Rj+1).
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ii.ii Collapsing alternating groups (and their conjugacy classes).
Let m ∈ Z≥2.
Recall that the type of σ ∈ Sm being (1n1,2n2, . . . ,mnm) means
that the action of σ on Im has n1 fixed points, n2 orbits with 2
elements and in general nj orbits with j elements. Then σ ∈ Am

if and only if
∑

j evenmj is even.

Also, the conjugacy class OSm
σ consists of all permutations with

the same type as σ.

Let σ ∈ Am\{e} be of type (1n1,2n2, . . . ,mnm) and let O = OAm
σ ;

thus O is a simple rack when m ≥ 5.

It is known that either OSm
σ splits as a disjoint union of two orbits

in Am, or OSm
σ = OAm

σ , which happens either when ni > 0 for some
i even, or else ni > 1 for some i odd.
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Theorem. [A-Fantino-Graña-Vendramin] Let σ ∈ Am\{e}, m ≥ 5.
Assume that the type of σ is different from

(32); (22,3); (1n,3); (24); (1,22); (12,22); (1, p); (p); (8)

where p is prime. Then the rack O is of type D, hence it collapses.

The classes of types (32) and (1n,3) collapse (are of type C).

Theorem. [Fantino] Let p be a prime number, p ≥ 5, and m ∈
{p, p+1}. Let O be a conjugacy class of p-cycles in Am.

• If m = p, then O is of type D if and only if p ≥ 13 and p = rk−1
r−1 ,

with r a prime power and k is a natural number.

• If m = p + 1, then O is of type D if and only if p ≥ 7 and
p = rk−1

r−1 , with r a prime power and k is a natural number.
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Theorem. [A-Fantino-Graña-Vendramin] Am, m ≥ 5, collapses.

Example. A5 collapses.

• The types of conjugacy classes of S5 are

(15), (13,2), (12,3), (1,22), (1,4), (2,3), (5).

• The types of conjugacy classes of A5 are

(15), (12,3), (1,22), (5).

Remark. If G is any finite group, then dimB(M({e}, ρ)) = ∞
and dimB(M(Og, ε)) = ∞. Here e is the unit and ε is the counit.

Indeed, in both cases we elements 0 ̸= m ∈ M(Og, ρ) such that
c(m⊗m) = m⊗m, thus dimB(km) = ∞.

23



(12,3): This class is of type C.

(5): Let σ be of type (5). We know that OS5
σ splits as a disjoint

union of two orbits in A5. Hence there is j: σj ∈ OA5
σ \ {σ}; it

can be shown that j = −1. Now the centralizer C of σ in A5 is
⟨σ⟩ ≃ Z/5, hence Ĉ ≃ Z/5.

If ρ = ε is trivial, then we know that dimB(M(Oσ, ρ)) = ∞.
If ρ ̸= ε is non-trivial, then ω := ρ(σ) has order 5. Let U =
kσ ⊕ kσ−1; this is a braided vector space of Cartan type but not
of finite type. Hence dimB(U) = ∞ and B(M(Oσ, ρ)) = ∞.

(1,22): similar.
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ii.iii Conjugacy classes of symmetric groups. Let σ ∈ Sm\Am

be of type (1n1,2n2, . . . ,mnm) and O = OSm
σ ; O is a simple rack.

Theorem. [A-Fantino-Graña-Vendramin] If the type of σ is different
from

(2,3); (23); (1n,2), (9)

then the rack O is of type D, hence it collapses.

Example. To see that S5 collapses, it remains to discard the
class of type (2,3).

Example. To see that S6 collapses, it remains to discard the
class of type (14,2) and cocycle either −1 or χ6; this last is the
famous FK(6).

Notice that for σ of type (14,2) and µ of type (23), the racks
OS6

σ and OS6
µ are isomorphic via the outer automorphism of S6.
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