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i. Yetter-Drinfeld modules and racks.

i.i Yetter-Drinfeld modules over groups.

Assume that k = k.
If A is a finite-dimensional algebra, then IrrA :=

{isomorphism classes of simple objects inAM}. Idem for abelian categories.

Let H be a finite-dimensional Hopf algebra. The Drinfeld double

of H is a quasitriangular Hopf algebra such that

H
HYD ≃ HM

as braided tensor categories; D(H) ≃ H∗ ⊗H as vector spaces.

Proposition. The category H
HYD is semisimple

⇐⇒ D(H) is semisimple ⇐⇒ H and H∗ are semisimple.
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Let G be a finite group and g ∈ G. We set

◦ Ĝ := Homgroups(G, k×) (multiplicative characters).

◦ Og = {xgx−1|x ∈ G} is the conjugacy class of g, and

◦ Gg = {x ∈ |xg = gx} the isotropy subgroup of g.

Lemma. M ∈ kG
kGYD iff M ∈ kGM, M = ⊕g∈GMg is G-graded and

g ·Mh = Mghg−1.

Hence suppM := {g ∈ G : Mg ̸= 0} is stable by conjugation.

• For a conjugacy class O of G, set MO = ⊕g∈OMg. Then MO is
a Yetter-Drinfeld submodule of M and

M = ⊕O conjugacy class MO.

• If M is indecomposable, then suppM =: O is a single conjugacy
class and M = MO.
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• Let M ∈ kG
kGYD and g ∈ suppM . Then Gg acts on Mg.

Let Ug be a Gg-submodule of Mg. Then for any h = xgx−1,
Uh := x · Ug is a Gh-submodule of Mh.

(If h = ygy−1, then y−1x ∈ Gg, thus x · Ug = y · Ug and similarly
x · Ug is Gh-stable). Therefore,

U := ⊕h∈OgUh is a subobject of M in kG
kGYD.

Thus, if M is indecomposable, respectively simple, in kG
kGYD, then

Mg is indecomposable, respectively simple, in kGgM.

Corollary. If G is abelian, every M ∈ Irr kGkGYD has dimension 1.
Therefore, if char k ̸ | |G|, then any M ∈ kG

kGYD is of diagonal type.
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Let ρ : Gg → End(V ) be a fin.-dim. representation and let

M(g, ρ) := IndGGg V = kG⊗kGg V.

Clearly, dimM(g, ρ) = [G : Gg] dim ρ. Set y▷z := yzy−1, if y, z ∈ G.

Then M(g, ρ) ∈ kG
kGYD with action and grading given by

h ⇀ x⊗ v = hx⊗ v (the induced structure),

x⊗ v ∈ M(g, ρ)x▷g, h ∈ G, x ∈ G, v ∈ V.

Theorem. If ρ ∈ IrrGg, then M(g, ρ) ∈ Irr kGkGYD and any irre-

ducible in kG
kGYD arises in this way.

If char k does not divide |G|, then kG
kGYD is semisimple.
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The first part follows from the preceding discussion. Fix a subset

Q ⊂ G that intersects each conjugacy class exactly once. It is

easy to see that the objects M(g, ρ) for g ∈ Q and ρ ∈ IrrGg are

mutually non isomorphic. If char k does not divide |G|, then∑
g∈Q

∑
ρ∈IrrGg

(dimM(g, ρ))2 =
∑
g∈Q

∑
ρ∈IrrGg

([G : Gg] dim ρ)2

=
∑
g∈Q

[G : Gg]2
∑

ρ∈IrrGg

(dim ρ)2 =
∑
g∈Q

[G : Gg]2|Gg|

=
∑
g∈Q

|Og|2|Gg| =
∑
g∈Q

|Og||G| = |G|
∑
g∈Q

|Og|

= |G|2 = dimD(kG).

Hence D(kG) is semisimple.
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Let g ∈ G, ρ : Gg → End(V ), ρ ∈ IrrGg and M = M(g, ρ). Fix a

set (hi)i∈Is of representatives of G/Gg in G. Then M = ⊕i∈IshiV .

We compute the braiding of M . For i, j ∈ Is, v, w ∈ V ,

c(hiv ⊗ hjw) = (hi ▷ g) ⇀ (hjw)⊗ hiv = hk ρ(γ)(w)⊗ hiv,

where k ∈ Is and γ ∈ Gg are determined by

(hi ▷ g)hj = hkγ.

It is easy to see that

(hi ▷ g) ▷ (hj ▷ g) = hk ▷ g.

Searching for a class of braided vector spaces that efficiently

encompasses these Yetter-Drifeld modules, we arrive at the fol-

lowing notion.
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i.ii. Racks

A rack is a pair (X, ▷), where X ̸= ∅ is a set and ▷ : X ×X → X

is an operation on X such that

• x ▷ is a bijection for all x ∈ X,

• x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z) for all x, y, z ∈ X.

Morphisms of racks are maps that preserve the operation ▷.

Main examples: X a conjugacy class in G, x▷y := xyx−1. More

generally, a union of conjugacy classes, i.e., a subset of G stable

by the adjoint.

Except explicitly said, all racks are finite and arise as (unions of)

conjugacy classes of a finite group.
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• A rack X is abelian if x ▷ y = y for all x, y ∈ X.

Affine racks.

Let A be an abelian group, T ∈ AutA; define ▷ by

x ▷ y = (id−T )x+ Ty, x, y ∈ A.

Then (A, ▷) is an affine rack, denoted Aff(A, T ); it is isomorphic
to the subrack A× id of A ⋊ ⟨T ⟩.

If T is multiplication by m ∈ Z, then Aff(A,m) := Aff(A, T ).

• The dihedral rack is Dn := Aff(Z/n,−1).
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Twisted conjugacy classes.

Let N , C be finite groups with C acting on N by group auto-

morphisms, and let G = N ⋊ C. If (m, z), (n, y) ∈ G, then

(m, z)(n, y)(m, z)−1 = (m(z · n)(zyz−1 ·m−1), zyz−1).

When C is abelian, it follows that

O(n,y) =
⋃
z∈C

Cyz·n × {y},

where Cyn is the orbit of n ∈ N under the action of N on itself

given by

m ⇀y n := mn (y ·m−1).

Note that
⋃
z∈<y> Cyz·n = Cyn. For, n−1 ⇀y n = y · n, and the

claim follows. Note also that m ⇀y n is not the same as m ▷ n.
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i.iii. Braided vector spaces from racks.

A 2-cocycle on a rack X is a function q : X ×X → k× such that

qx▷y,x▷z qx,z = qx,y▷z qy,z

for all x, y, z ∈ X.
For example, any constant function X ×X → k× is a 2-cocycle.

Let q : X×X → k× be a function and V = kX with basis (ex)x∈X.
Let cq ∈ GL(V ⊗ V ) be given by

cq(ex ⊗ ey) = qx,y ex▷y ⊗ ex, x, y ∈ X.

Then, q is a 2-cocycle if and only if (V, cq) is a braided vector
space.

Notice: if G is a finite group, g ∈ G and χ ∈ Ĝg, then M(g, χ) as
a braided vector space is of the form (kX, cq).
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More generally, a a non-abelian 2-cocycle of degree n ≥ 2

on a rack X is a function q : X ×X → GL(n, k) such that

qx▷y,x▷z qx,z = qx,y▷z qy,z

for all x, y, z ∈ X.

Let q : X × X → GL(n, k) be a function and V = kX ⊗ kn. Let

cq ∈ GL(V ⊗ V ) be given by

cq(exv ⊗ eyw) = ex▷y qx,y(w)⊗ exv, x, y ∈ X, v,w ∈ kn.

Then, q is a non-abelian 2-cocycle if and only if (V, cq) is a braided

vector space.

Notice: if G is a finite group, g ∈ G and ρ ∈ IrrGg, then M(g, ρ)

as a braided vector space is of the form (kX ⊗ kn, cq).
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i.iv. Finite simple racks

Let X be a (finite) rack. A decomposition of X is a pair of
subracks (Y, Z) such that X = Y ∪̇ Z; X is decomposable if it
admits a decomposition, indecomposable otherwise.

A finite rack X is simple if it has at least 2 elements, and for
any surjective morphism of racks π : X → Y , either π is an
isomorphism or Y has just one element.

Notice: if Z is a finite rack, then there exists a finite simple rack
X and a surjective morphism of racks π : Z → X.
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Theorem. [Joyce; A-Graña with help of Guralnick] Let X be a finite
simple rack with |X| elements. Then either of the following
holds:

(I) |X| = pt where p is a prime and t ∈ N. There are two possibilities:

(a) t = 1 and X ≃ Ip is the permutation rack of the cycle
ς = (1,2, . . . , p), i.e., x ▷ y = ς(y) for all x, y ∈ X. (this can not be

realized as a conjugacy class in a group).

(b) X is the affine rack (Ft, T ), where T is the companion matrix
of a monic irreducible polynomial f ∈ F[X] of degree t, different
from X and X− 1.
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(II) |X| is divisible by at least two primes. Then, there exist

a simple non-abelian group L, t ∈ N, and θ ∈ AutL,

such that X is a twisted conjugacy class of type (G,T ), where

G = Lt and T ∈ Aut(Lt) acts by

T (ℓ1, . . . , ℓt) = (θ(ℓt), ℓ1, . . . , ℓt−1), ℓ1, . . . , ℓt ∈ L.

Namely. X = OT,n is the orbit of n ∈ N = Lt under the action

⇀T of N = L on itself by

m ⇀T n := mn (T ·m−1).

Furthermore, L and t are unique, and T only depends on its

conjugacy class in Out(Lt) = Aut(Lt)/Inn(Lt). If m,n ∈ X then

m ▷ n = mT (nm−1).
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i.v. Questions.

From now on, we assume that char k = 0.

To classify the finite-dimensional pointed Hopf algebras over non-

abelian groups, we need to address the following:

Question I: For any finite group G, any famlies (gi)i∈Is in G and

(ρi)i∈Is in IrrGgi, decide if dimB(⊕i∈IsM(gi, ρi)) is finite.

A more economical approach is to address:

Question II: For any finite rack X (realizable as a subrack of a

finite group) and any family qY of 2-cocycles of degree nY ≥ 1

on the components Y of X decide if dimB(⊕Y (kY ⊗knY , cqY )) is

finite.

16



i.vi. Answers.

Question I: As we saw, the problem was solved for finite abelian

groups G and recently, as we will see, also for solvable groups.

Many efforts were made towards:

Question III: Solve Question I for finite non-abelian simple

groups.

Indeed, Question III is intertwined with the following:

Question IV: Solve Question II for finite simple racks.
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To solve these problems we currently have very rudimentary

methods for computing Nichols algebras and some powerful in-

direct techniques for deciding that a Nichols algebra has infinite

dimension.

The technique of abelian subracks. Let X be a rack and let

q : X×X → k× be a 2-cocycle. Let Y ≤ X be an abelian subrack

and p = (qij)i,j∈Y . Then (kY, cp) is of diagonal type so we know

when dimB(kY, cp) < ∞. For example:

• Taking Y = {x}, one has dimB(kX, cq) < ∞ implies qxx ∈ G′
∞.

• Assume that q is the constant cocycle ω ∈ G′
N , N ≥ 2. Then

(kY, cp) is of Cartan type with matrix A = (aij), where aij = 2−N

for all i ̸= j.

Then dimB(kX, cq) < ∞ implies N = 2, or N = 3 and |Y | = 2.
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Theorem. [A] Let G be a finite nilpotent group of odd order.

Given a finite-dimensional M ∈ kG
kGYD, one has: dimB(M) < ∞

if and only if M ≃ M0 ⊕M1 ⊕ · · · ⊕Mt where:

• suppM0 ⊆ Z(G) and M0 is given by a family of YD-pairs

(gi, χi)i∈J such that the connected components of the matrix

q = (qij)i,j∈J belong to the list in [Heckenberger].

• For j ∈ It, Mj ≃ M(Oj, χj) where Oj is not central and abelian

as rack; χj ∈ Ĝxj for a fixed xj ∈ Oj that satisfies

χj

(
(g−1 ▷ xj)(g ▷ xj)

)
= 1 for every g ∈ G\Gxj .

and qj := χj

(
xj

)
has order 2 < Nj < ∞. Also dimB(Oj, χj) =

N
|Oj|
j . Furthermore,

c|Mj⊗Mi
c|Mi⊗Mj

= idMi⊗Mj
, i ̸= j ∈ I0,t.
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For an arbitrary solvable group G there is no such explicit de-
scription (yet) but:

Theorem.[A-Heckenberger-Vendramin] If M ∈ kG
kGYD is simple and

dimB(M) is finite, then the underlying pair (X, q) belongs to
the list below, or |X| = 1.

Theorem. [Heckenberger-Vendramin] If M ∈ kG
kGYD is semisimple but

not simple and dimB(M) is finite, then M belongs to a list to
be seen later (again related to Lie theory via Dynkin diagrams).

Corollary. [A-Heckenberger-Vendramin] if |G| is odd and M ∈ kG
kGYD

has and dimB(M) finite, then suppM is an abelian rack.
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ii. Finite-dimensional Nichols algebras.

ii.i Indecomposable support.

The list:

Racks with prime order: Let Aff(Fp, d) with p prime, where

(Fp, d) ∈ {(F3,2), (F5,2), (F5,3), (F7,3), (F7,5)}.

Relevant cocycle: constant ϵ ≡ −1.

Tetrahedron rack: T = Aff(F4, t), t = multiplication by

w ∈ F4\{0,1}. T ≃ conjugacy classes of 3-cycles in A4.

Two relevant cocycles: (ϵ, q) = (1,−1) or (−1, ω), ω ∈ G′
3.

The conjugacy class O4
2 of transpositions in S4:

Two relevant cocycles: constant ϵ = −1 or χ4 .
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The conjugacy class O4
4 of 4-cycles in S4:

Relevant cocycle: constant ϵ ≡ −1.

The conjugacy class O5
2 of transpositions in S5:

• B(O5
2, ϵ) and

• B(O5
2, χ5) (here χ5 is analogous to χ4).

Both Nichols algebras have dimension 2123452 = 8,294,400.

Notation: If (V, c) = (kX, cq) where X is a rack and q is a 2-
cocycle, then we set B(V, c) =: B(X, q).

22



The Nichols algebra B(O3
2,−1). Clearly, O3

2 ≃ Aff(F3,2).

Set x0 = x(12), x1 = x(23) and x2 = x(13). One has

B(O3
2,−1) ≃ k⟨x0, x1, x2|x20, x

2
1, x

2
2,

x0x1 + x1x2 + x2x0,

x1x0 + x2x1 + x0x2.⟩

The Poincaré polynomial is
(1 + t)2(1 + t+ t2) = 1+ 3t+4t2 +3t3 + t4. Hence

dimB(O3
2,−1) = 12 = 3.22, top degree = 4 = 22.
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The Nichols algebra B(Aff(F5,2),−1). One has

B(Aff(F5,2),−1) ≃ k⟨x0, x1, x2, x3, x4|
x20, x21, x22, x23, x24,

x3x2 + x2x0 + x1x3 + x0x1,

x4x0 + x2x1 + x1x4 + x0x2,

x4x1 + x3x4 + x1x0 + x0x3,

x4x2 + x3x0 + x2x3 + x0x4,

x4x3 + x3x1 + x2x4 + x1x2,

x1x0x1x0 + x0x1x0x1⟩
One has dimB(Aff(F5,2),−1) = 1280 = 5.44,
top degree = 16 = 42 and Poincaré polynomial

t16 +5t15 +15t14 +35t13 +66t12 +105t11 +145t10

+175t9 +186t8 +175t7 +145t6 +105t5 +66t4

+35t3 +15t2 +5t+1.
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The Nichols algebra B(Aff(F7,3),−1).

This algebra has generators x0, x1, x2, x3, x4, x5, x6, 21 relations

in degree 2 and one in degree 6:

x2x0x1x2x0x1 + x1x2x0x1x2x0 + x0x1x2x0x1x2.

One has dimB(Aff(F7,3),−1) = 326,592 = 7.66,

top degree 36 = 62.
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The Nichols algebras B(Aff(F5,3),−1) and B(Aff(F7,5),−1).

These are dual to B(Aff(F5,2),−1) and B(Aff(F7,3),−1) re-

spectively. So they have the same Poincaré series, dimension

and top degree.
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The Nichols algebra B(T ,−1).

RecallT = Aff(F4, t), t = multiplication by w ∈ F4\{0,1}.
T ≃ conjugacy classes of 3-cycles in A4.

The algebra has dimension 72 and top degree 9. One has

B(T ,−1) ≃ k⟨x0, x1, x2, x3|
x3x2 + x2x1 + x1x3,

x3x1 + x1x0 + x0x3,

x3x0 + x0x2 + x2x3,

x2x0 + x0x1 + x1x2,

x2x1x0x2x1x0 + x1x0x2x1x0x2 + x0x2x1x0x2x1.⟩

The Poincaré polynomial

(1 + t)2(1 + t+ t2)2(1 + t3) = t9 +4t8 +8t7 +11t6

+12t5 +12t4 +11t3 +8t2 +4t+1.
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The Nichols algebra B(T , χ).

Here χ is a suitable 2-cocycle that depends on ω ∈ G′
3 The

algebra B(T , χ) has dimension 5184 and top degree 24. It can

be presented by generators a, b, c, d with defining relations

a3, b3, c3, d3,

− ω2ab− ωbc+ ca, −ω2ac− ωcd+ da,

ωad− ω2ba+ db, ωbd+ ω2cb+ dc,

a2bcb26+ abcb2a+ bcb2a2 + cb2a2b+ b2a2bc

+ ba2bcb+ bcba2c+ cbabac+ cb2aca.

The Hilbert series of B(T , χ) is (6)4t (2)
2
t2

.
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The Nichols algebra B(O4
2,−1). Set x0 = x(12), x1 = x(13),

x2 = x(14), x3 = x(23), x4 = x(24), x5 = x(34). One has

B(O4
2,−1) ≃ k⟨x0, x1, x2, x3, x4, x5|

x20, x21, x22, x23, x24, x25,

x0x5 + x5x0, x1x4 + x4x1, x2x3 + x3x2,

x3x0 + x1x3 + x0x1, x0x3 + x1x0 + x3x1,

x4x0 + x2x4 + x0x2, x0x4 + x2x0 + x4x2,

x1x2 + x5x1 + x2x5, x2x1 + x5x2 + x1x5,

x3x4 + x5x3 + x4x5, x4x3 + x5x4 + x3x5⟩.
One has dimB(O4

2,−1) = 576 = 32.26, the top degree is 12 and the Poincaré

polynomial is

(1 + t)2(1 + t+ t2)2(1 + t+ t2 + t3)2

= t12 +6t11 +19t10 +42t9 +71t8 +96t7 +106t6

+96t5 +71t4 +42t3 +19t2 +6t+1.
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The Nichols algebra B(O4
4,−1). One has

B(O4
2,−1) ≃ k⟨x1, x2, x3, x4, x5, x6|

x21, x22, x23, x24, x25, x26
x4x3 + x3x4, x5x2 + x2x5, x6x1 + x1x6,

x3x2 + x2x1 + x1x3, x4x1 + x2x4 + x1x2,

x5x1 + x4x5 + x1x4, x5x3 + x3x1 + x1x5,

x6x2 + x2x3 + x3x6, x6x3 + x5x6 + x3x5,

x6x4 + x4x2 + x2x6, x6x5 + x5x4 + x4x6⟩.

The Poincaré polynomial, the dimension and the top degree are
the same as those of B(O4

2,−1).
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The Nichols algebra B(O5
2,−1).

This algebra is quadratic: it has 10 generators and 45 relations in

degree 2. One has dimB(O5
2,−1) = 8,294,400, and top degree

40.

The Nichols algebras B(O4
2, χ4) and B(O5

2, χ5).

These are twist-equivalent to B(O4
2,−1) and B(O5

2,−1), respec-

tively. So they have the same Poincaré series, dimension and top

degree.
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