Pointed Hopf algebras over simple groups

V. Nichols algebras over finite groups. Racks.

Nicolás Andruskiewitsch CIEM-CONICET, Córdoba, Argentina

Department of Mathematics and Data Science, Vrije Universiteit Brussel, Belgium

VUB-Leerstoel 2025-2026

Vrije Universiteit Brussels, October 16, 2025.

- i. Yetter-Drinfeld modules and racks.
- i.i Yetter-Drinfeld modules over groups.

Assume that $\mathbb{k} = \overline{\mathbb{k}}$.

If A is a finite-dimensional algebra, then $\operatorname{Irr} A := \{ \operatorname{isomorphism classes of simple objects } \operatorname{in}_A \mathcal{M} \}$. Idem for abelian categories.

Let H be a finite-dimensional Hopf algebra. The Drinfeld double of H is a quasitriangular Hopf algebra such that

$${}_H^H \mathcal{YD} \simeq {}_H \mathcal{M}$$

as braided tensor categories; $D(H) \simeq H^* \otimes H$ as vector spaces.

Proposition. The category ${}^H_H\mathcal{YD}$ is semisimple $\iff D(H)$ is semisimple $\iff H$ and H^* are semisimple.

Let G be a finite group and $g \in G$. We set

- \circ $\widehat{G} := \operatorname{Hom}_{\operatorname{groups}}(G, \mathbb{k}^{\times})$ (multiplicative characters).
- $\mathcal{O}_g = \{xgx^{-1}|x \in G\}$ is the conjugacy class of g, and
- $\circ G^g = \{x \in |xg = gx\}$ the isotropy subgroup of g.

Lemma. $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ iff $M \in {}_{\Bbbk G} \mathcal{M}$, $M = \oplus_{g \in G} M_g$ is G-graded and

$$g \cdot M_h = M_{ghg^{-1}}.$$

Hence supp $M := \{g \in G : M_q \neq 0\}$ is stable by conjugation.

• For a conjugacy class $\mathcal O$ of G, set $M_{\mathcal O}=\oplus_{g\in\mathcal O}M_g$. Then $M_{\mathcal O}$ is a Yetter-Drinfeld submodule of M and

$$M = \bigoplus_{\mathcal{O} \text{ conjugacy class } M_{\mathcal{O}}.$$

• If M is indecomposable, then supp $M=:\mathcal{O}$ is a single conjugacy class and $M=M_{\mathcal{O}}$.

• Let $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ and $g \in \operatorname{supp} M$. Then G^g acts on M_g .

Let U_g be a G^g -submodule of M_g . Then for any $h = xgx^{-1}$, $U_h := x \cdot U_g$ is a G^h -submodule of M_h .

(If $h = ygy^{-1}$, then $y^{-1}x \in G^g$, thus $x \cdot U_g = y \cdot U_g$ and similarly $x \cdot U_g$ is G^h -stable). Therefore,

$$U:=\oplus_{h\in\mathcal{O}_q}U_h$$
 is a subobject of M in ${}^{\Bbbk G}_{\Bbbk G}\mathcal{Y}\mathcal{D}.$

Thus, if M is indecomposable, respectively simple, in ${}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$, then M_g is indecomposable, respectively simple, in ${}_{\Bbbk G}g\mathcal{M}$.

Corollary. If G is abelian, every $M \in \operatorname{Irr}_{\Bbbk G}^{\Bbbk G} \mathcal{YD}$ has dimension 1. Therefore, if $\operatorname{char}_{\Bbbk} \not |G|$, then any $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ is of diagonal type.

Let $\rho: G^g \to \operatorname{End}(V)$ be a fin.-dim. representation and let

$$M(g,\rho) := \operatorname{Ind}_{G^g}^G V = \Bbbk G \otimes_{\Bbbk G^g} V.$$

Clearly, dim $M(g, \rho) = [G : G^g] \dim \rho$. Set $y \triangleright z := yzy^{-1}$, if $y, z \in G$.

Then $M(g,\rho)\in {}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ with action and grading given by

$$h \rightharpoonup x \otimes v = hx \otimes v$$
 (the induced structure), $x \otimes v \in M(g, \rho)_{x \triangleright g}, \qquad h \in G, x \in G, v \in V.$

Theorem. If $\rho \in \operatorname{Irr} G^g$, then $M(g,\rho) \in \operatorname{Irr}_{\Bbbk G}^{\&G} \mathcal{YD}$ and any irreducible in $_{\Bbbk G}^{\&G} \mathcal{YD}$ arises in this way.

If chark does not divide |G|, then $_{\Bbbk G}^{\Bbbk G}\mathcal{YD}$ is semisimple.

The first part follows from the preceding discussion. Fix a subset $\mathcal{Q} \subset G$ that intersects each conjugacy class exactly once. It is easy to see that the objects $M(g,\rho)$ for $g \in \mathcal{Q}$ and $\rho \in \operatorname{Irr} G^g$ are mutually non isomorphic. If chark does not divide |G|, then

$$\sum_{g \in \mathcal{Q}} \sum_{\rho \in \operatorname{Irr} G^g} (\dim M(g, \rho))^2 = \sum_{g \in \mathcal{Q}} \sum_{\rho \in \operatorname{Irr} G^g} ([G : G^g] \dim \rho)^2$$

$$= \sum_{g \in \mathcal{Q}} [G : G^g]^2 \sum_{\rho \in \operatorname{Irr} G^g} (\dim \rho)^2 = \sum_{g \in \mathcal{Q}} [G : G^g]^2 |G^g|$$

$$= \sum_{g \in \mathcal{Q}} |\mathcal{O}_g|^2 |G^g| = \sum_{g \in \mathcal{Q}} |\mathcal{O}_g| |G| = |G| \sum_{g \in \mathcal{Q}} |\mathcal{O}_g|$$
$$= |G|^2 = \dim D(\Bbbk G).$$

Hence $D(\Bbbk G)$ is semisimple.

Let $g \in G$, $\rho : G^g \to \operatorname{End}(V)$, $\rho \in \operatorname{Irr} G^g$ and $M = M(g, \rho)$. Fix a set $(h_i)_{i \in \mathbb{I}_s}$ of representatives of G/G^g in G. Then $M = \bigoplus_{i \in \mathbb{I}_s} h_i V$. We compute the braiding of M. For $i, j \in \mathbb{I}_s$, $v, w \in V$,

$$c(h_i v \otimes h_j w) = (h_i \triangleright g) \rightharpoonup (h_j w) \otimes h_i v = h_k \rho(\gamma)(w) \otimes h_i v,$$

where $k \in \mathbb{I}_s$ and $\gamma \in G^g$ are determined by

$$(h_i \triangleright g)h_j = h_k \gamma.$$

It is easy to see that

$$(h_i \triangleright g) \triangleright (h_j \triangleright g) = h_k \triangleright g.$$

Searching for a class of braided vector spaces that efficiently encompasses these Yetter-Drifeld modules, we arrive at the following notion.

i.ii. Racks

A rack is a pair (X,\triangleright) , where $X \neq \emptyset$ is a set and $\triangleright : X \times X \to X$ is an operation on X such that

- $x \triangleright \underline{\hspace{1cm}}$ is a bijection for all $x \in X$,
- $x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)$ for all $x, y, z \in X$.

Morphisms of racks are maps that preserve the operation ▷.

Main examples: X a conjugacy class in G, $x \triangleright y := xyx^{-1}$. More generally, a union of conjugacy classes, i.e., a subset of G stable by the adjoint.

Except explicitly said, all racks are finite and arise as (unions of) conjugacy classes of a finite group.

• A rack X is abelian if $x \triangleright y = y$ for all $x, y \in X$.

Affine racks.

Let A be an abelian group, $T \in Aut A$; define \triangleright by

$$x \triangleright y = (\operatorname{id} - T)x + Ty,$$
 $x, y \in A.$

Then (A, \triangleright) is an *affine* rack, denoted Aff(A, T); it is isomorphic to the subrack $A \times \text{id}$ of $A \rtimes \langle T \rangle$.

If T is multiplication by $m \in \mathbb{Z}$, then Aff(A, m) := Aff(A, T).

• The dihedral rack is $\mathcal{D}_n := \mathsf{Aff}(\mathbb{Z}/n, -1)$.

Twisted conjugacy classes.

Let N, C be finite groups with C acting on N by group automorphisms, and let $G = N \rtimes C$. If $(m, z), (n, y) \in G$, then

$$(m,z)(n,y)(m,z)^{-1} = (m(z \cdot n)(zyz^{-1} \cdot m^{-1}), zyz^{-1}).$$

When C is abelian, it follows that

$$\mathcal{O}_{(n,y)} = \bigcup_{z \in C} \mathcal{C}_{z \cdot n}^y \times \{y\},\,$$

where \mathcal{C}_n^y is the orbit of $n \in N$ under the action of N on itself given by

$$m \rightharpoonup_y n := m n (y \cdot m^{-1}).$$

Note that $\bigcup_{z \in \langle y \rangle} \mathcal{C}^y{}_{z \cdot n} = \mathcal{C}^y{}_n$. For, $n^{-1} \rightharpoonup_y n = y \cdot n$, and the claim follows. Note also that $m \rightharpoonup_y n$ is *not* the same as $m \triangleright n$.

i.iii. Braided vector spaces from racks.

A 2-cocycle on a rack X is a function $\mathfrak{q}: X \times X \to \mathbb{k}^{\times}$ such that

$$\mathfrak{q}_{x\triangleright y,x\triangleright z}\,\mathfrak{q}_{x,z}=\mathfrak{q}_{x,y\triangleright z}\,\mathfrak{q}_{y,z}$$

for all $x, y, z \in X$.

For example, any constant function $X \times X \to \mathbb{k}^{\times}$ is a 2-cocycle.

Let $\mathfrak{q}: X \times X \to \mathbb{k}^{\times}$ be a function and $V = \mathbb{k}X$ with basis $(e_x)_{x \in X}$. Let $c^{\mathfrak{q}} \in GL(V \otimes V)$ be given by

$$c^{\mathfrak{q}}(e_x \otimes e_y) = q_{x,y} e_{x \triangleright y} \otimes e_x, \qquad x, y \in X.$$

Then, \mathfrak{q} is a 2-cocycle if and only if $(V, c^{\mathfrak{q}})$ is a braided vector space.

Notice: if G is a finite group, $g \in G$ and $\chi \in \widehat{G}^g$, then $M(g,\chi)$ as a braided vector space is of the form $(kX, c^{\mathfrak{q}})$.

More generally, a **a non-abelian 2-cocycle of degree** $n \geq 2$ on a rack X is a function $\mathfrak{q}: X \times X \to \mathbf{GL}(n, \mathbb{k})$ such that

$$\mathfrak{q}_{x\triangleright y,x\triangleright z}\,\mathfrak{q}_{x,z}=\mathfrak{q}_{x,y\triangleright z}\,\mathfrak{q}_{y,z}$$

for all $x, y, z \in X$.

Let $\mathfrak{q}: X \times X \to \mathbf{GL}(n, \mathbb{k})$ be a function and $V = \mathbb{k}X \otimes \mathbb{k}^n$. Let $c^{\mathfrak{q}} \in GL(V \otimes V)$ be given by

$$c^{\mathfrak{q}}(e_xv\otimes e_yw)=e_{x\triangleright y}\,q_{x,y}(w)\otimes e_xv, \qquad x,y\in X,\,v,w\in \mathbb{k}^n.$$

Then, \mathfrak{q} is a non-abelian 2-cocycle if and only if $(V, c^{\mathfrak{q}})$ is a braided vector space.

Notice: if G is a finite group, $g \in G$ and $\rho \in \operatorname{Irr} G^g$, then $M(g, \rho)$ as a braided vector space is of the form $(\mathbb{k}X \otimes \mathbb{k}^n, c^{\mathfrak{q}})$.

i.iv. Finite simple racks

Let X be a (finite) rack. A decomposition of X is a pair of subracks (Y,Z) such that $X=Y \cup Z$; X is decomposable if it admits a decomposition, indecomposable otherwise.

A finite rack X is *simple* if it has at least 2 elements, and for any surjective morphism of racks $\pi: X \to Y$, either π is an isomorphism or Y has just one element.

Notice: if Z is a finite rack, then there exists a finite simple rack X and a surjective morphism of racks $\pi:Z\to X$.

Theorem. [Joyce; A-Graña with help of Guralnick] Let X be a finite simple rack with |X| elements. Then either of the following holds:

- (I) $|X| = p^t$ where p is a prime and $t \in \mathbb{N}$. There are two possibilities:
- (a) t=1 and $X\simeq \mathbb{I}_p$ is the permutation rack of the cycle $\varsigma=(1,2,\ldots,p)$, i.e., $x\triangleright y=\varsigma(y)$ for all $x,y\in X$. (this can not be realized as a conjugacy class in a group).
- (b) X is the affine rack (\mathbb{F}^t, T) , where T is the companion matrix of a monic irreducible polynomial $f \in \mathbb{F}[\mathbb{X}]$ of degree t, different from \mathbb{X} and $\mathbb{X}-1$.

(II) |X| is divisible by at least two primes. Then, there exist

a simple non-abelian group L, $t \in \mathbb{N}$, and $\theta \in \operatorname{Aut} L$, such that X is a twisted conjugacy class of type (G,T), where $G = L^t$ and $T \in \operatorname{Aut}(L^t)$ acts by

$$T(\ell_1,\ldots,\ell_t)=(\theta(\ell_t),\ell_1,\ldots,\ell_{t-1}),\qquad \ell_1,\ldots,\ell_t\in L.$$

Namely. $X=\mathcal{O}_{T,n}$ is the orbit of $n\in N=L^t$ under the action $rightarrow_T$ of N=L on itself by

$$m \rightharpoonup_T n := m n (T \cdot m^{-1}).$$

Furthermore, L and t are unique, and T only depends on its conjugacy class in $\operatorname{Out}(L^t) = \operatorname{Aut}(L^t)/\operatorname{Inn}(L^t)$. If $m,n \in X$ then

$$m \triangleright n = mT(nm^{-1}).$$

i.v. Questions.

From now on, we assume that char k = 0.

To classify the finite-dimensional pointed Hopf algebras over nonabelian groups, we need to address the following:

Question I: For any finite group G, any famlies $(g_i)_{i \in \mathbb{I}_s}$ in G and $(\rho_i)_{i \in \mathbb{I}_s}$ in $\operatorname{Irr} G^{g_i}$, decide if $\dim \mathscr{B}(\bigoplus_{i \in \mathbb{I}_s} M(g_i, \rho_i))$ is finite.

A more economical approach is to address:

Question II: For any finite rack X (realizable as a subrack of a finite group) and any family \mathfrak{q}_Y of 2-cocycles of degree $n_Y \geq 1$ on the components Y of X decide if $\dim \mathscr{B}(\bigoplus_Y (\Bbbk Y \otimes \Bbbk^{n_Y}, c^{\mathfrak{q}_Y}))$ is finite.

i.vi. Answers.

Question I: As we saw, the problem was solved for finite abelian groups G and recently, as we will see, also for solvable groups.

Many efforts were made towards:

Question III: Solve Question I for finite non-abelian *simple* groups.

Indeed, Question III is intertwined with the following:

Question IV: Solve Question II for finite simple racks.

To solve these problems we currently have very rudimentary methods for computing Nichols algebras and some powerful indirect techniques for deciding that a Nichols algebra has infinite dimension.

The technique of abelian subracks. Let X be a rack and let $\mathfrak{q}: X \times X \to \Bbbk^{\times}$ be a 2-cocycle. Let $Y \leq X$ be an abelian subrack and $\mathfrak{p} = (q_{ij})_{i,j \in Y}$. Then $(\Bbbk Y, c^{\mathfrak{p}})$ is of diagonal type so we know when $\dim \mathscr{B}(\Bbbk Y, c^{\mathfrak{p}}) < \infty$. For example:

- Taking $Y = \{x\}$, one has dim $\mathscr{B}(\mathbb{k}X, c^{\mathfrak{q}}) < \infty$ implies $q_{xx} \in \mathbb{G}'_{\infty}$.
- Assume that \mathfrak{q} is the constant cocycle $\omega \in \mathbb{G}'_N$, $N \geq 2$. Then $(\mathbb{k}Y, c^{\mathfrak{p}})$ is of Cartan type with matrix $\mathscr{A} = (a_{ij})$, where $a_{ij} = 2 N$ for all $i \neq j$.

Then dim $\mathscr{B}(\Bbbk X, c^{\mathfrak{q}}) < \infty$ implies N = 2, or N = 3 and |Y| = 2.

Theorem. [A] Let G be a finite nilpotent group of odd order. Given a finite-dimensional $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$, one has: dim $\mathscr{B}(M) < \infty$ if and only if $M \simeq M_0 \oplus M_1 \oplus \cdots \oplus M_t$ where:

- supp $M_0 \subseteq Z(G)$ and M_0 is given by a family of YD-pairs $(g_i, \chi_i)_{i \in J}$ such that the connected components of the matrix $\mathfrak{q} = (q_{ij})_{i,j \in J}$ belong to the list in [Heckenberger].
- For $j \in \mathbb{I}_t$, $M_j \simeq M(\mathcal{O}_j, \chi_j)$ where \mathcal{O}_j is not central and abelian as rack; $\chi_j \in \widehat{G^{x_j}}$ for a fixed $x_j \in \mathcal{O}_j$ that satisfies

$$\chi_j\left((g^{-1}\triangleright x_j)(g\triangleright x_j)\right)=1$$
 for every $g\in G\backslash G^{x_j}$.

and $q_j:=\chi_j\left(x_j\right)$ has order $2< N_j<\infty$. Also $\dim \mathscr{B}(\mathcal{O}_j,\chi_j)=N_j^{|\mathcal{O}_j|}$. Furthermore,

$$c_{|M_i\otimes M_i}\,c_{|M_i\otimes M_j}=\operatorname{id}_{M_i\otimes M_j}, \qquad i\neq j\in\mathbb{I}_{0,t}.$$

For an arbitrary solvable group G there is no such explicit description (yet) but:

Theorem.[A-Heckenberger-Vendramin] If $M \in {}^{\Bbbk G}_{\Bbbk G}\mathcal{YD}$ is simple and $\dim \mathscr{B}(M)$ is finite, then the underlying pair (X,\mathfrak{q}) belongs to the list below, or |X|=1.

Theorem. [Heckenberger-Vendramin] If $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ is semisimple but not simple and dim $\mathscr{B}(M)$ is finite, then M belongs to a list to be seen later (again related to Lie theory via Dynkin diagrams).

Corollary. [A-Heckenberger-Vendramin] if |G| is odd and $M \in {}^{\Bbbk G}_{\Bbbk G} \mathcal{YD}$ has and dim $\mathscr{B}(M)$ finite, then supp M is an abelian rack.

- ii. Finite-dimensional Nichols algebras.
- ii.i Indecomposable support.

The list:

Racks with prime order: Let Aff(\mathbb{F}_p, d) with p prime, where

$$(\mathbb{F}_p, d) \in \{(\mathbb{F}_3, 2), (\mathbb{F}_5, 2), (\mathbb{F}_5, 3), (\mathbb{F}_7, 3), (\mathbb{F}_7, 5)\}.$$

Relevant cocycle: constant $\epsilon \equiv -1$.

Tetrahedron rack: $\mathscr{T}=\mathrm{Aff}(\mathbb{F}_4,\mathfrak{t}),\ \mathfrak{t}=\mathrm{multiplication}$ by $w\in\mathbb{F}_4\backslash\{0,1\}.$ $\mathscr{T}\simeq\mathrm{conjugacy}$ classes of 3-cycles in $\mathbb{A}_4.$ Two relevant cocycles: $(\epsilon,q)=(1,-1)$ or $(-1,\omega),\ \omega\in\mathbb{G}_3'.$

The conjugacy class \mathcal{O}_2^4 of transpositions in \mathbb{S}_4 :

Two relevant cocycles: constant $\epsilon = -1$ or χ_4 .

The conjugacy class \mathcal{O}_4^4 of 4-cycles in \mathbb{S}_4 :

Relevant cocycle: constant $\epsilon \equiv -1$.

The conjugacy class \mathcal{O}_2^5 of transpositions in \mathbb{S}_5 :

- $\mathscr{B}(\mathcal{O}_2^5,\epsilon)$ and
- $\mathcal{B}(\mathcal{O}_2^5, \chi_5)$ (here χ_5 is analogous to χ_4).

Both Nichols algebras have dimension $2^{12}3^45^2 = 8,294,400$.

Notation: If $(V,c)=(\Bbbk X,c^{\mathfrak{q}})$ where X is a rack and \mathfrak{q} is a 2-cocycle, then we set $\mathscr{B}(V,c)=:\mathscr{B}(X,\mathfrak{q}).$

The Nichols algebra $\mathscr{B}(\mathcal{O}_2^3,-1)$. Clearly, $\mathcal{O}_2^3\simeq \mathsf{Aff}(\mathbb{F}_3,2)$.

Set
$$x_0=x_{(12)}$$
, $x_1=x_{(23)}$ and $x_2=x_{(13)}$. One has
$$\mathscr{B}(\mathcal{O}_2^3,-1)\simeq \Bbbk\langle x_0,x_1,x_2|x_0^2,x_1^2,x_2^2,\\ x_0x_1+x_1x_2+x_2x_0,\\ x_1x_0+x_2x_1+x_0x_2.\rangle$$

The Poincaré polynomial is $(1+t)^2(1+t+t^2)=1+3t+4t^2+3t^3+t^4$. Hence $\dim \mathscr{B}(\mathcal{O}_2^3,-1)=12=3.2^2$, top degree $=4=2^2$.

The Nichols algebra $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_5,2),-1)$. One has

$$\mathcal{B}(\mathsf{Aff}(\mathbb{F}_{5},2),-1) \simeq \mathbb{k}\langle x_{0},x_{1},x_{2},x_{3},x_{4}|$$

$$x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2},$$

$$x_{3}x_{2} + x_{2}x_{0} + x_{1}x_{3} + x_{0}x_{1},$$

$$x_{4}x_{0} + x_{2}x_{1} + x_{1}x_{4} + x_{0}x_{2},$$

$$x_{4}x_{1} + x_{3}x_{4} + x_{1}x_{0} + x_{0}x_{3},$$

$$x_{4}x_{2} + x_{3}x_{0} + x_{2}x_{3} + x_{0}x_{4},$$

$$x_{4}x_{3} + x_{3}x_{1} + x_{2}x_{4} + x_{1}x_{2},$$

$$x_{1}x_{0}x_{1}x_{0} + x_{0}x_{1}x_{0}x_{1}\rangle$$

One has dim $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_5,2),-1)=1280=5.4^4,$ top degree = $16=4^2$ and Poincaré polynomial

$$t^{16} + 5t^{15} + 15t^{14} + 35t^{13} + 66t^{12} + 105t^{11} + 145t^{10} + 175t^9 + 186t^8 + 175t^7 + 145t^6 + 105t^5 + 66t^4 + 35t^3 + 15t^2 + 5t + 1.$$

The Nichols algebra $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_7,3),-1)$.

This algebra has generators $x_0, x_1, x_2, x_3, x_4, x_5, x_6$, 21 relations in degree 2 and one in degree 6:

$$x_2x_0x_1x_2x_0x_1 + x_1x_2x_0x_1x_2x_0 + x_0x_1x_2x_0x_1x_2$$
.

One has dim $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_7,3),-1)=326,592=7.6^6,$ top degree $36=6^2.$

The Nichols algebras $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_5,3),-1)$ and $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_7,5),-1)$.

These are dual to $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_5,2),-1)$ and $\mathscr{B}(\mathsf{Aff}(\mathbb{F}_7,3),-1)$ respectively. So they have the same Poincaré series, dimension and top degree.

The Nichols algebra $\mathcal{B}(\mathcal{T},-1)$.

Recall $\mathscr{T}=\mathsf{Aff}(\mathbb{F}_4,\mathfrak{t}),\ \mathfrak{t}=\mathsf{multiplication}\ \mathsf{by}\ w\in\mathbb{F}_4\backslash\{0,1\}.$ $\mathscr{T}\simeq\mathsf{conjugacy}\ \mathsf{classes}\ \mathsf{of}\ 3\mathsf{-cycles}\ \mathsf{in}\ \mathbb{A}_4.$

The algebra has dimension 72 and top degree 9. One has

$$\mathcal{B}(\mathcal{T}, -1) \simeq \mathbb{k}\langle x_0, x_1, x_2, x_3 |$$

$$x_3x_2 + x_2x_1 + x_1x_3,$$

$$x_3x_1 + x_1x_0 + x_0x_3,$$

$$x_3x_0 + x_0x_2 + x_2x_3,$$

$$x_2x_0 + x_0x_1 + x_1x_2,$$

$$x_2x_1x_0x_2x_1x_0 + x_1x_0x_2x_1x_0x_2 + x_0x_2x_1x_0x_2x_1.\rangle$$

The Poincaré polynomial

$$(1+t)^{2}(1+t+t^{2})^{2}(1+t^{3}) = t^{9} + 4t^{8} + 8t^{7} + 11t^{6} + 12t^{5} + 12t^{4} + 11t^{3} + 8t^{2} + 4t + 1.$$

The Nichols algebra $\mathscr{B}(\mathscr{T},\chi)$.

Here χ is a suitable 2-cocycle that depends on $\omega \in \mathbb{G}_3'$ The algebra $\mathscr{B}(\mathscr{T},\chi)$ has dimension 5184 and top degree 24. It can be presented by generators a,b,c,d with defining relations

$$a^{3}$$
, b^{3} , c^{3} , d^{3} ,
 $-\omega^{2}ab - \omega bc + ca$, $-\omega^{2}ac - \omega cd + da$,
 $\omega ad - \omega^{2}ba + db$, $\omega bd + \omega^{2}cb + dc$,
 $a^{2}bcb^{2}6 + abcb^{2}a + bcb^{2}a^{2} + cb^{2}a^{2}b + b^{2}a^{2}bc$
 $+ ba^{2}bcb + bcba^{2}c + cbabac + cb^{2}aca$.

The Hilbert series of $\mathscr{B}(\mathscr{T},\chi)$ is $(6)_t^4(2)_{t^2}^2$.

The Nichols algebra
$$\mathscr{B}(\mathcal{O}_2^4, -1)$$
. Set $x_0 = x_{(12)}, \ x_1 = x_{(13)}, \ x_2 = x_{(14)}, \ x_3 = x_{(23)}, \ x_4 = x_{(24)}, \ x_5 = x_{(34)}.$ One has
$$\mathscr{B}(\mathcal{O}_2^4, -1) \simeq \mathbb{k}\langle x_0, x_1, x_2, x_3, x_4, x_5 | \\ x_0^2, \ x_1^2, \ x_2^2, \ x_3^2, \ x_4^2, \ x_5^2, \\ x_0x_5 + x_5x_0, \ x_1x_4 + x_4x_1, \ x_2x_3 + x_3x_2, \\ x_3x_0 + x_1x_3 + x_0x_1, \ x_0x_3 + x_1x_0 + x_3x_1, \\ x_4x_0 + x_2x_4 + x_0x_2, \ x_0x_4 + x_2x_0 + x_4x_2, \\ x_1x_2 + x_5x_1 + x_2x_5, \ x_2x_1 + x_5x_2 + x_1x_5, \\ x_3x_4 + x_5x_3 + x_4x_5, \ x_4x_3 + x_5x_4 + x_3x_5 \rangle.$$

One has dim $\mathcal{B}(\mathcal{O}_2^4,-1)=576=3^2.2^6$, the top degree is 12 and the Poincaré polynomial is

$$(1+t)^{2}(1+t+t^{2})^{2}(1+t+t^{2}+t^{3})^{2}$$

$$= t^{12} + 6t^{11} + 19t^{10} + 42t^{9} + 71t^{8} + 96t^{7} + 106t^{6}$$

$$+ 96t^{5} + 71t^{4} + 42t^{3} + 19t^{2} + 6t + 1.$$

The Nichols algebra $\mathcal{B}(\mathcal{O}_4^4, -1)$. One has

$$\mathcal{B}(\mathcal{O}_{2}^{4},-1) \simeq \mathbb{k}\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} |$$

$$x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}, x_{6}^{2}$$

$$x_{4}x_{3} + x_{3}x_{4}, x_{5}x_{2} + x_{2}x_{5}, x_{6}x_{1} + x_{1}x_{6},$$

$$x_{3}x_{2} + x_{2}x_{1} + x_{1}x_{3}, x_{4}x_{1} + x_{2}x_{4} + x_{1}x_{2},$$

$$x_{5}x_{1} + x_{4}x_{5} + x_{1}x_{4}, x_{5}x_{3} + x_{3}x_{1} + x_{1}x_{5},$$

$$x_{6}x_{2} + x_{2}x_{3} + x_{3}x_{6}, x_{6}x_{3} + x_{5}x_{6} + x_{3}x_{5},$$

$$x_{6}x_{4} + x_{4}x_{2} + x_{2}x_{6}, x_{6}x_{5} + x_{5}x_{4} + x_{4}x_{6}\rangle.$$

The Poincaré polynomial, the dimension and the top degree are the same as those of $\mathcal{B}(\mathcal{O}_2^4, -1)$.

The Nichols algebra $\mathcal{B}(\mathcal{O}_2^5, -1)$.

This algebra is quadratic: it has 10 generators and 45 relations in degree 2. One has dim $\mathcal{B}(\mathcal{O}_2^5, -1) = 8,294,400$, and top degree 40.

The Nichols algebras $\mathscr{B}(\mathcal{O}_2^4, \chi_4)$ and $\mathscr{B}(\mathcal{O}_2^5, \chi_5)$.

These are twist-equivalent to $\mathcal{B}(\mathcal{O}_2^4, -1)$ and $\mathcal{B}(\mathcal{O}_2^5, -1)$, respectively. So they have the same Poincaré series, dimension and top degree.