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I. Yetter-Drinfeld modules and racks.

1.1 Yetter-Drinfeld modules over groups.
Assume that k = k.

If A is a finite-dimensional algebra, then Irr A :=

{isomorphism classes of simple objects in 4 M}. Idem for abelian categories.
Let H be a finite-dimensional Hopf algebra. The Drinfeld double
of H is a quasitriangular Hopf algebra such that

HYyD ~ gM

as braided tensor categories; D(H) ~ H* ® H as vector spaces.

Proposition. The category gyp IS semisimple
< D(H) is semisimple <= H and H™* are semisimple.



Let G be a finite group and g € G. We set

o G = Homgroups(G, k™) (multiplicative characters).

o Oy = {xgz~ |z € G} is the conjugacy class of g, and

o GY9 = {x € |xg = gz} the isotropy subgroup of g.

Lemma. M ¢ ﬁgyp iff M € yoM, M = G4ecaMy is G-graded and
Hence supp M := {g € G : My # 0} is stable by conjugation.

e For a conjugacy class O of G, set My = ©ycoMy. Then My is
a Yetter-Drinfeld submodule of M and

M = &p conjugacy class Me.

e If M is indecomposable, then supp M =: O is a single conjugacy
class and M = Mp.



o Let M € ¥&YD and g € supp M. Then GY acts on M.

Let U, be a G9-submodule of M. Then for any h = zgz !,
Uy, .= x - Uy is a GP-submodule of Mj,.

(If h = ygy~1, then y~lz € GY9, thus = - Uy = y - Uy and similarly
x - Uy is Gh-stable). Therefore,
U .= @heogUh IS a subobject of M in  AVD.

Thus, if M is indecomposable, respectively simple, in £5VD, then
Mg is indecomposable, respectively simple, in yggM.

Corollary. If G is abelian, every M € Irr 8D has dimension 1.
Therefore, if chark f|G|, then any M € HéGyD is of diagonal type.



Let p: G9 — End(V) be a fin.-dim. representation and let

M(g,p) :=1Ind% V = kG Qe V.
Clearly, dim M (g, p) = [G : G9]dim p. Set ypz = yzy~ 1, ify,z € G.

Then M(g,p) € f&YD with action and grading given by

h—2®v=hrQu (the induced structure),
v e M(g,p)g, heG,zeGvelV.

Theorem. If p € IrrGY, then M(g,p) € IrrfGYD and any irre-
ducible in f&YD arises in this way.

If chark does not divide |G|, then f&YD is semisimple.



T he first part follows from the preceding discussion. Fix a subset
Q C G that intersects each conjugacy class exactly once. It is
easy to see that the objects M(g,p) for g € Q and p € Irr GY are
mutually non isomorphic. If chark does not divide |G|, then

> Y WdimM(g,p)*= . > ([G:G%dimp)?

geQ pelrr G9 geQ pelrr GY9

= > [G:G9? > (dimp)? = Y [G: GI°|GY]

geQ p€lrr G9 geQ

= Y 10g)21G9 = 3 |0g||Gl = |G| Y |0y
geQ geQ geQ
= |G|? = dim D(kQG).

Hence D(kG) is semisimple.



Let g€ G, p: G9— End(V), peIrrGY9 and M = M(g,p). Fix a
set (h;);c1, Of representatives of G/GY9 in G. Then M = @1 h;V .
We compute the braiding of M. For i,5 €ls, v,w €V,

c(hijv ® hjw) = (h;>g) = (hjw) ® hjv = hy p(v)(w) ® h;v,
where k € I and v € G9 are determined by

(hi>g)hj = hyy.

It is easy to see that
(hi>g) > (hj>g) = hg>g.
Searching for a class of braided vector spaces that efficiently

encompasses these Yetter-Drifeld modules, we arrive at the fol-
lowing notion.



1.1l. Racks

A rack is a pair (X,p), where X #fisasetandp: X x X —- X
IS an operation on X such that

e x> IS a bijection for all x € X,

e x> (yvz)=(x>y)>(x>z) forall z,y,z € X.

Morphisms of racks are maps that preserve the operation .
Main examples: X a conjugacy class in G, x>y = :Cyw_l. More
generally, a union of conjugacy classes, i.e., a subset of G stable

by the adjoint.

Except explicitly said, all racks are finite and arise as (unions of)
conjugacy classes of a finite group.



e A rack X is abelian if x>y =y for all z,y € X.
Affine racks.

Let A be an abelian group, T € Aut A; define > by

x>y = (id-T)x + Ty, x,y € A.

Then (A,>) is an affine rack, denoted Aff(A,T); it is isomorphic
to the subrack A x id of A x (T).

If T is multiplication by m € Z, then Aff(A, m) = Aff(A,T).

e The dihedral rack is Dy, .= Aff(Z/n,—1).



Twisted conjugacy classes.

Let IV, C be finite groups with C acting on N by group auto-
morphisms, and let G = N x C. If (m,z2), (n,y) € G, then

1

(m,2)(n,y)(m,2) "' = (m(z-n)(zyz~ " -m™1),z2y2" ).

When C' is abelian, it follows that
Otnyy = U Con x {y},
zeC
where CJ is the orbit of n € N under the action of N on itself
given by
m—yn:=mn(y- m™1).

Note that U,c<ys CY2n = CY%,. For, n=1 —y n =y -n, and the
claim follows. Note also that m —y n is not the same as m>n.
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1.ili. Braided vector spaces from racks.
A 2-cocycle on a rack X is a function q: X x X — k* such that

Jx>y, x>z Qx,z = Yx,y>z y,z

for all xz,y,z € X.
For example, any constant function X x X — k* is a 2-cocycle.

Let q: X xX — k* be a function and V = kX with basis (ez) cx-
Let ¢ e GL(V ® V) be given by

Cq(egj 029 ey) — Qx7y 63;|>y ® €x, L,y & X.

Then, g is a 2-cocycle if and only if (V,c%) is a braided vector
space.

Notice: if G is a finite group, g € G and x € GY, then M(g,x) as
a braided vector space is of the form (kX,c%).
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More generally, a a non-abelian 2-cocycle of degree n > 2
on a rack X is a function q: X x X — GL(n,k) such that

Je>y, x>z Qr,z = Qx,y>z y,z

for all xz,y,z € X.

Let q: X x X — GL(n,k) be a function and V = kX ® k™. Let
e GL(V ® V) be given by

A(ezv ® eyw) = egpy g y(w) ® egv, x,y € X, v,w € k".

Then, qis a non-abelian 2-cocycle if and only if (V, %) is a braided
vector space.

Notice: if G is a finite group, g € G and p € Irr G9, then M(g, p)
as a braided vector space is of the form (kX ® k™, c9).
12



1.lv. Finite simple racks

Let X be a (finite) rack. A decomposition of X is a pair of
subracks (Y, Z) such that X = Y U Z; X is decomposable if it
admits a decomposition, indecomposable otherwise.

A finite rack X is simple if it has at least 2 elements, and for
any surjective morphism of racks = : X — Y, either « is an

isomorphism or Y has just one element.

Notice: if Z is a finite rack, then there exists a finite simple rack
X and a surjective morphism of racks = : Z7 — X.
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Theorem. [Joyce; A-Grafia with help of Guralnick] Let X be a finite

simple rack with |X| elements. Then either of the following
holds:

(I) |X| = p* where p is a prime and t € N. There are two possibilities:

(a) t =1 and X ~ I, is the permutation rack of the cycle
s =(1,2,...,p), i.e., x>y = ¢(y) for all x,y € X. (this can not be
realized as a conjugacy class in a group).

(b) X is the affine rack (F*, T), where T is the companion matrix

of a monic irreducible polynomial f € F[X] of degree t, different
from X and X —1.
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(II) |X| is divisible by at least two primes. Then, there exist

a simple non-abelian group L, t e N, and 6 € Aut L,

such that X is a twisted conjugacy class of type (G,T), where
G = L' and T € Aut(L?) acts by

T(Ela s 7€t) — (9(675)7617 cee 7£t—].)7 617 T 7€t € L.

Namely. X = Op,, is the orbit of n € N = L! under the action
—7 of N = L on itself by

m —rn:=mn(T -m™ ).

Furthermore, L and t are unique, and T only depends on its
conjugacy class in Out(L?) = Aut(L!)/Inn(LY). If m,n € X then

m>n = mT(nm™1).
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1.vV. Questions.

From now on, we assume that chark = 0.

To classify the finite-dimensional pointed Hopf algebras over non-
abelian groups, we need to address the following:

Question I: For any finite group G, any famlies (g;);c1, in G and
(pi)iEHS in Irr GY9, decide if dim @(@iEHsM(giapi)) is finite.

A more economical approach is to address:

Question II: For any finite rack X (realizable as a subrack of a
finite group) and any family qy of 2-cocycles of degree ny > 1
on the components Y of X decide if dim Z(dy (kY @ k"v, %)) is
finite.
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1.vi. Answers.

Question I: As we saw, the problem was solved for finite abelian
groups GG and recently, as we will see, also for solvable groups.

Many efforts were made towards:

Question III: Solve Question I for finite non-abelian simple
groups.

Indeed, Question III is intertwined with the following:

Question IV: Solve Question II for finite simple racks.
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To solve these problems we currently have very rudimentary
methods for computing Nichols algebras and some powerful in-
direct techniques for deciding that a Nichols algebra has infinite
dimension.

The technique of abelian subracks. Let X be a rack and let
q: X xX — k> bea2-cocycle. Let Y < X be an abelian subrack
and p = (gi;)i jey- Then (kY,cP) is of diagonal type so we know
when dim Z(kY, c?) < co. For example:

e Taking Y = {z}, one has dim Z(kX, 1) < co implies gz, € G.

e Assume that q is the constant cocycle w € G;, N > 2. Then
(kY, cP) is of Cartan type with matrix & = (a;;), where a;; = 2—N
for all ¢ £ 5.

Then dim A(kX, c%) < co implies N =2, or N =3 and |Y| = 2.
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Theorem. [A] Let G be a finite nilpotent group of odd order.
Given a finite-dimensional M € f§YD, one has: dim Z(M) < oo
if and only if M ~ Mg ® My & ---& My where:

e supp My C Z(G) and My is given by a family of YD-pairs
(9i, Xi)ieg such that the connected components of the matrix
q = (qij)i jcs belong to the list in [Heckenberger].

o For jelly, M; ~ M(Oj;,x;) where O; is not central and abelian
as rack; x; € G*i for a fixed r; € O; that satisfies

X <(g_1 >x;)(g Da:j)) =1 for every g € G\G".
and q; := x; (z;) has order 2 < N; < co. Also dim#(0;, x;) =

O.
N]‘. J‘. Furthermore,

C‘Mj@)Mi C|Mi®Mj — idMi®Mj’ ) # ] & Ho,t°
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For an arbitrary solvable group G there is no such explicit de-
scription (yet) but:

T heorem.[A-Heckenberger-Vendramin] If M &€ Egm) IS simple and
dimZ(M) is finite, then the underlying pair (X,q) belongs to
the list below, or | X| = 1.

Theorem. [Heckenberger-Vendramin] If M € E&YD is semisimple but
not simple and dim#Z(M) is finite, then M belongs to a list to
be seen later (again related to Lie theory via Dynkin diagrams).

Corollary. [A-Heckenberger-Vendramin] if |G| is odd and M € Egyp
has and dim A(M) finite, then supp M is an abelian rack.
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1. Finite-dimensional Nichols algebras.

ii.1 Indecomposable support.

The list:

Racks with prime order: Let Aff(Fp,d) with p prime, where

(FZ% d) € {(F37 2)7 (F57 2)7 (]F57 3)7 (F77 3)7 (F77 5)}

Relevant cocycle: constant e = —1.

Tetrahedron rack: 9 = Aff(IF4,t), t = multiplication by
w € Fg\{0,1}. 7 ~ conjugacy classes of 3-cycles in Ag4.
Two relevant cocycles: (e,q) = (1,—1) or (—1,w), w € G5.

The conjugacy class O3 of transpositions in Sy:
Two relevant cocycles: constant e = —1 or x4 .
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The conjugacy class O of 4-cycles in Sy:
Relevant cocycle: constant e= —1.

The conjugacy class Og’ of transpositions in Sg:

o #(03,¢) and

o (03, xs5) (here x5 is analogous to x4).

Both Nichols algebras have dimension 2123452 = 8 294, 400.

Notation: If (V,¢) = (kX,c%) where X is a rack and q is a 2-
cocycle, then we set A(V,c) =: B(X,q).

22



The Nichols algebra #Z(03,—-1). Clearly, O3 ~ Aff(F3, 2).

Set Lo — $(12>, r1 — $(23) and ro — I‘(13) One has

3 2 2 2
'%(027 _1) =~ k<$07 1, x2|$07 L1,T,
roxr1 + 122 + T2TQ,
x1xg + x2T1 + T0TD.)

T he Poincaré polynomial is
(14+t)2(14+t+t2) =1+ 3t+ 42+ 3t3 +t*. Hence

dim (03, —1) = 12 = 3.22, top degree = 4 = 22,
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The Nichols algebra Z(Aff(Fs,2),—1). One has

B(Aff(Fs,2), —1) = k(zg, 21,22, T3, T4/

x5, w3, w3, 3, 3,
T3Tp + Toxg + 13 + o1,
T4z + T2T1 + T1%4 + Tox2,
T4T1 + T3T4 + 120 + Tox3,
T4x2 4 T3TQ + X223 + Tox4,
423 + X371 + T2T4 + 122,
T120T1T0 + ToT1TOT1)

One has dim Z(Aff(Fs,2), —1) = 1280 = 5.44,

top degree = 16 = 42 and Poincaré polynomial

$16 4 5¢15 4 15414 4+ 35413 + 66112 + 105¢11 4 145410
4+ 175t° + 186t° + 175¢7 + 145t° + 105t° + 66¢°
4 353 + 15¢2 4+ 5¢ + 1.
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The Nichols algebra Z(Aff(F;,3),—1).
This algebra has generators zg,x1,x2,x3,24,%5,xg, 21 relations
in degree 2 and one in degree 6:

TOTOL1TI2LOL] + T1T2LOT1X2LO + TOT1TDLOT1LD.

One has dim Z(Aff(F7,3),—1) = 326,592 = 7.6°,
top degree 36 = 62,
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The Nichols algebras #(Aff(Fs,3),—1) and Z(Aff(F+,5),—1).

These are dual to A(Aff(Fs,2),—1) and AB(AfF(F7,3),—1) re-
spectively. So they have the same Poincaré series, dimension
and top degree.
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The Nichols algebra #4(7,—1).

Recall.7 = Aff(F4,t), t = multiplication by w € F4\{0, 1}.
J ~ conjugacy classes of 3-cycles in Ay.

The algebra has dimension 72 and top degree 9. One has

B(T,—1) ~k{xg, 21, T2, 23]
3T + T2T1 + T1T3,
321 + X120 + T3,
320 + ToT2 + T2 3,
TpxQ + ToT1 + T1T2,
TOT1TOT2T1TQ + T1TQT2T1T0T2 + TQT2T1TQT2T]-)
T he Poincaré polynomial

(1+)2(1+t4+tD?1Q+3) =2+ 48+ 8t7 + 11¢°
+ 122 + 12t + 1143 + 82 + 4t + 1.
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The Nichols algebra A(.7, x).

Here x is a suitable 2-cocycle that depends on w € G’3 The
algebra #(7,x) has dimension 5184 and top degree 24. It can
be presented by generators a,b, c,d with defining relations

Y

— w2ab — whe + ca, —w?ac — wed + da,
wad — w?ba + db,  wbd + w?cb + de,
a’bcb?6 + abcb?a + beb2a’ + cb2a’b + b2a’be
-+ ba2bch -+ bebac + cbabac + chb?aca.

a3, b3, 3 d3,

The Hilbert series of #(.7,x) is (6){(2)% .
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The Nichols algebra %(03,—1). Set zg = z(15), 1 = Z(13),
o = £C(14), xr3 — 58(23), g = 37(24), Iry = :C(34>. One has
4
%(027 _1) = k<$0, L1, X2, L3, L4, $5|
2 2 2 2 2 2
Lo; L1, L, L3, L4, L5,
ToTs + T5xo, T1x4 T T4T1,  XT2T3 + T3T2,

r3TQ + 123 + Tox1,
T42Q + T2T4 + ToT,
r1T2 + 5T + T2xs,
T3%4 + T5X3 + T4T5,

One has dim Z(03, —1) = 576 = 32.2°, the top degree is 12 and the Poincaré

polynomial is

rox3 + T1TQ + T3T1,
TOT4 + T2TQ T T4T2,
Tpx1 + T5x2 + T1Z5,
r4r3 + T4 + T3T5).

(L4+)2(1+t+t2)2(1 +t+ 2 +13)°
=12 4 611 4+ 19410 1 4242 + 7148 + 96¢7 + 106t°
4+ 96t° + 71t% + 42t3 + 19t2 + 6t + 1.



The Nichols algebra #(0%,—1). One has

B(O3,-1) ~ k(z1, 20, 23, 24, T5, Tg|

2 2 2 2
.CU]_, $2, 5133, 5134,

2 2
33‘5, 336

T4%3 + T3T4, T5T2 T+ T2T5, TeT1 T T1Te,

T3TD + Tpx1 + T1X3,
T5T1 + T4%5 + T1Z4,
TeTD + T2X3 1 T3%6,
TeX4 + T4T2 + T2T6,

T4T1 + T2X4 + T1T2,
T5T3 + 321 + T1Zs5,
TeX3 + T5Te 1 T3Ts,
T6T5 + T5T4 + T4T6).

The Poincaré polynomial, the dimension and the top degree are

the same as those of (03, —1).
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The Nichols algebra #(03, —1).

This algebra is quadratic: it has 10 generators and 45 relations in
degree 2. One has dim Z(03, —1) = 8,294,400, and top degree
40.

The Nichols algebras %#(0%,x4) and 2(03,xs).
These are twist-equivalent to Z(0%, —-1) and Z(03, —1), respec-

tively. So they have the same Poincaré series, dimension and top
degree.
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