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IV. The Weyl groupoid.

o. Overview.

Assume in this chapter that char k = 0 and k = k.

The famous Killing-Cartan classification of finite-dimensional

simple Lie algebras requires two steps:

First, one attaches to a simple Lie algebra g several invariants

until getting a Cartan matrix; then classifies all possible ones.

g ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o h ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o ∆+ ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o A

simple Lie

algebra

Cartan

subalgebra

positive

roots

Cartan

matrix

unique up

to isom.

unique up

to isom.

unique up

to perm.
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Cartan matrices.

classical exceptional

Aθ, θ ≥ 1 ◦ ◦ ◦ ◦ ◦

E6

◦

◦ ◦ ◦ ◦ ◦
Bθ, θ ≥ 2 ◦ ◦ ◦ ◦ +3◦

E7

◦

◦ ◦ ◦ ◦ ◦ ◦
Cθ, θ ≥ 3 ◦ ◦ ◦ ◦ ks ◦

E8

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

Dθ, θ ≥ 4

◦

◦ ◦ ◦ ◦ ◦ F4 ◦ ◦ ks ◦ ◦

G2 ◦ _jt ◦
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Second, given a Cartan matrix A = (aij)i,j∈Iθ, one defines a

simple Lie algebra g(A ), by generators and relations (that involve

the entries of A ) the key ones being the Serre relations

ad(xi)
1−aijxj = 0, ı 6= j;

(where ad is the adjoint representation) and checks that g(A ) is

simple and finite-dimensional.

A key tool for the last verification is the Weyl group.
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Recall that A = (aij)i,j∈Iθ is a generalized Cartan matrix if

aii = 1, i ∈ Iθ,
aij ∈ Z≤0, i 6= j ∈ Iθ,

aij =0 =⇒ aji = 0.

The matrix A is encoded in a Dynkin diagram with vertices Iθ:

· · · 2◦
i

2◦
j
· · ·

• no edge between the different vertices i and j if aij = 0;

• just an edge if aijaji = 1;

• if 1 < aijaji ≤ 4 and |aij| ≥ |aji|, then there are |aij| edges

between i and j, with an arrow pointing towards i;

• If aijaji > 4, then i and j are connected by a thick line decorated

with the pair (|aij|, |aji|).
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When the Dynkin diagram is connected, A is called indecom-

posable. Also, A is symmetrizable if there are di ∈ Z\0, i ∈ Iθ:

diaij = djaji, ∀ i, j ∈ Iθ.

Below, u, v ∈ kθ are column vectors; u > 0, respectively u ≥ 0,

means that all its entries are > 0, respectively ≥ 0.

Theorem. (Vinberg) [Kac, Thm. 4.3]

Let A be an indecomposable generalized Cartan matrix. Then

exactly one of the following possibilities hold:

(Finite) detA 6= 0; there exists u > 0 such that A u > 0; A v > 0

implies v > 0 or v = 0;

(Affine) corank A = 1; there exists u > 0 such that A u = 0;

A v ≥ 0 implies A v = 0;

(Indefinite) there is u > 0 s.t. A u < 0; A v ≥ 0, v ≥ 0 =⇒ v = 0.
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Given an indecomposable generalized Cartan matrix, the Kac-

Moody algebra g(A ) is defined as in the second step of the

classification, in particular via the Serre relations.

Theorem. [Kac, Prop. 4.9]

Let A be an indecomposable generalized Cartan matrix. Then

the following conditions are equivalent:

• A is a generalized Cartan matrix of finite type;

• The Weyl group W is finite;

•∆ is finite;

• g(A ) is a simple finite-dimensional Lie algebra.
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Quantum groups (quantized enveloping algebras of simple Lie al-

gebras) were introduced defining then by generators and relations

(that involve the entries of the corresponding Cartan matrix), in

particular using a quantum version of the Serre relations.

In order to work the quantized enveloping algebras out, Lusztig

(and other authors) introduced automorphisms generalizing the

simple reflections that generate the Weyl group, getting a rep-

resentation of the braid group.
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A braided vector space (V, c) is of diagonal type if there exists
a matrix q = (qij)i,j∈Iθ and a basis (vi)i∈Iθ of V such that

c(vi ⊗ vj) = qij vj ⊗ vi, i, j ∈ Iθ.

The matrix q is encoded in a (sort of) Dynkin diagram

· · ·
qii◦
i

q̃ij qjj
◦
j
· · · where q̃ij = qijqji, no edge if q̃ij = 1.

We may (and will) assume that the Dynkin diagram is connected.
Indeed let X be the set of connected components. For J ∈ X ,
VJ := ⊕j∈Jkvj is a braided subspace and we have a decomposition

(V, c) = ⊕J∈XVJ , with cJ,KcK,J = idVK⊗VJ ∀K 6= J ∈ X .

Hence

B(V, c) = ⊗
J∈X

B(VJ).
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Definition. A braided vector space (V, c) is of Cartan type if it

is of diagonal type and there exist aij ∈ Z such that

qijqji = q
aij
ii vj ⊗ vi, i 6= j ∈ Iθ.

Assume that qii ∈ G′
∞ for all i. Choose aij ∈ (−ord qii,0] and set

aii = 2. Then A = (aij)i,j∈I is a generalized Cartan matrix.

Theorem. dimB(V ) < ∞ ⇐⇒ A is of finite type.

[A.-Schneider]: assuming restrictions on the orders of the qij’s and

reducing to results of Lusztig, Rosso and De Concini–Procesi.

[Heckenberger]. Using quantum reflections.

What happens beyond Cartan type?
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Finite-dimensional simple Lie superalgebras were classified by V.

Kac. There are three classes; the contragredient ones are the

closer to the simple Lie algebras. One may attach to a simple

Lie superalgebra g similar invariants but there are differences:

g ///o/o/o/o/o/o/o/o/o/o/o/o/o/o h ///o/o/o/o/o/o/o/o/o/o/o ∆+ ///o/o/o/o/o/o/o/o/o/o/o A

simple Lie

super-

algebra

Cartan

subalgebra

positive

(odd and

even)

roots

Cartan

matrix

with colors

not

unique!

not

unique!
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Types of contragredient simple Lie superalgebras, char 0:

classical exceptional

A(j − 1|θ − j) D(2,1;α)

BC(j|θ − j) F(4)

D(j|θ − j) G(3)
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i. Coxeter groupoids.

i.i Quivers.

• A quiver is a collection Q = (Q,X , s, t), where Q and X are

non-emtpy sets (of ‘arrows’ and ‘points’ ), and s, t : Q ⇒ X are

maps (‘source’ and ‘target’): a ∈ Q⇝ s(a)
• a−→

t(a)
•

• The set X is the base of Q.

• The category Quiv of quivers has morphisms F : Q → Q′,
F = (Fa, Fp) where Fa : Q → Q′, Fp : X → X ′ are maps compatible

with sources and arrows.

• If X 6= ∅ is a set, then we denote by QuivX the category of

quivers with base X ; the mophisms have Fp = idX .
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• The product in QuivX is the pullback

Q s ×t Q′ = {(g, h) ∈ Q×Q′ : s(g) = t(h)}.

• The unit is X = (X ,X , idX , idX ).

• The opposite quiver of Q = (Q,X , s, t) is Qop = (Q,X , t, s).
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i.ii Groupoids.
• A groupoid is a (small) category with all arrows invertible.

• That is, a groupoid is a collection G = (G,X , s, t,m, id, ι), where
◦ G = (G,X , s, t) is a quiver,

◦ m : G s ×t G → G, id : X → G and ι : G → Gop are morphisms in
QuivX , such that

m is associative with identity id and inverse ι; it is denoted by
composition, not by juxtaposition:

• h //

m(g,h)=gh

66• g
//•

Occasionally we denote the groupoid by G ⇒ X and say that G
is a groupoid over X .
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The definitions of morphisms of groupoids and subgroupoids are
standard; a subgroupoid H over Y is wide when Y = X .

If x, y ∈ X , then set G(x, y) = s−1(x) ∩ t−1(y) (the Hom in the
category G), x ∼ y whenever G(x, y) 6= ∅, and Gx = G(x, x). Thus

◦ ∼ is an equivalence relation;

◦ Gx is a group;

◦ if x ∼ y, then G(x, y) is a torsor over the group Gx;

◦ G is determined by ∼ and the (isomorphism class of) the groups
Gx, one x for each class of ∼.

The groupoid G is connected if x ∼ y for all x, y ∈ X ;

◦ any groupoid is a disjoint union of connected ones, namely the
subgroupoids supported by classes of ∼.
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i.iii Coxeter groups.

◦ A Coxeter matrix of size θ is a symmetric matrix m = (mij)i,j∈Iθ
with entries in Z≥0 ∪ {∞} such that

mii = 1 ∀i ∈ Iθ, mij ≥ 2, ∀i 6= j ∈ Iθ

◦ The associated Coxeter system is the pair (W,S), where W is
the group presented by generators S = {s1, . . . , sθ} and relations

(sisj)
mij = e, i, j ∈ Iθ.

Here (sisj)
∞ means that there is no relation.

By abuse of notation, W is called a Coxeter group.
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The classification of the finite Coxeter groups is well-known.

◦ Every Coxeter group is the restricted direct product of irre-

ducible Coxeter groups [Bourbaki, Ch. IV, §1, n. 8].

◦ The list of all finite irreducible Coxeter groups (up to isomor-

phisms), [Bourbaki, Ch. VI, §4, Th. 1 and 2], is :

• the Weyl groups of the simple finite-dimensional complex Lie

algebras (Bn and Cn have isomorphic Weyl groups);

• the dihedral groups Dn, n 6= 3,4,6 (because W (A2) ' D3 ' S3,
W (B2) ' D4, W (G2) ' D6);

• H4 and H5.
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i.iv Coxeter groupoids. Let I be a finite non-empty set.

• A basic datum is a pair (X , ρ) where X 6= ∅ ρ : I → SX such
that ρ2i = id for all i ∈ I.
The notion of basic datum is equivalent to that of colored multi-
graphs; it can be expressed via colored quivers: (X , ρ) 7→ Qρ.

• A Coxeter datum is a triple (X , ρ,M), where (X , ρ) is a basic
datum and M = (mx)x∈X , mx = (mx

ij)i,j∈I, is a family of Coxeter
matrices such that

mx
ij = m

ρi(x)
ij , x ∈ X , i, j ∈ I. (1)

Definition. [Heckenberger-Yamane]

The Coxeter groupoid W = W(X , ρ,M) associated to (X , ρ,M)
is the groupoid generated by Qρ with relations

(σxi σj)
mx

ij = idx, i, j ∈ I, x ∈ X ,
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ii. The Weyl groupoid.

ii.i The case of a semisimple Yetter-Drinfeld module.

Let H be a Hopf algebra, θ ∈ Z≥2 and Cθ the class of all tuples

M = (M1,M2, . . . ,Mθ)

such that the Mi’s are simple in H
HYDfd. Such a tuple gives rise

to a semisimple W ∈ H
HYDfd:

W = M1 ⊕M2 ⊕ · · · ⊕Mθ.

Let (α1, . . . , αθ) be the canonical basis of Zθ. Define a Zθ-grading
on W by degMj = αj for all j ∈ Iθ.

Then T (W ) and B(W ) are Zθ-graded algebras in H
HYD.

Recall that A(W ) := B(W )#H, etc.; these are also Zθ-graded
algebras by declaring degH = 0.
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We fix i ∈ Iθ and set

V = Mi, U =
⊕

j∈Iθ, j 6=i

Mj.

Thus W ' U ⊕ V and we have

A(W ) ' B(ZU)#A(V ), B(W ) ' B(ZU)#B(V )

where ZU = adc B(V )(U). Then, consider for j ∈ Iθ \ {i}:

Lj := adB(V )(Mj), so that ZU '
⊕

j∈Iθ\{i}
Lj.

By definition Lj is Zθ-graded with suppLj ⊆ αj + Z≥0αi. Also,

Lj = ⊕k≥0L
k
j , where Lk

j = Lj ∩ Bk(W ).
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Assume that

dimLj < ∞ ∀j ∈ Iθ \ {i}. (Fi)

(this holds for instance if dimB(W ) < ∞). Then there exist mj

s.t. Lj = ⊕k∈I0,mj
Lk
j and L

mj
j 6= 0. Now define

−aMij := sup{h ∈ N0 |αj + hαi ∈ suppLj}, i 6= j, aMii = 2.

Let si,M ∈ GL(θ,Z) be given by

si,M(αj) = αj − aMij αi, j ∈ Iθ;

si,M is a reflection, i.e.,s2i,M = id and the rank of id−si,M is 1.
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Lemma. • Lj is a simple object in A(V )
A(V )YD.

• L
mj
j is a simple object in H

HYD that generates Lj in B(V )M.

Define Ri(M) := (M ′
1, . . . ,M

′
θ), (the i-th reflection of M), by

M ′
j =

L
mj
j if j 6= i,

Mi
∗ = V ∗ if j = i.

Because of the Lemma, Ri(M) ∈ Cθ.

Let W ′ = ⊕j∈IθM
′
j; it is Zθ-graded by degM ′

j = si,M(αj) j ∈ Iθ.

Lemma. The tuple Ri(M) satisfies Condition (Fi),

si,Ri(M) = si,M and R2
i (M) ' M .
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Let M and M ′ ∈ Cθ. We say that

M ∼ M ′

if there exists i ∈ Iθ such that Condition (Fi) holds for M and

Ri(M) ' M ′. By the Lemma, the relation ∼ is symmetric. The

equivalence relation ≈ generated by ∼ is called Weyl equivalence.

Definition. Let M ∈ Cθ. The Weyl groupoid W(M) has base

(class of points) the equivalence class W(M) of M under ≈, while

the arrows are the compositions of the arrows

M ′
•

si,M ′
//
Ri(M

′)
• ,

for M ′ ∈ W(M) satisfying (Fi). Here si,M ′ ∈ Aut(Zθ) is the re-

flection si,M ′(αj) = αj − aM
′

ij αi for all j ∈ Iθ.
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Let M = (M1,M2, . . . ,Mθ) ∈ Cθ and W = M1 ⊕M2 ⊕ · · · ⊕Mθ.

Lemma. If M ′ = (M ′
1,M

′
2, . . . ,M

′
θ) ≈ M and W ′ = M ′

1 ⊕ M ′
2 ⊕

· · · ⊕M ′
θ, then

dimB(W ) = dimB(W ′).

Definition. The set of real roots of M is

∆re(M) = {w(αj) |w ∈ Hom(M ′,M),M ′ ∈ W(M)} ⊂ Zθ.
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Definition. B(M) is decomposable if there exists a family

(Wℓ)ℓ∈L, where L is a totally ordered set and the Wℓ ∈ H
HYDfd

are irreducible, such that

B(W ) ' ⊗ℓ∈LB(Wℓ).

If this is the case, then dimB(W ) < ∞ if and only if L is finite

and dimB(Wℓ) < ∞ for all ℓ ∈ L.

Theorem. [Heckenberger-Schneider] If all finite tensor powers of W

are semisimple objects in H
HYD, then B(W ) is decomposable.

Example. If H is semisimple, or if W is of diagonal type (= all

the Mi’s have dimension 1), then B(W ) is decomposable.
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ii.ii Applications to diagonal type.

Assume that char k = 0. Let q = (qij)i,j∈Iθ, with qij ∈ k× and

qii ∈ G∞\{1}. Let (V, cq) be a braided vector space with a basis

(vi)i∈Iθ of V such that

c(vi ⊗ vj) = qij vj ⊗ vi, i, j ∈ Iθ.

We assume that the Dynkin diagram is connected.

In this case the Weyl groupoid gives enough information:

Theorem. [Heckenberger] dimB(V ) < ∞ ⇐⇒ q ∈ List.

Another important result is the following.

Theorem. [Angiono] If dimB(V ) < ∞, then the defining relations

of B(V ) are explicitly known (essentially powers of root vectors

and generalized quantum Serre relations).
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UFO’s

(super) modular type

28


