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IV. The Weyl groupoid.
o. Overview.
Assume in this chapter that chark = 0 and k = k.

The famous Killing-Cartan classification of finite-dimensional
simple Lie algebras requires two steps:

First, one attaches to a simple Lie algebra g several invariants
until getting a Cartan matrix; then classifies all possible ones.

g~ e AT e of
simple Lie Cartan positive Cartan
algebra subalgebra roots matrix
unique up unigque up unique up

to isom. to isom. to perm.



Cartan matrices.
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Second, given a Cartan matrix & = (a;j); jer,, One defines a
simple Lie algebra g(&), by generators and relations (that involve
the entries of &) the key ones being the Serre relations

ad(z;)'~%iz; =0, | £ J;

(where ad is the adjoint representation) and checks that g(.&) is
simple and finite-dimensional.

A key tool for the last verification is the Weyl group.



Recall that & = (a;;); je1, IS @ generalized Cartan matrix if

aj; = 1, v € I,
a;; € <0, 1 7 J € Iy,
a;j =0 = aj; = 0.

The matrix & is encoded in a Dynkin diagram with vertices Iy:

2 2
. . O O . . .
U J

e no edge between the different vertices ¢ and j if a;; = 0;

e just an edge if a;ja4; = 1;

o if 1 < a;ja;; < 4 and la;;| > |aj;|, then there are |a;;| edges
between ¢ and j5, with an arrow pointing towards i,

e If a;;a4;, > 4, then ¢ and j are connected by a thick line decorated

with the pair (|aw|, |CL]Z|)



When the Dynkin diagram is connected, « is called indecom-
posable. Also, &/ is symmetrizable if there are d; € Z\0, i € ly:

dzaw = djaji, V1,7 € lp.

Below, u,v € kU are column vectors; u > 0, respectively u > 0,
means that all its entries are > 0O, respectively > 0.

Theorem. (Vinberg) [Kac, Thm. 4.3]
Let &/ be an indecomposable generalized Cartan matrix. Then
exactly one of the following possibilities hold:

(Finite) det.« # 0; there exists u > 0 such that &u > 0; &/v > 0
implies v > 0 or v = 0;

(Affine) corank & 1; there exists v > 0 such that &/u = O;
/v > 0 implies &/v = 0O;

(Indefinite) thereisu >0s.t. Yu<0;, Fv>0,v>0 = v=0.
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Given an indecomposable generalized Cartan matrix, the Kac-
Moody algebra g(«) is defined as in the second step of the
classification, in particular via the Serre relations.

Theorem. [Kac, Prop. 4.9]
Let &/ be an indecomposable generalized Cartan matrix. Then
the following conditions are equivalent:

e o/ is a generalized Cartan matrix of finite type;
e T he Weyl group W is finite;
oA is finite;

e g(&/) is a simple finite-dimensional Lie algebra.



Quantum groups (quantized enveloping algebras of simple Lie al-
gebras) were introduced defining then by generators and relations
(that involve the entries of the corresponding Cartan matrix), in
particular using a quantum version of the Serre relations.

In order to work the quantized enveloping algebras out, Lusztig
(and other authors) introduced automorphisms generalizing the
simple reflections that generate the Weyl group, getting a rep-
resentation of the braid group.



A braided vector space (V,c) is of diagonal type if there exists
a matrix q = (g;j); jer, and a basis (v;);er, of V such that

c(v; ®vj) = q;j vj ® vy, i,J € lp.
The matrix q is encoded in a (sort of) Dynkin diagram
i g

g J

where CYZ] = 4ij49ji> no edge if CYZ] = 1.

We may (and will) assume that the Dynkin diagram is connected.
Indeed let X be the set of connected components. For J € X,
V= @jejkfuj IS a braided subspace and we have a decomposition

(V,c) = DjcxVy, Wwith CIKCK,] = idVK(X)VJ VK = J e X.
Hence

BV,c) = & B(Vy).
JEX



Definition. A braided vector space (V,c¢) is of Cartan type if it
is of diagonal type and there exist aj; € Z, such that

o o
%iidji = qy;° vj ® vy, i = g € lp.

Assume that ¢;; € G, for all i. Choose a;; € (—ordg;;, 0] and set
a;; = 2. Then & = (a;;); jer iS @ generalized Cartan matrix.

Theorem. dmA(V) < oo <= & is of finite type.

[A.-Schneider]: assuming restrictions on the orders of the g;;'s and
reducing to results of Lusztig, Rosso and De Concini—Procesi.

[Heckenberger]. Using quantum reflections.

What happens beyond Cartan type?
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Finite-dimensional simple Lie superalgebras were classified by V.
Kac. There are three classes; the contragredient ones are the
closer to the simple Lie algebras. One may attach to a simple
Lie superalgebra g similar invariants but there are differences:
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Types of contragredient simple Lie superalgebras, charO:

classical

A — 110 —j)
BC(|0 — 7)
D@0 — 7)

exceptional
D(2,1;«)
F(4)

G(3)
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1. Coxeter groupoids.
1.1 Quivers.

e A quiver is a collection Q = (9, X,s,t), where Q and X are

non-emtpy sets (of ‘arrows’ and ‘points’ ), and s,t: Q = X are

t
maps (‘source’ and ‘target’): a € Q ~ S(oa) N (oa)

e [he set X is the base of O.

e The category Quiv of quivers has morphisms F : Q — O,
F = (Fg, Fp) where F, : Q — Q', F, : X — X’ are maps compatible
with sources and arrows.

o If X = () is a set, then we denote by Quivy the category of
quivers with base X’; the mophisms have Fp = idy.
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e [ he product in Quivy is the pullback
Qs xt Q ={(g,h) € 2x Q :5(g9) =t(h)}.

e The unit is X = (X, X,idy,idy).

e The opposite quiver of Q = (Q, X, s,t) is Q°P = (9, X, t,s).
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I.li Groupoids.
e A groupoid is a (small) category with all arrows invertible.

e That is, a groupoid is a collection G = (G, X, s,t,m,id,¢), where
o G=(G,X,s,t) is a quiver,

om:Gsx; G —=G,id: X =G and ¢ : G — G°P are morphisms in
Quivy, such that

m IS associative with identity id and inverse ¢; it is denoted by
composition, not by juxtaposition:

0$:/g/70
m(g,h)=gh

Occasionally we denote the groupoid by ¢ = X and say that ¢
IS a groupoid over X.
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T he definitions of morphisms of groupoids and subgroupoids are
standard; a subgroupoid H over )Y is wide when Y = X.

If x,y € X, then set G(z,y) = s~ 1(z) Nt~ 1(y) (the Hom in the
category G), =z ~ y whenever G(z,y) =0, and G* = G(x,z). Thus

o ~ IS an equivalence relation;
o g% is a group;
o if x ~y, then G(x,y) is a torsor over the group G%;

o G is determined by ~ and the (isomorphism class of) the groups
G*, one z for each class of ~.

The groupoid G is connected if x ~ y for all x,y € &,

o any groupoid is a disjoint union of connected ones, namely the
subgroupoids supported by classes of ~.
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1.ill Coxeter groups.

o A Coxeter matrix of size 6 is a symmetric matrix m = (m;;); jer,
with entries in Z>g U {oco} such that

my; = 1 Vi € Iy, mij22, Vi £ 5 € lp

o The associated Coxeter system is the pair (W, S), where W is
the group presented by generators S = {s1,...,sp} and relations

(si5;)"" = e, i,7 € ly.
Here (s;5;)°° means that there is no relation.

By abuse of notation, W is called a Coxeter group.
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T he classification of the finite Coxeter groups is well-known.

o Every Coxeter group is the restricted direct product of irre-
ducible Coxeter groups [Bourbaki, Ch. 1V, §1, n. 8].

o The list of all finite irreducible Coxeter groups (up to isomor-
phisms), [Bourbaki, Ch. VI, §4, Th. 1 and 2], iS :

e the Weyl groups of the simple finite-dimensional complex Lie
algebras (B, and C, have isomorphic Weyl groups);

e the dihedral groups Dy, n #= 3,4,6 (because W(As) ~ D3 ~ S3,
W (B2) ~ D4, W(G2) ~ Dg);

e Hy and Hs.
18



I.iv Coxeter groupoids. Let I be a finite non-empty set.

e A basic datum is a pair (X,p) where X # 0 p : I — Sy such
that p7 = id for all < € .

The notion of basic datum is equivalent to that of colored multi-
graphs; it can be expressed via colored quivers: (X,p) — Q.

e A Coxeter datum is a triple (X, p,M), where (X, p) is a basic
datum and M = (m?%) ,cy, m* = (m%)i,jeﬂ, is a family of Coxeter
matrices such that

m%:m%zj(x)’ r€e X, 1,5 €l. (1)
Definition. [Heckenberger-Yamane]
The Coxeter groupoid W = W(X, p, M) associated to (X, p,M)
is the groupoid generated by Q, with relations

€T
(0F0;)" = idg, i,jelx e X,
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ii. The Weyl groupoid.
ii.i The case of a semisimple Yetter-Drinfeld module.
Let H be a Hopf algebra, 6 € Z>5> and Cy the class of all tuples

M = (M1>M27°°°7M9)

such that the M;’s are simple in gnyd. Such a tuple gives rise
to a semisimple W € HyD .

W=M1@M2@H-@Mg.
Let (aq,...,ay) be the canonical basis of ZY. Define a Z?-grading
on W by deg Mj = Q; for all 5 € I.
Then T(W) and Z(W) are Z%-graded algebras in £YD.

Recall that A(W) := Z(W)#H, etc.; these are also Z’-graded
algebras by declaring deg H = 0.
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We fix 7 € [y and set

Jj€ly, jF1
Thus W ~U®YV and we have

AW) ~ B(Zy)# AV ), BW) ~ B(Zy)F#BV)
where Z; = ad:. Z(V)(U). Then, consider for j € Iy \ {i}:

L] ‘= ad l@(‘/)(]\4]), so that ZU ~ @ LJ
J€lp\{i}
By definition L; is Z%-graded with supp L; C aj + Z>ga;. Also,

L; = @kzo[{lf» where Lé? = L; N %’k(W).
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Assume that

dim L; < oo Vi ely\ {i}. (F%)

(this holds for instance if dim Z(W) < c0). Then there exist m;
s.t. Lj = ®kely,, L and L, "9 £ 0. Now define

—a}f =sup{h € Ng|aj + ha; €supp L;}, i7#j, ajy =2

11

Let s; \y € GL(0,Z) be given by

M - .
si, M) = aj — a;5 oy, j € Iy,

si. v IS a reflection, i.e.,s?,, = id and the rank of id —s; 57 is 1.

22



. . . . A(V)
Lemma. e LJ IS a simple object in A(V)yD.

o L;nj is a simple object in YD that generates L; in Z(VAL.

Define R;(M) := (M3, ..., Mp), (the i-th reflection of M), by

A — ij if 7 %=1,
T\ M =VEoif =

Because of the Lemma, R;(M) € Cyp.
Let W' = @y, Mj; it is Z-graded by deg M} = s; pr(cy) j € Ip.

Lemma. The tuple R;(M) satisfies Condition (F;),
Si R;(M) = Si,M and R%(M) ~ M.
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Let M and M’ € Cy. We say that

M ~ M’

if there exists i € Iy such that Condition (F;) holds for M and
R;,(M) ~ M'’. By the Lemma, the relation ~ is symmetric. The
equivalence relation =~ generated by ~ is called Weyl equivalence.

Definition. Let M € Cy. The Weyl groupoid W(M) has base
(class of points) the equivalence class 25(M) of M under =, while
the arrows are the compositions of the arrows

M S Ri(M')
o o

Y

for M’ € 2(M) satisfying (F;). Here s; ,p € Aut(Z?) is the re-

. . M/ .
flection s; pp(aj) = a; — a;; a; for all j €Iy,
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LetMZ(Ml,MQ,...,MQ)ECQ and W = M1 My P --- B M.

Lemma. If M/ = (M}, M,,...,M)) ~ M and W/ = M{ & M, &
.- @ My, then

dim (W) = dim Z(W").

Definition. The set of real roots of M is

AT(M) = {w(ay) |w € Hom(M', M), M’ € (M)} C Z°.
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Definition. %A(M) is decomposable if there exists a family
(Wp)eer,, Where L is a totally ordered set and the W, € gnyd
are irreducible, such that

BW) = Qe B(Wy).

If this is the case, then dimZ(W) < oo if and only if L is finite
and dim Z(W,) < oo for all £ € L.

Theorem. [Heckenberger-Schneider] If all finite tensor powers of W
are semisimple objects in f]yD, then Z(W) is decomposable.

Example. If H is semisimple, or if W is of diagonal type (= all
the M;'s have dimension 1), then (W) is decomposable.
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i.it Applications to diagonal type.

Assume that chark = 0. Let q = (g;5); jer,, With ¢;; € k* and
qii € Goo\{1}. Let (V,c1) be a braided vector space with a basis
(vi)ier, of V such that

c(v; ® ’Uj) = q;j Vj @ vy, 1,9 € .

We assume that the Dynkin diagram is connected.

In this case the Weyl groupoid gives enough information:
Theorem. [Heckenberger] dim%Z(V) < oo <= q € List.

Another important result is the following.
Theorem. [Angiono] If dim Z(V) < oo, then the defining relations
of Z(V) are explicitly known (essentially powers of root vectors
and generalized quantum Serre relations).
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