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i. First methods.

Throughout this section, H is a Hopf algebra and (V, ¢) is a finite
dimensional braided vector space realizabNIe in gyp. Recall the
Nichols algebra A(V) = A(V,c) =T(V)/I(V), where

IV=Y1=I1V)=Y J= @ kerQ"

Here Q™ is the (image of) the quantum symmetrizer and

S = {I C ®,>2T"(V) : I is a homogeneous ideal and coideal},
S ={I € 6:1Iis a Yetter-Drinfeld submodule of T(V)}.



Remark. A morphism of braided vector spaces ¢ : (V,c) — (W, ¢)
induces a morphism of braided Hopf algebras & : Z(V) — Z(W),
e.g., because the induced morphism of braided Hopf algebras
T(p) : T(V) — T(W) intertwines the respective actions of the
braid groups. Furthermore,

¢ if ¢ is injective, then & : (V) — Z(W) is injective, because
the image of @, which is the subalgebra of (W) generated by
V', is a pre- and post-Nichols algebra.

¢ if ¢ is surjective, then ® : (V) — AB(W) is surjective, because
AB(W) is generated by W = ¢(V).

Thus, if V — W is a braided subspace (not necessarily a Yetter-
Drinfeld submodule) such that dim (V) = oo, then dim Z(W) = oc.
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i.i Brute force.

The first problem in the study of Nichols algebras is that we
ignore a priori when the ideal I(V) is finitely generated (and it
could actually happen that it is not so; the second, that we
ignore the degrees of a minimal set of homogeneous generators
(that could be arbitrarily large).

To overcome this obstacle, we can appeal to the following basic
observation: Let I € &; then B = T(V)/I is a pre-Nichols algebra
of V, hence there is a surjective map B - Z(V). Therefore

GK-dim Z(V) < GK-dim B,

in particular dim B < co implies dim Z(V) < oo.

More systematically, we propose:



Definition. Let d € Z>5. The d-th approximation of Z(V) is
the pre-Nichols algebra Z,;,(V) :=T(V)/1;(V) where I,(V) is the
ideal of T'(V) generated by

P (V)= P ker.
0<j<d 0<j<d

It is easy to see that I;(V) € &, hence %,(V) is a pre-Nichols
algebra of V and GK-dim#Z(V) < GK-dim %,(V), in particular
dim %,;(V) < oo implies dim Z(V) < oo.

For instance, the quadratic approximation is

B>(V) :=T(V)/ ker((id +c));
the cubic approximation is

B3(V) = T(V)/(ker((id +-¢)
+ ker(id +c1 + co + cico + corc1 + 616261)>, etc.



I1.1.11 Bilinear forms and derivations

Let (W, c) be a braided vector space provided with non degener-
ate bilinear form (]) : V ® W — k satisfying

(c(v1 ® v2)|w1 @ w2) = (v1 ® voc(w1 ® w2)) .
Here and below we extend (|) to (|): T(V)T(W) — k by

(1|1) =1,
(TrWITm(w)) =0, if n7#m,
(Ul X ... ®vn|w1 X ... ®wn) = H (vi|wz-),
€1y,

if vi,...vp €V, wy,...wp € W. Clearly, this is again non degen-
erate and (o-zly) = (x|lo-y) forall z e T"(V), y € T" (W), o € By,
n > 2.



Set (| ): T(V) @ T(W) =k by (z|y) = (z|Q2(y)) = (Q(=)|y), for
xeT(V), yeT(W), i.e.,

(v|w) = (v|w), veV,weW,
()| mmw)), =0 if n % m,

(=] y) == (@|2"(y)) = (Q"(x)]y), z€T*(V),y €T (W),n2>2.

Clearly, the radicals of the form (|| coincide with the defining
ideals of the Nichols algebras:

radiest( | ) = {z € T(V) | (z|y) =0 Vy € T(W)}
= ®p>0 ker(Qﬁm(V) = I(V),
radrignt( | ) ={y € T(W) | (z|y) =0 Vx € T(V)}
= ®p>0 ker(Qﬁm(W) = I(W).



Thus (| ]) induces a bilinear form (|| : Z(V) ® Z(W) — k, which
IS non-degenerate.

Application. This description of Z(V) as T(V)/radiert( | ) al-
lows to interpret the algebra f in [Lusztig, Introduction to quan-
tum groups| as a Nichols algebra.

Proposition. For z,u € (V) and y,z € Z(W), we have

(z]y-2) = (1) | g) (02 | 2),
(- uly) = (z]yP) (u]2(2),



Sketch of the proof. Below, 1+ 57 = n. Recall

&7, = >, 6 Mpn(o) €kBy
aEXl?z’j

where Xﬁj C Sp is the set of all (4, j)-shuffles. Let €2; ; .= on(&; ;).
It can be shown that

QY = (QZ &) Q])Qz,j
Recall that the (4,7)-graded component of the comultiplication

A Ai,j : C(Z+]) — C(Z) ®C(]), 1,7 > 0, is given by Ai,j = Qz,j
We use a Sweedler-like notation:

Q; () = Qi ;(x) (1) ® Qi j(x)(jy € TH(V) @TV(V),
for x € T™(V).



Hence, for z € T%(V), y € TY(W) and z € T7(W), we have

(W(m) |y -2) = ((Q_’i ® Q)Q; () |y - 2)
= (' j () 5y ly) (7 ;(2) ()] 2).
On the other hand,

D) (2@ 2) = >0 (1Q%.0(2) (k) 1Y) (p0(2) () | 2)
k+4=n

= (]Qz",j(l’)(z') | ) (]Qi,j(ié)(j) | 2)
= (QzQz’,j(CU)(i) |y) (Q]Qz’,j(x)(j) | Z) :

(z |y - 2)
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Skew derivations.
Here is a useful tool to verify that some r € " (V) is not 0.

For f € V* we set

0 = (id@f)A" b1 2" (V) — 2" (V).

Fix a basis (z;);er of V and let (f;);cr be its dual basis. Set
87; = afi, 1 € I

Suppose that there is a family (g;);e1 in G(H) such that §(x;) =
9; @ x;, for . € I. Then
Oi(zy) = z0;(y) + 9i(x) g - v, z,y € BV), i€l

11



Poincaré duality. Let now R = @nzoRn be a connected graded,
locally finite, Hopf algebra in gyp. Then dimR < oo if and only
if there exists M € Z>q s.t.:

RM £ 0 and RMTI =0 Vj € Zwy.

Lemma. dimRM =1 and dimR? = dim R~ for all i € Iy y.

Sketch of the proof. (i) Let A € RM\0. Then
2\ = 0 = e(z)A\ = Az, Vz € RY, i € Iy

while if z € RO = k, then zA = (z)A = Az. Hence A is an
integral of R; but the space of integrals of a Hopf algebra in
HyYD has dimension < 1. Hence dimRM = 1.
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(ii) Now pick a non-zero element [ € (R*)M; this is an integral
in R*, hence the bilinear form (|) : R x R — k given by

(z|ly) = ([, zy)
IS non-degenerate. Observe that
(xly) =0 ifreRY yeRE, d+e# M.

Thus, the restriction of the bilinear form (|) to R4 x RM—d js
non-degenerate, implying the claim.
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A rough algorithm:

Compute the pre-Nichols algebra R = %>(V); i.e., compute first
I>(V) = ker(id+¢) and then try to compute the homogeneous
components R"™ of R. If lucky to find that RM+1 = 0, then
dimR < co. Thus, dim RM = 1. Check with skew derivations if
R =AB(V).

If not lucky, proceed with the cubic approximation R = %#A3(V)
...and so on.
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Example.
Let n € Z>3 and let V;; be the vector space with basis yr, 7 € Sp,

a transposition 7 = (4,4), 1 = j. Then V ¢ ﬁgzm) by

6(yr) =17 R yr, o — Yr = Sgn(a)yUTJ_l.
The ideal I generated by ker(2) is generated by the elements

vz VT, (1)
yry. + yyr if ' = 7', (2)
Yy, —I— Y 1YLn -I— Y1nyr if ’7"7'/ — ’7'”’7'. (3)

Let R(n) :=T(Vy)/I, a Hopf algebra in ﬁgzyp.
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Theorem. R(3) ~ £(V3) has dimension 12.

Set yg = (12), y1 = (23) and y> = (23). By direct computations
using the relations we have that

Yoy1yo —Y1Y2Yo — Y1¥Yoy1 —Yoy2y1,
Yoy1y2 = —YoY2yo — Y2Y1Yo — —Y2YoY2;
Y1yovy2 — —Y2¥Y1¥Y2 = Y2Yoy1 — —¥Y1¥Y2Y1,

and the other monomials in degree 3 vanish since in all of them
appears yZQ for some 2. This in turn implies

Yoy1yoy2 — —Y1Y2Yo¥y2 — Y1¥YoY1Y2 — —YoY2y1y2
— Yo¥Y2Yo¥y1 —YoY1Y2Y1 — —Y2Y1Yo¥y1

— Y2Yoy291 —Y2Yoy1Yyo — —Y1Yo¥y2Yo

— Y2Y1¥Y2Yo — ¥Y1Y2Y1Y0;

(4)
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Yoy1yoyl — Y1Y2Yo¥Y1l — Y1YoY1Yo — YoY2Y1Yyo
— Yovyl1yY2yYo — Y2YoyY2Yo — YoyY2yoy2

— Y2Y1Y0oyY2 — Y1Yoy2y1 — Y2yi1y2y1

= Y2Y0Y1y2 = Y1y2y1y2 = O,

and the other monomials in degree 4 vanish since in all of them

appears yf for some i. Moreover, the monomials in (4) are

annihilated by multiplying them with any of the y;, and then
R(3)" =0 Vn > 5.

With this, we get the set of generators of R% consisting of

{1, yo, Y1, Y2, Yoy1, Y1Y2, YoY2, Y1Y0,
YoY1Y0, YoYy1y2, Y1Yoy2, Yoyiyoy2}. (5)



It can be proved that this set is indeed a basis by various methods
(it is enough to check that R(3)% % 0 and dimR(3)3 = 4).

We check now that R(3) ~ #A(V3). Since I C ker 2, there exists
a surjective map 7 : R(3) - £(V3). Let N be such that

2N (V3) #£ 0, B(V3) =0 Vi > N.

By Poincaré duality, dim Z(V3)N = 1, dim #*(V3) = dim Y ~:(V3).
We have the possibilities:

N = 4, and then dim %3(V3) = dimV3 = 3, hence = is an iso-
morphism unless dim %2(V3) < 4.

N = 3, and then dim #2(V3) = dim #1(V3) = 3.
N = 2, and then dim %#2(V3) = dim #°(13) = 1.
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We see that in any case « is an isomorphism unless dimT'(2) < 4,
but dim %2(V3) is the codimension of ker 2, which is 4.

Theorem. R(4) ~ %#(V,) has dimension 576 = 242,
Theorem. R(5) ~ £A(Vs) has dimension 8.294.400.
Problem.

R(6) ~ B(Vg)?

dimR(6) < co?

dim AB(Vg) < 007?
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1.1i. Cocycle deformations and twisting.

Recall that if (A,u) is an algebra and (C,A) is a coalgebra,
the map * : hom(C,A) x hom(C,A) — hom(C,A) (called the
convolution product), given by

TxS =po(T®S)oA,

is an associative multiplication on hom(C, A) with unit ue.

Definition. A linear map ¢ : H ® H — k, which is is invertible
with respect to the convolution, is a unitary 2-cocycle if

P(z(1) ® y(1)) (z2)y(2) ® 2) = ¢(y(1) ® 2(1)) #(z ® Y(2)2(2)),
P(z®1) =d(l®z) =c(z),

for all x,y,z € H.
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If ¢ is a unitary 2-cocycle ¢, then the multiplication ‘b given by

Ty = o1y ®Y1)) T2y ¢ (T3 ®Yz)), T,y € H,

IS associative and unital with the same unit as H.
Let Hy = (H, -y, A), with the new multiplication and the given
comultiplication.

Lemma. H¢ is a Hopf algebra.

Exercise. Let G be a group. A unitary 2-cocycle on kG is
determined by a cocycle ¢ € Z2(G,k*), i.e., amap ¢ : GXxG — k*
such that

¢(g, h)p(gh,t) = ¢(h,t)p(g, ht),
¢(g,e) = ¢(e,g) =1, g,h,t e q.
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T heorem. [Majid-Oeckl, Theorem 2.7, Corollary 3.4]
Let o : H® H — k be an invertible unitary 2-cocycle.

(a) There is an equivalence T, : #yD — ZzyD of braided cat-
egories, V — V¢, which is the identity on the underlying vector
spaces, morphisms and coactions, and transforms the action of
H on V to ‘b H¢®V¢—>V¢, given for heH¢, UEV¢ by

hgv=d(hy, v 1)) Ry v0))(0) @ ((h2)  v(0)) (~1) ~(3))-
The monoidal structure on T¢ IS given by the natural transfor-
mation by (V@ W)y, — V@ Wy
bV,W(U Rw) = ¢(U(_1),w(_1))v(0) X we), v cV,weW.
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(b) T, preserves Nichols algebras: #A(V), ~ #A(V,) as objects
H

in HZJJD. In particular, the Hilbert-Poincaré series of Z4(V) and

HB(Vy) are the same.

Application. We say that two matrices q = (g;;); jer, and q =
(q,gj)i,jeﬂe with invertible entries are twist-equivalent if

Gii = i,  1E€Tlp and  qyqy =49y, 1A~ J €Ty
Let V and V/ be the braided vector spaces of diagonal type
associated to twist-equivalent matrices q and ¢/, respectively.

Corollary. [AS3, Proposition 3.9]
The Hilbert-Poincaré series of Z(V) and £Z(V') coincide.

Proof. One defines a suitable cocycle ¢ on the group Z and
applies the Theorem.
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1.1il. The splitting technique.
Let H be a Hopf algebra. Let V,U € #yD and

W=V aoU,

this is a decomposition of W as above (any decomposition can
be realized over a suitable H provided that ¢y is rigid). Set

AW) = B(W)#H, AV)=AB(V)#H, AU)=RBU)#H.
The natural maps of Hopf algebras in #4yD
TRB(V) : %(W) — %(V) and LB(V) : <%(‘/) — %(W)
induce—by tensoring with idg—morphisms of Hopf algebras
TAV) : A(W) — A(V), TAV) = ﬂ-%’(V)# id g,
and LA(V) : .A(V) — .A(W), LA(V) = L%’(V)# id g,
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Now TAVILA(V) = idA(V), hence by Radford-Majid we have that

K= A(W)CTAW)
iIs a Hopf algebra in :j%yp with the adjoint action and the
coaction
0= (ﬂ-.A(V) 0% id)AA(W)?
so that A(W) is the bosonization of K by A(V):

A(W) ~ K#A(V).

Proposition. [Rosso, Proposition 22] [HS-adv, Proposition 8.6].
IC~ %B(Z), where

Zy = ade B(V)(U) € 4/ 3VD.
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In fact, (W) is the braided bosonization K#%4(V), i.e.,
BW) ~ B(Ziy)H#B(V).

This result can be used in two directions, both assuming that
AB(V) is known:

e To compute Z(W) by computing first B(Zy),

e TOo compute A(Z;) by computing first Z(W).

25



