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i. First methods.

Throughout this section, H is a Hopf algebra and (V, c) is a finite
dimensional braided vector space realizable in H

HYD. Recall the
Nichols algebra B(V ) = B(V, c) = T (V )/Ĩ(V ), where

I(V ) =
∑
I∈S

I = Ĩ(V ) =
∑
J∈S̃

J =
⊕
n≥0

kerΩn

Here Ωn is the (image of) the quantum symmetrizer and

S = {I ⊂ ⊕n≥2T
n(V ) : I is a homogeneous ideal and coideal},

S̃ = {I ∈ S : I is a Yetter-Drinfeld submodule of T (V )}.
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Remark. A morphism of braided vector spaces φ : (V, c) → (W, c)

induces a morphism of braided Hopf algebras Φ : B(V ) → B(W ),

e.g., because the induced morphism of braided Hopf algebras

T (φ) : T (V ) → T (W ) intertwines the respective actions of the

braid groups. Furthermore,

♦ if φ is injective, then Φ : B(V ) → B(W ) is injective, because

the image of Φ, which is the subalgebra of B(W ) generated by

V , is a pre- and post-Nichols algebra.

♦ if φ is surjective, then Φ : B(V ) → B(W ) is surjective, because

B(W ) is generated by W = φ(V ).

Thus, if V ↪→ W is a braided subspace (not necessarily a Yetter-

Drinfeld submodule) such that dimB(V ) = ∞, then dimB(W ) = ∞.
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i.i Brute force.

The first problem in the study of Nichols algebras is that we

ignore a priori when the ideal I(V ) is finitely generated (and it

could actually happen that it is not so; the second, that we

ignore the degrees of a minimal set of homogeneous generators

(that could be arbitrarily large).

To overcome this obstacle, we can appeal to the following basic

observation: Let I ∈ S̃; then B = T (V )/I is a pre-Nichols algebra

of V , hence there is a surjective map B ↠ B(V ). Therefore

GK-dimB(V ) ≤ GK-dimB,

in particular dimB < ∞ implies dimB(V ) < ∞.

More systematically, we propose:
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Definition. Let d ∈ Z≥2. The d-th approximation of B(V ) is

the pre-Nichols algebra Bd(V ) := T (V )/Id(V ) where Id(V ) is the

ideal of T (V ) generated by⊕
0≤j≤d

Ij(V ) =
⊕

0≤j≤d

kerΩj.

It is easy to see that Id(V ) ∈ S̃, hence Bd(V ) is a pre-Nichols

algebra of V and GK-dimB(V ) ≤ GK-dimBd(V ), in particular

dimBd(V ) < ∞ implies dimB(V ) < ∞.

For instance, the quadratic approximation is

B2(V ) := T (V )/ker〈(id+c)〉;

the cubic approximation is

B3(V ) = T (V )/〈ker〈(id+c)

+ker(id+c1 + c2 + c1c2 + c2c1 + c1c2c1)〉, etc.

5



II.i.ii Bilinear forms and derivations

Let (W, c) be a braided vector space provided with non degener-

ate bilinear form ( | ) : V ⊗W → k satisfying

(c(v1 ⊗ v2)|w1 ⊗ w2) = (v1 ⊗ v2|c(w1 ⊗ w2)) .

Here and below we extend ( | ) to ( | ) : T (V )⊗ T (W ) → k by

(1|1) = 1,

(Tn(V )|Tm(W )) = 0, if n 6= m,

(v1 ⊗ . . .⊗ vn|w1 ⊗ . . .⊗ wn) =
∏
i∈In

(vi|wi),

if v1, . . . vn ∈ V , w1, . . . wn ∈ W . Clearly, this is again non degen-

erate and (σ ·x|y) = (x|σ ·y) for all x ∈ Tn(V ), y ∈ Tn(W ), σ ∈ Bn,

n ≥ 2.
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Set L | M : T (V )⊗ T (W ) → k by Lx | yM := (x|Ω(y)) = (Ω(x)|y), for

x ∈ T (V ), y ∈ T (W ), i.e.,

L1 |1M := 1,Lv |wM := (v|w), v ∈ V,w ∈ W,LTn(V ) |Tm(W )M, := 0 if n 6= m,Lx | yM := (x|Ωn(y)) = (Ωn(x)|y), x ∈ Tn(V ), y ∈ Tn(W ), n ≥ 2.

Clearly, the radicals of the form L | M coincide with the defining

ideals of the Nichols algebras:

radleftL | M = {x ∈ T (V ) | Lx | yM = 0 ∀y ∈ T (W )}
= ⊕n≥0 ker(Ω

n
|Tn(V ) = I(V ),

radrightL | M = {y ∈ T (W ) | Lx | yM = 0 ∀x ∈ T (V )}
= ⊕n≥0 ker(Ω

n
|Tn(W ) = I(W ).
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Thus L | M induces a bilinear form L | M : B(V )⊗B(W ) → k, which

is non-degenerate.

Application. This description of B(V ) as T (V )/ radleftL | M al-

lows to interpret the algebra f in [Lusztig, Introduction to quan-

tum groups] as a Nichols algebra.

Proposition. For x, u ∈ B(V ) and y, z ∈ B(W ), we have

Lx | y · zM = Lx(1) | yM Lx(2) | zM,Lx · u | yM = Lx | y(1)M Lu | z(2)M,
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Sketch of the proof. Below, i+ j = n. Recall

Sn
i,j :=

∑
σ∈Xn

i,j

Mn(σ) ∈ kBn

where Xn
i,j ⊂ Sn is the set of all (i, j)-shuffles. Let Ωi,j := %n(Si,j).

It can be shown that

Ωn = (Ωi ⊗Ωj)Ωi,j.

Recall that the (i, j)-graded component of the comultiplication

∆: ∆i,j : C(i+ j) → C(i)⊗C(j), i, j ≥ 0, is given by ∆i,j = Ωi,j.

We use a Sweedler-like notation:

Ωi,j(x) = Ωi,j(x)(i) ⊗Ωi,j(x)(j) ∈ T i(V )⊗ T j(V ),

for x ∈ Tn(V ).
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Hence, for x ∈ Tn(V ), y ∈ T i(W ) and z ∈ T j(W ), we have

Lx | y · zM = (Ωn(x) | y · z) = ((Ωi ⊗Ωj)Ωi,j(x) | y · z)
=

(
ΩiΩi,j(x)(i) | y

) (
ΩjΩi,j(x)(j) | z

)
.

On the other hand,

Lx(1) | yM Lx(2) | zM = ∑
k+`=n

LΩk,`(x)(k) | yM LΩk,`(x)(`) | zM
= LΩi,j(x)(i) | yM LΩi,j(x)(j) | zM
=

(
ΩiΩi,j(x)(i) | y

) (
ΩjΩi,j(x)(j) | z

)
.
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Skew derivations.

Here is a useful tool to verify that some r ∈ Bn(V ) is not 0.

For f ∈ V ∗ we set

∂f = (id⊗f)∆n−1,1 : Bn(V ) → Bn−1(V ).

Fix a basis (xi)i∈I of V and let (fi)i∈I be its dual basis. Set

∂i = ∂fi, i ∈ I.

Suppose that there is a family (gi)i∈I in G(H) such that δ(xi) =

gi ⊗ xi, for i ∈ I. Then

∂i(xy) = x∂i(y) + ∂i(x) gi · y, x, y ∈ B(V ), i ∈ I.
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Poincaré duality. Let now R = ⊕n≥0Rn be a connected graded,

locally finite, Hopf algebra in H
HYD. Then dimR < ∞ if and only

if there exists M ∈ Z≥1 s.t.:

RM 6= 0 and RM+j = 0 ∀j ∈ Z>0.

Lemma. dimRM = 1 and dimRi = dimRM−i for all i ∈ I0,M .

Sketch of the proof. (i) Let Λ ∈ RM\0. Then

xΛ = 0 = ε(x)Λ = Λx, ∀x ∈ Ri, i ∈ IM ;

while if x ∈ R0 = k, then xΛ = ε(x)Λ = Λx. Hence Λ is an

integral of R; but the space of integrals of a Hopf algebra in
H
HYD has dimension ≤ 1. Hence dimRM = 1.
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(ii) Now pick a non-zero element
∫
∈ (R∗)M ; this is an integral

in R∗, hence the bilinear form ( | ) : R×R → k given by

(x|y) = 〈∫ , xy〉

is non-degenerate. Observe that

(x|y) = 0 if x ∈ Rd, y ∈ Re, d+ e 6= M.

Thus, the restriction of the bilinear form ( | ) to Rd × RM−d is

non-degenerate, implying the claim.
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A rough algorithm:

Compute the pre-Nichols algebra R = B2(V ); i.e., compute first

I2(V ) = ker(id+c) and then try to compute the homogeneous

components Rn of R. If lucky to find that RM+1 = 0, then

dimR < ∞. Thus, dimRM = 1. Check with skew derivations if

R = B(V ).

If not lucky, proceed with the cubic approximation R = B3(V )

. . . and so on.
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Example.

Let n ∈ Z≥3 and let Vn be the vector space with basis yτ , τ ∈ Sn
a transposition τ = (i, j), i 6= j. Then V ∈ kSn

kSnYD by

δ(yτ) = τ ⊗ yτ , σ ⇀ yτ = sgn(σ)yστσ−1.

The ideal I generated by ker(Ω2) is generated by the elements

y2τ ∀τ, (1)

yτyτ ′ + yτ ′yτ if ττ ′ = τ ′τ, (2)

yτyτ ′ + yτ ′yτ ′′ + yτ ′′yτ if ττ ′ = τ ′′τ. (3)

Let R(n) := T (Vn)/I, a Hopf algebra in kSn
kSnYD.
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Theorem. R(3) ' B(V3) has dimension 12.

Set y0 = (12), y1 = (23) and y2 = (23). By direct computations

using the relations we have that

y0y1y0 = −y1y2y0 = y1y0y1 = −y0y2y1,

y0y1y2 = −y0y2y0 = y2y1y0 = −y2y0y2,

y1y0y2 = −y2y1y2 = y2y0y1 = −y1y2y1,

and the other monomials in degree 3 vanish since in all of them

appears y2i for some i. This in turn implies

y0y1y0y2 = −y1y2y0y2 = y1y0y1y2 = −y0y2y1y2

= y0y2y0y1 = −y0y1y2y1 = −y2y1y0y1

= y2y0y2y1 = −y2y0y1y0 = −y1y0y2y0

= y2y1y2y0 = y1y2y1y0,

(4)
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y0y1y0y1 = y1y2y0y1 = y1y0y1y0 = y0y2y1y0

= y0y1y2y0 = y2y0y2y0 = y0y2y0y2

= y2y1y0y2 = y1y0y2y1 = y2y1y2y1

= y2y0y1y2 = y1y2y1y2 = 0,

and the other monomials in degree 4 vanish since in all of them

appears y2i for some i. Moreover, the monomials in (4) are

annihilated by multiplying them with any of the yi, and then

R(3)n = 0 ∀n ≥ 5.

With this, we get the set of generators of R2
3 consisting of

{1, y0, y1, y2, y0y1, y1y2, y0y2, y1y0,

y0y1y0, y0y1y2, y1y0y2, y0y1y0y2}. (5)



It can be proved that this set is indeed a basis by various methods

(it is enough to check that R(3)4 6= 0 and dimR(3)3 = 4).

We check now that R(3) ' B(V3). Since I ⊆ kerΩ, there exists

a surjective map π : R(3) ↠ B(V3). Let N be such that

BN(V3) 6= 0, Bi(V3) = 0 ∀i > N.

By Poincaré duality, dimB(V3)
N = 1, dimBi(V3) = dimBN−i(V3).

We have the possibilities:

N = 4, and then dimB3(V3) = dimV3 = 3, hence π is an iso-

morphism unless dimB2(V3) < 4.

N = 3, and then dimB2(V3) = dimB1(V3) = 3.

N = 2, and then dimB2(V3) = dimB0(V3) = 1.
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We see that in any case π is an isomorphism unless dimT (2) < 4,

but dimB2(V3) is the codimension of kerΩ2, which is 4.

Theorem. R(4) ' B(V4) has dimension 576 = 242.

Theorem. R(5) ' B(V5) has dimension 8.294.400.

Problem.

R(6) ' B(V6)?

dimR(6) < ∞?

dimB(V6) < ∞?
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i.ii. Cocycle deformations and twisting.

Recall that if (A,µ) is an algebra and (C,∆) is a coalgebra,

the map ∗ : hom(C,A) × hom(C,A) → hom(C,A) (called the

convolution product), given by

T ∗ S := µ ◦ (T ⊗ S) ◦∆,

is an associative multiplication on hom(C,A) with unit uε.

Definition. A linear map φ : H ⊗ H → k, which is is invertible

with respect to the convolution, is a unitary 2-cocycle if

φ(x(1) ⊗ y(1))φ(x(2)y(2) ⊗ z) = φ(y(1) ⊗ z(1))φ(x⊗ y(2)z(2)),

φ(x⊗ 1) = φ(1⊗ x) = ε(x),

for all x, y, z ∈ H.

19



If φ is a unitary 2-cocycle φ, then the multiplication ·φ given by

x ·φ y = φ(x(1) ⊗ y(1))x(2)y(2) φ
−1(x(3) ⊗ y(3)), x, y ∈ H,

is associative and unital with the same unit as H.

Let Hφ = (H, ·φ,∆), with the new multiplication and the given

comultiplication.

Lemma. Hφ is a Hopf algebra.

Exercise. Let G be a group. A unitary 2-cocycle on kG is

determined by a cocycle φ ∈ Z2(G, k×), i.e., a map φ : G×G → k×

such that

φ(g, h)φ(gh, t) = φ(h, t)φ(g, ht),

φ(g, e) = φ(e, g) = 1, g, h, t ∈ G.
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Theorem. [Majid-Oeckl, Theorem 2.7, Corollary 3.4]

Let φ : H ⊗H → k be an invertible unitary 2-cocycle.

(a) There is an equivalence Tφ : H
HYD → Hφ

Hφ
YD of braided cat-

egories, V 7→ Vφ, which is the identity on the underlying vector

spaces, morphisms and coactions, and transforms the action of

H on V to ·φ : Hφ ⊗ Vφ → Vφ, given for h ∈ Hφ, v ∈ Vφ by

h ·φ v = φ(h(1), v(−1))(h(2) · v(0))(0) φ
−1((h(2) · v(0))(−1), h(3)).

The monoidal structure on Tφ is given by the natural transfor-

mation bV,W : (V ⊗W )φ → Vφ ⊗Wφ

bV,W (v ⊗ w) = φ(v(−1), w(−1))v(0) ⊗ w(0), v ∈ V,w ∈ W.
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(b) Tφ preserves Nichols algebras: B(V )φ ' B(Vφ) as objects

in
Hφ
Hφ

YD. In particular, the Hilbert-Poincaré series of B(V ) and

B(Vφ) are the same.

Application. We say that two matrices q = (qij)i,j∈Iθ and q′ =
(q′ij)i,j∈Iθ with invertible entries are twist-equivalent if

qii = q′ii, i ∈ Iθ and qijqji = q′ijq
′
ji, i 6= j ∈ Iθ.

Let V and V ′ be the braided vector spaces of diagonal type
associated to twist-equivalent matrices q and q′, respectively.

Corollary. [AS3, Proposition 3.9]
The Hilbert-Poincaré series of B(V ) and B(V ′) coincide.

Proof. One defines a suitable cocycle φ on the group Z and
applies the Theorem.
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i.iii. The splitting technique.

Let H be a Hopf algebra. Let V, U ∈ H
HYD and

W = V ⊕ U ;

this is a decomposition of W as above (any decomposition can

be realized over a suitable H provided that cW is rigid). Set

A(W ) = B(W )#H, A(V ) = B(V )#H, A(U) = B(U)#H.

The natural maps of Hopf algebras in H
HYD

πB(V ) : B(W ) → B(V ) and ιB(V ) : B(V ) → B(W )

induce–by tensoring with idH–morphisms of Hopf algebras

πA(V ) : A(W ) → A(V ), πA(V ) := πB(V )#idH ,

and ιA(V ) : A(V ) → A(W ), ιA(V ) := ιB(V )#idH ,
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Now πA(V )ιA(V ) = idA(V ), hence by Radford-Majid we have that

K = A(W )coπA(V )

is a Hopf algebra in A(V )
A(V )YD with the adjoint action and the

coaction

δ = (πA(V ) ⊗ id)∆A(W ),

so that A(W ) is the bosonization of K by A(V ):

A(W ) ' K#A(V ).

Proposition. [Rosso, Proposition 22] [HS-adv, Proposition 8.6].

K ' B(ZU), where

ZU := adc B(V )(U) ∈ A(V )
A(V )YD.
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In fact, B(W ) is the braided bosonization K#B(V ), i.e.,

B(W ) ' B(ZU)#B(V ).

This result can be used in two directions, both assuming that

B(V ) is known:

• To compute B(W ) by computing first B(ZU),

• To compute B(ZU) by computing first B(W ).
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