Pointed Hopf algebras over simple groups III. Computing Nichols algebras

Nicolás Andruskiewitsch
CIEM-CONICET, Córdoba, Argentina
Department of Mathematics and Data Science,
Vrije Universiteit Brussel, Belgium

VUB-Leerstoel 2025-2026

Vrije Universiteit Brussel, October 9, 2025.

i. First methods.

Throughout this section, H is a Hopf algebra and (V,c) is a finite dimensional braided vector space realizable in ${}^H_H\mathcal{YD}$. Recall the Nichols algebra $\mathscr{B}(V) = \mathscr{B}(V,c) = T(V)/\tilde{I}(V)$, where

$$I(V) = \sum_{I \in \mathfrak{S}} I = \widetilde{I}(V) = \sum_{J \in \widetilde{\mathfrak{S}}} J = \bigoplus_{n \ge 0} \ker \Omega^n$$

Here Ω^n is the (image of) the quantum symmetrizer and

 $\mathfrak{S} = \{I \subset \bigoplus_{n \geq 2} T^n(V) : I \text{ is a homogeneous ideal and coideal}\},$ $\widetilde{\mathfrak{S}} = \{I \in \mathfrak{S} : I \text{ is a Yetter-Drinfeld submodule of } T(V)\}.$ **Remark.** A morphism of braided vector spaces $\phi:(V,c)\to (W,c)$ induces a morphism of braided Hopf algebras $\Phi:\mathcal{B}(V)\to\mathcal{B}(W)$, e.g., because the induced morphism of braided Hopf algebras $T(\phi):T(V)\to T(W)$ intertwines the respective actions of the braid groups. Furthermore,

- if ϕ is injective, then $\Phi : \mathcal{B}(V) \to \mathcal{B}(W)$ is injective, because the image of Φ , which is the subalgebra of $\mathcal{B}(W)$ generated by V, is a pre- and post-Nichols algebra.
- if ϕ is surjective, then $\Phi: \mathscr{B}(V) \to \mathscr{B}(W)$ is surjective, because $\mathscr{B}(W)$ is generated by $W = \phi(V)$.

Thus, if $V \hookrightarrow W$ is a braided subspace (not necessarily a Yetter-Drinfeld submodule) such that $\dim \mathcal{B}(V) = \infty$, then $\dim \mathcal{B}(W) = \infty$.

i.i Brute force.

The first problem in the study of Nichols algebras is that we ignore a priori when the ideal I(V) is finitely generated (and it could actually happen that it is not so; the second, that we ignore the degrees of a minimal set of homogeneous generators (that could be arbitrarily large).

To overcome this obstacle, we can appeal to the following basic observation: Let $I \in \widetilde{\mathfrak{S}}$; then $\mathcal{B} = T(V)/I$ is a pre-Nichols algebra of V, hence there is a surjective map $\mathcal{B} \twoheadrightarrow \mathscr{B}(V)$. Therefore

$$\mathsf{GK}$$
-dim $\mathscr{B}(V) \leq \mathsf{GK}$ -dim \mathcal{B} ,

in particular dim $\mathcal{B} < \infty$ implies dim $\mathcal{B}(V) < \infty$.

More systematically, we propose:

Definition. Let $d \in \mathbb{Z}_{\geq 2}$. The d-th approximation of $\mathscr{B}(V)$ is the pre-Nichols algebra $\mathscr{B}_d(V) := T(V)/I_d(V)$ where $I_d(V)$ is the ideal of T(V) generated by

$$\bigoplus_{0 \le j \le d} I^j(V) = \bigoplus_{0 \le j \le d} \ker \Omega^j.$$

It is easy to see that $I_d(V) \in \widetilde{\mathfrak{S}}$, hence $\mathscr{B}_d(V)$ is a pre-Nichols algebra of V and $\mathsf{GK}\text{-dim}\,\mathscr{B}(V) \leq \mathsf{GK}\text{-dim}\,\mathscr{B}_d(V)$, in particular $\mathsf{dim}\,\mathscr{B}_d(V) < \infty$ implies $\mathsf{dim}\,\mathscr{B}(V) < \infty$.

For instance, the quadratic approximation is

$$\mathscr{B}_2(V) := T(V)/\ker\langle(\mathrm{id}+c)\rangle;$$

the cubic approximation is

$$\mathscr{B}_3(V) = T(V)/\langle \ker \langle (id+c) + \ker (id+c_1+c_2+c_1c_2+c_2c_1+c_1c_2c_1) \rangle$$
, etc.

II.i.ii Bilinear forms and derivations

Let (W,c) be a braided vector space provided with non degenerate bilinear form $(\ |\):V\otimes W\to \Bbbk$ satisfying

$$(c(v_1 \otimes v_2)|w_1 \otimes w_2) = (v_1 \otimes v_2|c(w_1 \otimes w_2)).$$

Here and below we extend (|) to (|): $T(V) \otimes T(W) \to \mathbb{k}$ by

$$(1|1) = 1,$$

$$(T^n(V)|T^m(W)) = 0, \qquad \text{if } n \neq m,$$

$$(v_1 \otimes \ldots \otimes v_n|w_1 \otimes \ldots \otimes w_n) = \prod_{i \in \mathbb{I}_n} (v_i|w_i),$$

if $v_1, \ldots v_n \in V$, $w_1, \ldots w_n \in W$. Clearly, this is again non degenerate and $(\sigma \cdot x|y) = (x|\sigma \cdot y)$ for all $x \in T^n(V)$, $y \in T^n(W)$, $\sigma \in \mathbb{B}_n$, $n \geq 2$.

Set $(|\cdot|): T(V) \otimes T(W) \to \mathbb{R}$ by $(|x|y) := (x|\Omega(y)) = (\Omega(x)|y)$, for $x \in T(V)$, $y \in T(W)$, i.e.,

Clearly, the radicals of the form (| |) coincide with the defining ideals of the Nichols algebras:

$$\begin{aligned} \operatorname{rad}_{\mathsf{left}}(|\cdot|) &= \{x \in T(V) \mid (|x|y|) = 0 \ \forall y \in T(W) \} \\ &= \oplus_{n \geq 0} \ker(\Omega^n_{|T^n(V)} = I(V), \\ \operatorname{rad}_{\mathsf{right}}(|\cdot|) &= \{y \in T(W) \mid (|x|y|) = 0 \ \forall x \in T(V) \} \\ &= \oplus_{n \geq 0} \ker(\Omega^n_{|T^n(W)} = I(W). \end{aligned}$$

Thus (| |) induces a bilinear form $(| |) : \mathcal{B}(V) \otimes \mathcal{B}(W) \to \mathbb{k}$, which is non-degenerate.

Application. This description of $\mathcal{B}(V)$ as $T(V)/\operatorname{rad}_{\operatorname{left}}(|\cdot|)$ allows to interpret the algebra f in [Lusztig, Introduction to quantum groups] as a Nichols algebra.

Proposition. For
$$x, u \in \mathscr{B}(V)$$
 and $y, z \in \mathscr{B}(W)$, we have
$$(|x|y \cdot z|) = (|x^{(1)}|y|) (|x^{(2)}|z|),$$

$$(|x \cdot u|y|) = (|x|y^{(1)}) (|u|z^{(2)}),$$

Sketch of the proof. Below, i + j = n. Recall

$$\mathfrak{S}_{i,j}^n := \sum_{\sigma \in X_{i,j}^n} M_n(\sigma) \in \mathbb{kB}_n$$

where $X_{i,j}^n \subset \mathbb{S}_n$ is the set of all (i,j)-shuffles. Let $\Omega_{i,j} := \varrho_n(\mathfrak{S}_{i,j})$. It can be shown that

$$\Omega^n = (\Omega^i \otimes \Omega^j) \Omega_{i,j}.$$

Recall that the (i,j)-graded component of the comultiplication $\Delta \colon \Delta_{i,j} \colon C(i+j) \to C(i) \otimes C(j)$, $i,j \geq 0$, is given by $\Delta_{i,j} = \Omega_{i,j}$. We use a Sweedler-like notation:

$$\Omega_{i,j}(x) = \Omega_{i,j}(x)_{(i)} \otimes \Omega_{i,j}(x)_{(j)} \in T^i(V) \otimes T^j(V),$$

for $x \in T^n(V)$.

Hence, for $x \in T^n(V)$, $y \in T^i(W)$ and $z \in T^j(W)$, we have

$$\langle x | y \cdot z \rangle = (\Omega^n(x) | y \cdot z) = ((\Omega^i \otimes \Omega^j) \Omega_{i,j}(x) | y \cdot z)$$

$$= (\Omega^i \Omega_{i,j}(x)_{(i)} | y) (\Omega^j \Omega_{i,j}(x)_{(j)} | z).$$

On the other hand,

$$||x^{(1)}||y|| ||x^{(2)}||z|| = \sum_{k+\ell=n} ||\Omega_{k,\ell}(x)_{(k)}||y|| ||\Omega_{k,\ell}(x)_{(\ell)}||z||$$

$$= ||\Omega_{i,j}(x)_{(i)}||y|| ||\Omega_{i,j}(x)_{(j)}||z||$$

$$= (|\Omega^{i}\Omega_{i,j}(x)_{(i)}||y|) (||\Omega^{j}\Omega_{i,j}(x)_{(j)}||z|) .$$

Skew derivations.

Here is a useful tool to verify that some $r \in \mathcal{B}^n(V)$ is not 0.

For $f \in V^*$ we set

$$\partial_f = (\operatorname{id} \otimes f) \Delta^{n-1,1} : \mathscr{B}^n(V) \to \mathscr{B}^{n-1}(V).$$

Fix a basis $(x_i)_{i\in\mathbb{I}}$ of V and let $(f_i)_{i\in\mathbb{I}}$ be its dual basis. Set $\partial_i=\partial_{f_i}$, $i\in\mathbb{I}$.

Suppose that there is a family $(g_i)_{i\in\mathbb{I}}$ in G(H) such that $\delta(x_i)=g_i\otimes x_i$, for $i\in\mathbb{I}$. Then

$$\partial_i(xy) = x\partial_i(y) + \partial_i(x) g_i \cdot y, \qquad x, y \in \mathcal{B}(V), \qquad i \in \mathbb{I}.$$

Poincaré duality. Let now $\mathcal{R} = \bigoplus_{n \geq 0} \mathcal{R}^n$ be a connected graded, locally finite, Hopf algebra in ${}^H_H \mathcal{YD}$. Then dim $\mathcal{R} < \infty$ if and only if there exists $M \in \mathbb{Z}_{>1}$ s.t.:

$$\mathcal{R}^M \neq 0$$
 and $\mathcal{R}^{M+j} = 0 \ \forall j \in \mathbb{Z}_{>0}.$

Lemma. dim $\mathcal{R}^M = 1$ and dim $\mathcal{R}^i = \dim \mathcal{R}^{M-i}$ for all $i \in \mathbb{I}_{0,M}$.

Sketch of the proof. (i) Let $\Lambda \in \mathcal{R}^M \setminus 0$. Then

$$x \wedge = 0 = \varepsilon(x) \wedge = \wedge x, \qquad \forall x \in \mathcal{R}^i, i \in \mathbb{I}_M;$$

while if $x \in \mathcal{R}^0 = \mathbb{k}$, then $x\Lambda = \varepsilon(x)\Lambda = \Lambda x$. Hence Λ is an integral of R; but the space of integrals of a Hopf algebra in ${}^H_H \mathcal{YD}$ has dimension ≤ 1 . Hence dim $\mathcal{R}^M = 1$.

(ii) Now pick a non-zero element $f \in (\mathcal{R}^*)^M$; this is an integral in R^* , hence the bilinear form $(|) : \mathcal{R} \times \mathcal{R} \to \mathbb{R}$ given by

$$(x|y) = \langle f, xy \rangle$$

is non-degenerate. Observe that

$$(x|y) = 0$$
 if $x \in \mathbb{R}^d$, $y \in \mathbb{R}^e$, $d + e \neq M$.

Thus, the restriction of the bilinear form (|) to $\mathcal{R}^d \times \mathcal{R}^{M-d}$ is non-degenerate, implying the claim.

A rough algorithm:

Compute the pre-Nichols algebra $\mathcal{R}=\mathscr{B}_2(V)$; i.e., compute first $I_2(V)=\ker(\mathrm{id}+c)$ and then try to compute the homogeneous components \mathcal{R}^n of \mathcal{R} . If lucky to find that $\mathcal{R}^{M+1}=0$, then $\dim \mathcal{R}<\infty$. Thus, $\dim \mathcal{R}^M=1$. Check with skew derivations if $\mathcal{R}=\mathscr{B}(V)$.

If not lucky, proceed with the cubic approximation $\mathcal{R}=\mathscr{B}_3(V)$. . . and so on.

Example.

Let $n \in \mathbb{Z}_{\geq 3}$ and let V_n be the vector space with basis y_{τ} , $\tau \in \mathbb{S}_n$ a transposition $\tau = (i, j), i \neq j$. Then $V \in \mathbb{K}^n \mathcal{YD}$ by

$$\delta(y_{\tau}) = \tau \otimes y_{\tau}, \qquad \qquad \sigma \rightharpoonup y_{\tau} = \operatorname{sgn}(\sigma) y_{\sigma \tau \sigma^{-1}}.$$

The ideal I generated by $ker(\Omega^2)$ is generated by the elements

$$y_{\tau}^2 \quad \forall \tau, \tag{1}$$

$$y_{\tau}y_{\tau'} + y_{\tau'}y_{\tau} \quad \text{if } \tau\tau' = \tau'\tau, \tag{2}$$

$$y_{\tau}y_{\tau'} + y_{\tau'}y_{\tau''} + y_{\tau''}y_{\tau}$$
 if $\tau \tau' = \tau'' \tau$. (3)

Let $\mathcal{R}(n) := T(V_n)/I$, a Hopf algebra in $\mathbb{R}^{\mathbb{S}_n} \mathcal{YD}$.

Theorem. $\mathcal{R}(3) \simeq \mathcal{B}(V_3)$ has dimension 12.

Set $y_0 = (12)$, $y_1 = (23)$ and $y_2 = (23)$. By direct computations using the relations we have that

$$y_0y_1y_0 = -y_1y_2y_0 = y_1y_0y_1 = -y_0y_2y_1,$$

$$y_0y_1y_2 = -y_0y_2y_0 = y_2y_1y_0 = -y_2y_0y_2,$$

$$y_1y_0y_2 = -y_2y_1y_2 = y_2y_0y_1 = -y_1y_2y_1,$$

and the other monomials in degree 3 vanish since in all of them appears y_i^2 for some i. This in turn implies

$$y_0y_1y_0y_2 = -y_1y_2y_0y_2 = y_1y_0y_1y_2 = -y_0y_2y_1y_2$$

$$= y_0y_2y_0y_1 = -y_0y_1y_2y_1 = -y_2y_1y_0y_1$$

$$= y_2y_0y_2y_1 = -y_2y_0y_1y_0 = -y_1y_0y_2y_0$$

$$= y_2y_1y_2y_0 = y_1y_2y_1y_0,$$
(4)

$$y_0y_1y_0y_1 = y_1y_2y_0y_1 = y_1y_0y_1y_0 = y_0y_2y_1y_0$$

$$= y_0y_1y_2y_0 = y_2y_0y_2y_0 = y_0y_2y_0y_2$$

$$= y_2y_1y_0y_2 = y_1y_0y_2y_1 = y_2y_1y_2y_1$$

$$= y_2y_0y_1y_2 = y_1y_2y_1y_2 = 0,$$

and the other monomials in degree 4 vanish since in all of them appears y_i^2 for some i. Moreover, the monomials in (4) are annihilated by multiplying them with any of the y_i , and then

$$\mathcal{R}(3)^n = 0 \ \forall n \ge 5.$$

With this, we get the set of generators of \mathbb{R}^2_3 consisting of

 $\{1, y_0, y_1, y_2, y_0y_1, y_1y_2, y_0y_2, y_1y_0, y_0y_1y_0, y_0y_1y_0, y_0y_1y_2, y_1y_0y_2, y_0y_1y_0y_2\}.$ (5)

It can be proved that this set is indeed a basis by various methods (it is enough to check that $\mathcal{R}(3)^4 \neq 0$ and dim $\mathcal{R}(3)^3 = 4$).

We check now that $\mathcal{R}(3) \simeq \mathcal{B}(V_3)$. Since $I \subseteq \ker \Omega$, there exists a surjective map $\pi : \mathcal{R}(3) \to \mathcal{B}(V_3)$. Let N be such that

$$\mathscr{B}^N(V_3) \neq 0, \qquad \mathscr{B}^i(V_3) = 0 \qquad \forall i > N.$$

By Poincaré duality, dim $\mathcal{B}(V_3)^N = 1$, dim $\mathcal{B}^i(V_3) = \dim \mathcal{B}^{N-i}(V_3)$. We have the possibilities:

N=4, and then $\dim \mathscr{B}^3(V_3)=\dim V_3=3$, hence π is an isomorphism unless $\dim \mathscr{B}^2(V_3)<4$.

N=3, and then dim $\mathscr{B}^2(V_3)=\dim \mathscr{B}^1(V_3)=3$.

N=2, and then dim $\mathscr{B}^2(V_3)=\dim \mathscr{B}^0(V_3)=1$.

We see that in any case π is an isomorphism unless dim T(2) < 4, but dim $\mathcal{B}^2(V_3)$ is the codimension of ker Ω^2 , which is 4.

Theorem. $\mathcal{R}(4) \simeq \mathcal{B}(V_4)$ has dimension 576 = 24².

Theorem. $\mathcal{R}(5) \simeq \mathscr{B}(V_5)$ has dimension 8.294.400.

Problem.

$$\mathcal{R}(6) \simeq \mathcal{B}(V_6)$$
?

$$\dim \mathcal{R}(6) < \infty$$
?

$$\dim \mathscr{B}(V_6) < \infty$$
?

i.ii. Cocycle deformations and twisting.

Recall that if (A, μ) is an algebra and (C, Δ) is a coalgebra, the map *: hom $(C, A) \times \text{hom}(C, A) \to \text{hom}(C, A)$ (called the convolution product), given by

$$T * S := \mu \circ (T \otimes S) \circ \Delta,$$

is an associative multiplication on hom(C,A) with unit $u\varepsilon$.

Definition. A linear map $\phi: H \otimes H \to \mathbb{k}$, which is is invertible with respect to the convolution, is a unitary 2-cocycle if

$$\phi(x_{(1)} \otimes y_{(1)}) \phi(x_{(2)}y_{(2)} \otimes z) = \phi(y_{(1)} \otimes z_{(1)}) \phi(x \otimes y_{(2)}z_{(2)}),$$
$$\phi(x \otimes 1) = \phi(1 \otimes x) = \varepsilon(x),$$

for all $x, y, z \in H$.

If ϕ is a unitary 2-cocycle ϕ , then the multiplication \cdot_{ϕ} given by

$$x \cdot_{\phi} y = \phi(x_{(1)} \otimes y_{(1)}) x_{(2)} y_{(2)} \phi^{-1}(x_{(3)} \otimes y_{(3)}), \quad x, y \in H,$$

is associative and unital with the same unit as H.

Let $H_{\phi} = (H, \cdot_{\phi}, \Delta)$, with the new multiplication and the given comultiplication.

Lemma. H_{ϕ} is a Hopf algebra.

Exercise. Let G be a group. A unitary 2-cocycle on $\Bbbk G$ is determined by a cocycle $\phi \in Z^2(G, \Bbbk^\times)$, i.e., a map $\phi : G \times G \to \Bbbk^\times$ such that

$$\phi(g,h)\phi(gh,t) = \phi(h,t)\phi(g,ht),$$

$$\phi(g,e) = \phi(e,g) = 1,$$

$$g,h,t \in G.$$

Theorem. [Majid-Oeckl, Theorem 2.7, Corollary 3.4] Let $\phi: H \otimes H \to \mathbb{k}$ be an invertible unitary 2-cocycle.

(a) There is an equivalence $\mathcal{T}_{\phi}: {}^H_H\mathcal{YD} \to {}^{H_{\phi}}_{H_{\phi}}\mathcal{YD}$ of braided categories, $V \mapsto V_{\phi}$, which is the identity on the underlying vector spaces, morphisms and coactions, and transforms the action of H on V to $\cdot_{\phi}: H_{\phi} \otimes V_{\phi} \to V_{\phi}$, given for $h \in H_{\phi}$, $v \in V_{\phi}$ by

$$h \cdot_{\phi} v = \phi(h_{(1)}, v_{(-1)})(h_{(2)} \cdot v_{(0)})_{(0)} \phi^{-1}((h_{(2)} \cdot v_{(0)})_{(-1)}, h_{(3)}).$$

The monoidal structure on \mathcal{T}_{ϕ} is given by the natural transformation $b_{V,W}: (V \otimes W)_{\phi} \to V_{\phi} \otimes W_{\phi}$

$$b_{V,W}(v \otimes w) = \phi(v_{(-1)}, w_{(-1)})v_{(0)} \otimes w_{(0)}, \quad v \in V, w \in W.$$

(b) \mathcal{T}_{ϕ} preserves Nichols algebras: $\mathscr{B}(V)_{\phi} \simeq \mathscr{B}(V_{\phi})$ as objects in $H_{\phi}^{H_{\phi}} \mathcal{YD}$. In particular, the Hilbert-Poincaré series of $\mathscr{B}(V)$ and $\mathscr{B}(V_{\phi})$ are the same.

Application. We say that two matrices $\mathfrak{q}=(q_{ij})_{i,j\in\mathbb{I}_{\theta}}$ and $\mathfrak{q}'=(q'_{ij})_{i,j\in\mathbb{I}_{\theta}}$ with invertible entries are *twist-equivalent* if

$$q_{ii}=q'_{ii}, \qquad i\in\mathbb{I}_{ heta} \qquad ext{and} \qquad q_{ij}q_{ji}=q'_{ij}q'_{ji}, \qquad i
eq j\in\mathbb{I}_{ heta}.$$

Let V and V' be the braided vector spaces of diagonal type associated to twist-equivalent matrices \mathfrak{q} and \mathfrak{q}' , respectively.

Corollary. [AS3, Proposition 3.9]

The Hilbert-Poincaré series of $\mathscr{B}(V)$ and $\mathscr{B}(V')$ coincide.

Proof. One defines a suitable cocycle ϕ on the group $\mathbb Z$ and applies the Theorem.

i.iii. The splitting technique.

Let H be a Hopf algebra. Let $V, U \in {}^H_H\mathcal{YD}$ and

$$W = V \oplus U$$
;

this is a decomposition of W as above (any decomposition can be realized over a suitable H provided that c_W is rigid). Set

$$\mathcal{A}(W) = \mathcal{B}(W) \# H, \quad \mathcal{A}(V) = \mathcal{B}(V) \# H, \quad \mathcal{A}(U) = \mathcal{B}(U) \# H.$$

The natural maps of Hopf algebras in ${}^H_H\mathcal{Y}\mathcal{D}$

$$\pi_{\mathscr{B}(V)}:\mathscr{B}(W)\to\mathscr{B}(V)$$
 and $\iota_{\mathscr{B}(V)}:\mathscr{B}(V)\to\mathscr{B}(W)$

induce—by tensoring with id_H —morphisms of Hopf algebras

$$\pi_{\mathcal{A}(V)}: \mathcal{A}(W) \to \mathcal{A}(V), \qquad \pi_{\mathcal{A}(V)} \coloneqq \pi_{\mathscr{B}(V)} \# \operatorname{id}_H,$$
 and
$$\iota_{\mathcal{A}(V)}: \mathcal{A}(V) \to \mathcal{A}(W), \qquad \iota_{\mathcal{A}(V)} \coloneqq \iota_{\mathscr{B}(V)} \# \operatorname{id}_H,$$

Now $\pi_{\mathcal{A}(V)}\iota_{\mathcal{A}(V)}=\mathrm{id}_{\mathcal{A}(V)}$, hence by Radford-Majid we have that

$$\mathcal{K} = \mathcal{A}(W)^{\mathsf{CO}\,\pi_{\mathcal{A}(V)}}$$

is a Hopf algebra in ${\mathcal A}(V)_{\mathcal A}\mathcal Y\mathcal D$ with the adjoint action and the coaction

$$\delta = (\pi_{\mathcal{A}(V)} \otimes \mathsf{id}) \Delta_{\mathcal{A}(W)},$$

so that $\mathcal{A}(W)$ is the bosonization of \mathcal{K} by $\mathcal{A}(V)$:

$$\mathcal{A}(W) \simeq \mathcal{K} \# \mathcal{A}(V).$$

Proposition. [Rosso, Proposition 22] [HS-adv, Proposition 8.6]. $\mathcal{K} \simeq \mathcal{B}(Z_U)$, where

$$Z_U := \operatorname{ad}_c \mathscr{B}(V)(U) \in {}^{\mathcal{A}(V)}_{\mathcal{A}(V)} \mathcal{YD}.$$

In fact, $\mathscr{B}(W)$ is the braided bosonization $\mathcal{K}\#\mathscr{B}(V)$, i.e.,

$$\mathscr{B}(W) \simeq \mathscr{B}(Z_U) \# \mathscr{B}(V).$$

This result can be used in two directions, both assuming that $\mathscr{B}(V)$ is known:

- ullet To compute $\mathscr{B}(W)$ by computing first $\mathscr{B}(Z_U)$,
- To compute $\mathscr{B}(Z_U)$ by computing first $\mathscr{B}(W)$.