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o. Overview Let H be a Hopf algebra and V ∈ H
HYDfd. In the

previous chapter we introduced the Nichols algebra as the image

of a canonical map Ω : T (V ) → T c(V ) from the tensor algebra to

the quantum shuffle algebra. In the first section of this chapter,

we give several characterizations of Nichols algebras:

• as the only graded connected Hopf algebra in H
HYD that is

simultaneously post and pre-Nichols;

• a description of Ω in terms of quantum symmetrizers;

• in the context of Hopf bimodules;

• as a radical of a suitable bilinear form, or using skew derivations.
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Despite these numerous definitions, there are currently only a

few techniques available to explicitly compute some distinctive

features of a Nichols algebra, such as its (Gelfand-Kirillov) di-

mension, its defining relations, whether it is Noetherian, etc.

These techniques apply only to some specific features of some

specific classes of braided vector spaces:

• braided vector spaces of diagonal type;

• braided vector spaces associated to racks.

• braided vector spaces associated to blocks.
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We introduce these classes in the fourth section, leaving a com-

prehensive presentation of their state of the art for later chapters.

A fruitful reduction is to deal with braided Hopf algebras, i.e.,

Hopf algebras in the category of braided vector spaces, as we

explain in the second section. A few elementary examples are

discussed in the third section.
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i. Nichols algebras.

We fix a Hopf algebra H (with bijective antipode) and V ∈ H
HYDfd.

i.i (Pre- and post-)Nichols algebras. We have considered:

• The tensor algebra T (V ), a graded connected Hopf algebra in
H
HYD with comultiplication ∆ : T (V ) → T (V )⊗ T (V ) given by

∆(v) = v ⊗ 1+ 1⊗ v, ∀v ∈ V,

where T (V )⊗T (V ) is an algebra in H
HYD with the product altered

by the braiding c.

• The quantum shuffle algebra T c(V ) = #T (V ∗) of V whose

homogeneous components are T (n)(V ) = Tn(V ), but the multi-

plication of T c(V ) is transpose to the comultiplication of T (V )

and vice versa.
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• The algebra T (V ) is generated by V ,

• the quantum shuffle algebra T c(V ) is strictly graded,

• there exists a map Ω : T (V ) → T c(V ) of graded Hopf algebras
in H

HYD which is the identity in V = T1(V ).

A graded connected Hopf algebra E =
⊕

n∈N0
En in H

HYD such
that E1 ' V is a

• pre-Nichols algebra of V if E(1) ' V generates the algebra E;

• post-Nichols algebra of V if it is strictly graded, or equivalently
Prim(E) = E1 ' V .
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In other words, B is a pre-Nichols algebra of V if and only if
B ' T (V )/I, where I is an homogeneous Hopf ideal of T (V )
stable by the antipode and a Yetter-Drinfeld submodule of T (V )
such that I ∩ k⊕ V = 0;

in turn, R is a post-Nichols algebra of V if and only if there
exists an injective morphism R → T c(V ) of graded Hopf algebras
in H

HYD which is the identity on V .

Proposition. There exists a unique up to isomorphisms graded
connected Hopf algebra E =

⊕
n∈N0

En with E(1) ' V such that

• E(1) ' V generates the algebra E and

• Prim(E) = E1 ' V .

In other words, there exists a unique pre-Nichols algebra which
is also post-Nichols.
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Proof. We consider

S = {I ⊂ ⊕n≥2T
n(V ) : I is a homogeneous ideal and coideal},

S̃ = {I ∈ S : I is a Yetter-Drinfeld submodule of T (V )},
I(V ) =

∑
I∈S

I, Ĩ(V ) =
∑
J∈S̃

J.

That is, I(V ), respectively Ĩ(V ), is the largest ideal in S, resp.
S̃. Let E := T (V )/Ĩ(V ) and π : T (V ) → E the natural projection.
We claim that V = P(E).

Since ∆ is a homogeneous map, we have that P(E) = ⊕n≥1Pn(E),
where Pn(E) = P(E) ∩ Tn(V ).
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Let X = π−1
(
⊕n≥2Pn(E)

)
; this is a graded Yetter-Drinfeld sub-

module of T (V ), and

∆(x) ∈ x⊗ 1+ 1⊗ x+ T (V )⊗ Ĩ(V ) + Ĩ(V )⊗ T (V )

for all x ∈ X . Hence the ideal generated by Ĩ(V ) and X is

in S̃, X ⊂ Ĩ(V ) by the maximality of Ĩ(V ), so π(X ) = 0 and

P(E) = P1(E) = V as claimed.

Let R = ⊕n≥0R(n) be a pre-Nichols algebra of V which is also

post-Nichols. By the first assumption, there exists I ∈ S̃ such

that R ' T (V )/I; since I ⊆ Ĩ(V ), we have a morphism φ : R → E
of Hopf algebras in H

HYD. By the second assumption and the

Lemma below, φ is injective. Hence R ' E as braided Hopf

algebras in H
HYD.
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Lemma. [Montgomery, Lemma 5.3.3] A morphism of pointed

coalgebras which is injective in the first term of the coalgebra

filtration is injective.

The Nichols algebra of V will be denoted by B(V ).

Remark. I(V ) = Ĩ(V ), i.e., B(V ) ' T (V )/I(V ).

Since I(V ) ⊇ Ĩ(V ), we have a surjective map B(V ) → T (V )/I(V )

which is injective in the first term of the coalgebra filtration by

the Proposition. Then the Lemma applies.
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Corollary. B(V ) ' ImΩ.

Remark. (1) If B is a pre-Nichols algebra of V , then there exists
a surjective map of graded Hopf algebras B → B(V ), which is an
isomorphism of Yetter-Drinfeld modules in degree 1.
Pre(V ): poset of pre-Nichols, ≤ is ↠; min. T (V ), max. B(V ).

(2) If R is a post-Nichols algebra of V , then B(V ) is isomorphic
to the subalgebra k〈V 〉 of R generated by V .
Post(V ): poset of post-Nichols, ≤ is ⊆; min. B(V ), max. T c(V ).
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i.ii Quantum symmetrizers. Notation: If ℓ < n ∈ N0, then we

set Iℓ,n = {ℓ, ℓ+1, . . . , n}, In = I1,n.

We now describe the map Ω =
∑

n∈N0
Ωn : T (V ) → T c(V ), where

Ωn : Tn(V ) → T c,n(V ). Clearly, Ω0 = idk and Ω1 = idV .

The projection π : Bn → Sn sending σi 7→ si := (i, i+1), i ∈ In−1,

admits a set-theoretical section Mn : Sn → Bn determined by

M(si) = σi, i ∈ In−1, M(τω) = M(τ)M(ω), if ℓ(τω) = ℓ(τ) + ℓ(ω),

where ℓ is the length of an element of Sn with respect to the set

of generators s1, . . . , sn−1. The map M is called the Matsumoto

section. In other words, if ω = si1 . . . siM is a reduced expression

of ω ∈ Sn, then M(ω) = σi1 . . . σiM .
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We consider the following elements of the group algebra kBn:

Sn :=
∑
σ∈Sn

M(σ), Sn
i,j :=

∑
σ∈Xn

i,j

M(σ),

where Xn
i,j ⊂ Sn is the set of all (i, j)-shuffles. The element Sn

is called the quantum symmetrizer.

Let ϱn : kBn → EndTn(V ) be the representation of the group

algebra of Bn discussed in the first chapter.

Proposition. Ωn = ϱn(Sn).

Since B(V ) =
⊕

n≥0 T
n(V )/kerΩn, we have

B2(V ) = T2(V )/ker(id+c),

B3(V ) = T3(V )/ker(id+c1 + c2 + c1c2 + c2c1 + c1c2c1), etc.

where c1 = c⊗ id, c2 = id⊗c.
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If C =
⊕

n≥0C(n) is a graded coalgebra with comultiplication

∆, we denote by ∆i,j : C(i + j) → C(i) ⊗ C(j), i, j ≥ 0, the

(i, j)-graded component of the map ∆.

Proposition. For the coalgebra B(V ),

∆i,j = ϱn(Si,j).
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i.iv Hopf bimodules and Yetter-Drinfeld modules

Recall that a bimodule over an algebra A is a left and right

A-module such that the actions A ⊗ M → M and M ⊗ A → M

commute:

(a ·m) · b = a · (m · b), ∀a, b ∈ A, m ∈ M.

Also, a bicomodule over a coalgebra C is a left and right comod-

ule such that the coactions λ : M → C ⊗ M and ρ : M → M ⊗ C

commute;

M
ρ

//

λ
��

⟳
M ⊗ C

λ⊗id
��

C ⊗M
id⊗ρ

//C ⊗M ⊗ C
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The categories AMA of A-bimodules and CMC of C-bicomodules
are tensor categories:

AMA × AMA → AMA, (M,N) 7→ M ⊗A N, M,N ∈ AMA;

CMC × CMC → CMC, (M,N) 7→ M□CN, M,N ∈ CMC;

Definition. A Hopf bimodule over a Hopf algebra H is an H-
bimodule M which is also an H-bicomodule, such that the left
and right coactions are morphisms of bimodules.

Lemma. The category
H
HMH

H Hopf bimodule over a Hopf algebra
H is a braided tensor one:
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Lemma. There is an equivalence of braided tensor categories
H
HMH

H → H
HYD given by M 7→ McoH = {m ∈ M : ρ(m) = m⊗ 1}.

Given M ∈ H
HMH

H , its tensor algebra is

TH(M) = H ⊕M ⊕ (M ⊗H M)⊕ . . .

= ⊕n∈N0
Tn
H(M),

where T0
H(M) = H, T1

H(M) = M , Tn+1
H (M) = Tn

H(M)⊗H M .

Then TH(M) is a Hopf algebra with comultiplication extending

the comultiplication of H and given by

∆(m) = m(−1) ⊗m(0) ⊗m(1).
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Definition. [Nichols 1976]

The type one bialgebra of M ∈ H
HMH

H is the graded Hopf algebra

B(M) obtained as the quotient of TH(M) by the maximal graded

Hopf ideal that intersects trivially H ⊕M .

Lemma.[Nichols 1976]

Let V = McoH. Then B(V ) ' B(M)coH.
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i.ii Bilinear forms and derivations Next meeting.
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ii Braided Hopf algebras

ii.1 The category of braided vector spaces

Given Hopf algebras H and K, V ∈ H
HYDfd and W ∈ K

KYDfd,

the associated braided vector spaces (V, c) and (W, c) might be

isomorphic as such even if H, K, the actions and the coactions

are quite different.
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To deal with this approppriately, Takeuchi prposed the following
notion:

Definition. A braided bialgebra is collection (A,µ, u,∆, ε, c) s. t.
◦ (A,µ, u) is an algebra over k,
◦ (A,∆, ε) is a coalgebra over k,
◦ (A, c) is a braided vector space,
◦ A,µ, u,∆, ε commute with c,
◦ u : k → A and ε : A → k are morphisms of algebras,
◦ ∆ ◦ µ = (µ⊗ µ)(id⊗c⊗ id)(∆⊗∆).

• A braided Hopf algebra is a braided bialgebra having an an-
tipode (an inverse of the identity for the convolution product).

21



ii.ii Quasitriangular and co-quasitriangular bialgebras

Recall that a quasitriangular Hopf algebra (H,R) consists of a
Hopf algebra H and an invertible element R ∈ H ⊗H, called the
R-matrix,such that the following conditions are fulfilled:

(∆⊗ id)(R) = R13R23, (ϵ⊗ id)(R) = 1,

(id⊗∆)(R) = R13R12, (id⊗ϵ)(R) = 1,

∆cop(h) = R∆(h)R−1, ∀h ∈ H.

Then the category of left H-modules is braided, with braiding
arising from R.
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Let (H, ϱ) be a coquasitriangular bialgebra, i.e., H is a bialgebra

and ϱ : H⊗H → k is a convolution-invertible linear map satisfying:

ϱ(xy ⊗ z) = ϱ(x⊗ z(1))ϱ(y ⊗ z(2)), (1)

ϱ(x⊗ yz) = ϱ(x(1) ⊗ z)ϱ(x(2) ⊗ y), (2)

y(1)x(1)ϱ(x(2) ⊗ y(2)) = ϱ(x(1) ⊗ y(1))x(2)y(2). (3)

for any x, y, z ∈ H. The category HM of left comodules over

(H, ϱ) is braided; explicitly, if V,W ∈ HM, v ∈ V and w ∈ W , then

cV,W (v ⊗ w) = ϱ(w(−1) ⊗ v(−1))w(0) ⊗ v(0).
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In fact, there is a braided tensor functor HM → H
HYD, which thus

preserves algebras and Hopf algebras: if V ∈ HM, then V ∈ H
HYD

with the given coaction and the action

h · v = ϱ(h, v(−1))v(0), h ∈ H, v ∈ V (4)

This is an action by (1), the associativity holds by (2) and the

Yetter-Drinfeld compatibility by (3).
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ii.iii Realizations

Definition. A realization of a braided vector spaces (V, c) over a

Hopf algebras H (or a bialgebra B) is the data of an action and

a coaction of H on V such that V ∈ H
HYD and the categorical

braiding coincides with c.

Theorem. Let (V, c) be a braided vector space.

(1) [Fadeev-Reshetikhin-Takhtajan] There is a universal coquasitrian-

gular bialgebra B such that V ∈ BM and the categorical braiding

coincides with c.

(2) [Hayashi-Schauenburg] If (V, c) is (rigid), then there is a universal

coquasitriangular Hopf algebra H such that V ∈ HM and the

categorical braiding coincides with c.
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iii. Examples.

iii.i Symmetric braided vector spaces.

Let (V, c) be a braided vector space.

Definition. We say that c is a symmetry if c2 = id.

Lemma. Assume char k = 0. If c is a symmetry, then

B(V ) ' T (V )/〈kerΩ2〉; i.e., B(V ) is quadratic.

Proof. The representation ϱn : Bn → EndTn(V ) factorizes through

Sn because c is a symmetry. Thus Ωn =
∑

σ∈Sn ϱn(σ) and

kerΩn = ker ϱn(I
n) where In =

1

n!

∑
σ∈Sn

σ,

which makes sense because char k = 0. Clearly In is an idempo-

tent and the usual proof of linear algebra applies.
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Examples. (char k = 0). Let τ ∈ GL(V ⊗2) be the usual flip.

• If c = τ , then B(V ) ' S(V ), the symmetric algebra of V .

• If c = −τ , then B(V ' Λ(V ), the exterior algebra V .

• If V = V0 ⊕ V1 is a super vector space and c = super τ , then

B(V ) ' S(V0)⊗Λ(V1), the supersymmetric algebra of V .

Observe that when char k = p > 0 and c = τ , one has

B(V ) ' S(V )/〈{vp : v ∈ V }〉.

27



Definition. We say that c is of Hecke-type with label q ∈ k×, if

(c− q)(c+1) = 0.

Lemma. Assume char k = 0. If c is of Hecke-type with label q,

which is either 1 or not a root of 1, then B(V ) is quadratic, i.e.,

B(V ) ' T (V )/〈kerΩ2〉.

Moreover, B(V ) is a Koszul algebra and its Koszul dual is the

Nichols algebra B(V ∗) corresponding to the braiding q−1ct.

Sketch of the proof. In this case, the representation of the braid

group ρn : Bn → Aut(V ⊗n) factorizes through the Hecke algebra

Hq(n), which is semisimple by assumption on q, for all n ≥ 0.

Again kerΩn = ker of a suitable idempotent and the proof goes

as in the symmetric case.
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iii.ii Decompositions Let (V, c) be a braided vector space.

A decomposition of V is a family of subspaces (Vi)i∈Iθ where

V = V1 ⊕ · · · ⊕ Vθ, Vi 6= 0,

c(Vi ⊗ Vj) = Vj ⊗ Vi, i, j ∈Iθ, θ ≥ 2.

We shall discuss techniques to investigate B(V ) when V is de-

composable. Here is the simplest case. Let

cij := c|Vi⊗Vj
: Vi ⊗ Vj → Vj ⊗ Vi.

Lemma. If cjicij = idVi⊗Vj for i 6= j ∈ Iθ, then

B(V ) ' B(V1)⊗B(V2)⊗ . . .B(Vθ)

where ⊗ means the multiplication altered by c.
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iii.iii Quantum lines.

Notation: Gn is the group of n-th roots of 1, G′
n is the subset of

Gn consisting of primitive roots, G∞ = ∪n∈NGn, G′
∞ = G∞\{1}.

Assume that char k = 0. Let k[q] be the polynomial ring in the

indeterminate q. Given n ∈ N0 and i ∈ I0,n, we consider the

elements of k[q] given by

(i)q =
∑

0≤j≤i−1

qj, (n)q! =
∏

1≤i≤n

(i)q,
(n
i

)
q
=

(n)q!

(i)q!(n− i)q!
.

Notice that

if q ∈ G′
n :

(n
i

)
q
= 0, 0 < i < n, btt

(d
j

)
q
6= 0, 0 ≤ j ≤ d < n;

if q /∈ G′
∞ :

(n
i

)
q
6= 0 ∀n, i.
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Lemma. (Quantum binomial formula). Let A be an associative

k[q]-algebra, a and b ∈ A such that ba = qab. Then

(a+ b)n =
∑

1≤i≤n

(n
i

)
q
aibn−i, if n ≥ 1. (5)

By specialization, (5) holds for q ∈ k. In particular, if a and b are

elements of an associative algebra over k, and q is a primitive

n-th root of 1, such that ba = qab then

(a+ b)n = an + bn. (6)
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Application. Let V = kv be a braided vector space of dimension

1. Thus the braiding is just the scalar multiplication by some

q ∈ k×. Let k[X] be the polynomial ring.

Proposition. (1) If q ∈ G′
n for n ∈ N>1, then B(V ) ' k[X]/(Xn).

(2) Otherwise, B(V ) ' k[X].

Proof. By the quantum binomial formula for A = T (V )⊗T (V ),

a = v⊗1 and b = 1⊗v, since (1⊗v)(v⊗1) = q v⊗v = q(v⊗1)(1⊗v).
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iii.iv Quantum linear spaces.
Let (qij)i,j∈Iθ be a matrix with entries in k× such that

qijqji = 1, i, j ∈ Iθ, i 6= j.

Let Ni be the order of qii, when qii ∈ G′
∞.

Let (V, c) be the braided vector space with basis (vi)i∈Iθ and braiding

c(vi ⊗ vj) = qij vj ⊗ vi, i, j ∈ Iθ.

Proposition. B(V ) ' k〈v1, . . . , vθ〉 modulo the relations
v
Ni
i = 0, for qii ∈ G′

∞, vivj = qijvjvi, i < j ∈ Iθ.

dimR is infinite unless qii ∈ G′
∞, in which case dimR =

∏
1≤i≤θNi.

Proof. This follows from the case dimV = 1 and the result on
decompositions.
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Let H be a Hopf algebra.

If V is a braided vector space of dimension 1 with braiding de-

termined by q, then any realization of V in H
HYD is determined

by

χ ∈ Homalg(H, k), & g ∈ G(H) ∩ Z(H) : χ(g) = q.

A pair (χ, g) ∈ Homalg(H, k)×G(H) ∩Z(H) is called a YD-pair.
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We say that (V, c) is of diagonal type if there exists a basis
(vi)i∈Iℓ and a matrix q = (qij)i,j∈Iθ such that

c(vi ⊗ vj) = qij vj ⊗ vi, i, j ∈ Iθ.

A principal realization of (V, c) in H
HYD is a family of YD-pairs

(χ1, g1), . . . , (χθ, gθ) such that

χi(gj) = qji, 1 ≤ i, j ≤ θ.

Indeed, V is realized over H by declaring vi ∈ V
χi
gi .

Notice however that if θ ≥ 2, then there are realizations that are
not principal.
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iv. Clases of braided vector spaces.

iv.i Diagonal type

These were introduced just before. By several reasons, this is

the most important class. Note that if Γ is a finite abelian group

and char k = 0, then any V ∈ kΓ
kΓYD is of diagonal type. This

class will be discussed thoroughly.
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iv.ii Racks

A rack is a set X 6= ∅ with a self-distributive operation ▷ such

that φx := x ▷ is bijective for all x ∈ X.

If X is a rack and q : X ×X → k× is a (suitable) 2-cocycle, then

kX, cq) is a braided vector space where

cq ∈ GL(kX ⊗ kX), cq(x⊗ y) = qxy(x ▷ y)⊗ x, ∀x, y ∈ X.

This kind of braiding will be discussed in depth as needed to

understand pointed Hopf algebras over non-abelian groups.
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iv.iii Blocks Let ℓ ∈ N≥2 and ϵ ∈ k×. The block V(ϵ, ℓ) is a
braided vector space with a basis (xi)i∈Iℓ such that

c(xi ⊗ xj) =

ϵx1 ⊗ xi, j = 1

(ϵxj + xj−1)⊗ xi, j ≥ 2,
i ∈ Iℓ.

Theorem. [A.–Angiono–Heckenberger] GK-dimB(V(ϵ, ℓ)) < ∞ if
and only if ℓ = 2 and ϵ ∈ {±1}.

• B(V(1,2)) = k〈x1, x2|x2x1 − x1x2 + 1
2x

2
1〉 Jordan plane.

• B(V(−1,2)) = k〈x1, x2|x21, x2x12−x12x2−x1x12〉 super Jordan
plane. Here x12 = x2x1 + x1x2. Note: GK-dimB(V(±1,2)) = 2.

The class of decomposable braided vector spaces V = V1⊕· · ·⊕Vθ
where the Vi’s are either blocks or points (i.e. dim 1) is important
for the classification of finite GK-dim (in char = 0) and of finite
dim (in char > 0).
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iv.iii Miscellaneous The rigid braided vector spaces of dimension

2, (not of diagonal type) were classified by Hietarinta.

Theorem. (A.-Jury Giraldi) If B(V ) has quadratic relations,

then (V, c) is classified, and the explicit presentation of B(V ), a

PBW-basis, the dimension and the GK-dimension are given.

Most of the Nichols algebras appearing in this way have known

algebra structure but there are some strange examples.
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