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o. Overview A basic result for Hopf algebras reads as follows:

Theorem 1. Let H be a Hopf algebra whose coradical H0 is
a Hopf subalgebra. Then H is a deformation (lifting) of the
bosonization of H0 by a post-Nichols algebra R in H0

H0
YD:

grH ' R#H0. (1)

Thus, to understand Hopf algebras (whose coradical is a Hopf
subalgebra) satisfying a given property P, one should

(a) Verify that P propagates softly through (1),

(b) understand the cosemisimple Hopf algebras K, as well as the
post-Nichols algebras R ∈ K

KYD satisfying P,

(c) recover information on H from information on grH ' R#K.
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In these notes, the main focus is on Hopf algebras satisfying the

property P = having finite dimension, under the hypotheses:

Hypothesis A. The base field k is algebraically closed and has

characteristic 0.

Hypothesis B. H is pointed, i.e. H0 ' kG.

Under Hypothesis A, it was conjectured that any post-Nichols

algebra R ∈ K
KYD is indeed a Nichols algebra (which is definitely

false in positive characteristic), implying a drastic simplification

in our analysis.

Hypothesis B is justified because our knowledge of cosemisimple

Hopf algebras is at an early stage.

3



Other properties of Hopf algebras that can be studied within this

approach are:

having finite Gelfand-Kirillov dimension,

having finite dimension in characteristic > 0,

being Noetherian,

having finitely generated cohomology, . . .

In this chapter we explain the above terminology, prove Theorem

1, and discuss the propagation of several properties through (1).

Notice that we do not assume Hypothesis A, i.e., the field k is

arbitrary.
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i. Preliminaries We assume that the reader is familiar with the

basic definitions of coalgebras and Hopf algebras.

i.i Coalgebras The comultiplication of a coalgebra C is denoted

by ∆ and the counit by ε; the kernel of ε is denoted by C+.

The convolution product in A = C∗ is the transpose of ∆; thus

A is an associative algebra (but the dual of an algebra is not a

coalgebra unless it has finite dimension).

A subspace D of C is

• a left coideal if ∆(D) ⊆ C ⊗D,

• a right coideal if ∆(D) ⊆ D ⊗ C,

• a coideal if ∆(D) ⊆ D ⊗ C + C ⊗D,

• a subcoalgebra if ∆(D) ⊆ D ⊗D.
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Let V be a vector space. Given U ⊆ V and W ⊆ V ∗, we denote

U⊥ := {f ∈ V ∗ : f(u) = 0 ∀u ∈ U},
W⊥ := {u ∈ V : f(u) = 0 ∀f ∈ W}.

Then a subspace D of a coalgebra C is

• a left coideal if and only if D⊥ is a left ideal of C∗,

• a right coideal if and only if D⊥ is a right ideal of C∗,

• an ideal if it is the kernel of a coalgebra map,

• a subcoalgebra if and only if it is a left and right coideal, if and

only if D⊥ is a two-sided ideal of C∗.
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Lemma 1. (Cartier). Every coalgebra is the union of its finite-
dimensional subcoalgebras.

A coalgebra is simple if it is different from 0 and has no proper
subcoalgebras.
Example. A coalgebra C of dimension 1 is spanned by g ∈ C

such that ∆(g) = g⊗g and ε(g) = 1 (called a group-like element).

By Lemma 1, a simple coalgebra is finite-dimensional, hence the
dual of a simple algebra.

Lemma 1 also implies that any coalgebra contains a simple sub-
coalgebra.

Definition. The coradical C0 of a coalgebra C is the sum of all
its simple subcoalgebras.
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One has C0 =
⊕

S subcoalgebra de C

S.

• If D is a subcoalgebra of C, then D0 = C0 ∩D.

A coalgebra is cosemisimple if and only if is a sum of simple
subcoalgebras, i.e. if it coincides with its coradical. It can be
shown that being cosemisimple is equivalent to the category of
left (or right) comodules being semisimple.

Example. Given a set X 6= ∅, the vector space kX with basis
(ex)x∈X is a cosemisimple coalgebra by prescribing that the ex’s
are group-likes.

A coalgebra C is pointed when its simple subcoalgebras have
dimension 1, i.e., C0 ' kX where X = {x ∈ C : x is group-like}.
A coalgebra C is connected if dimC0 = 1.
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i.ii Filtrations. We start with some standard definitions.

Let V be a vector space. A family F = (FnV )n∈Z of subspaces

of V is an ascending, respectively descending filtration, of V if

FnV ⊆ Fn+1V, respectively FnV ⊇ Fn+1V ∀n ∈ Z;
F is separated if ∩FnV = 0,

and exhaustive if ∪FnV = V.

We shall consider

• Ascending filtrations with F−1V = 0, hence F−nV = 0 ∀n < 0

and F is separated. For such F, we just provide F = (FnV )n≥0.

• Descending filtrations with F−1V = V , hence F−nV = V ∀n < 0

and F is exhaustive. For such F, we just provide F = (FnV )n≥0.
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If F = (FnV )n∈Z is an ascending filtration of V ,

then F⊥ =
(
(FnV )⊥

)
n∈Z

is a descending filtration of V ∗.

If F = (FnV )n∈Z is a descending filtration of V ,

then F⊥ =
(
(FnV )⊥

)
n∈Z

is an ascending filtration of V ∗.

Clearly, F−1V = 0 implies
(
F−1V

)⊥
= V ∗,

while F−1V = V , implies
(
F−1V

)⊥
= 0.
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Let now A be an algebra. By convention, an algebra filtration

of A is a descending filtration F = (FnA)n≥0 of A such that

FpA · FqA ⊆ Fp+qA, ∀p, q ∈ N0.

Ascending algebra filtrations are defined similarly.

Let now C be a coalgebra. By convention, a coalgebra filtration

of C is an ascending filtration F = (FnC)n≥0 of C such that

∆(FnC) ⊆
∑

p,q∈N0: p+q=n

FpC ⊗FqC ∀n ∈ N0.

Descending coalgebra filtrations are defined similarly.
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If F is a coalgebra filtration of the coalgebra C, then F⊥ is an

algebra filtration of the algebra A = C∗.

If F is an algebra filtration of the algebra A and dimA < ∞, then

F⊥ is a coalgebra filtration of the coalgebra C = A∗.
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The typical example of an algebra filtration is (In)n≥0 where I

is a (2-sided) ideal of A. We next discuss the coalgebra version

of it. We start with the notion of wedge.

Let C be a coalgebra. For D,E, F subspaces of C, we set

D ∧ E = {c ∈ C : ∆(c) ∈ D ⊗ C + C ⊗ E} = ∆−1(C ⊗ E +D ⊗ C),

= ker
(
C

∆−→ C ⊗ C → C/D ⊗ C/E

)
= (C⊥ · E⊥)⊥ (product in C∗).
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Some properties:

• D ∧ (E ∧ F ) = (D ∧ E) ∧ F .

• D ∧ C+ = D = C+ ∧D.

• If D is a left coideal and F is a right coideal (in particular, if
D and F are subcoalgebras), then D ∧ E is a subcoalgebra and
D ∧ E ⊃ D ∪ E.

• If S, D, and E are subcoalgebras of C, where S is simple and
S ⊆ D ∧ E, then S ⊆ D or S ⊆ E.

• If F = (FnC)n≥0 is an (ascending) coalgebra filtration of C,
then Fn+1C ⊆ FnC ∧ F0C.
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We shall need the following result.

Lemma 2. Let F = (FnV )n∈N0
be an exhaustive filtration of

the coalgebra C. Then C0 ⊆ F0V .

Proof. We have to prove: if S is a simple subcoalgebra, then

S ⊆ F0V . Since the filtration F is exhaustive, there exists n ∈ N0

such that S ∩ FnV 6= 0; by simplicity, S ⊆ FnV ⊆ Fn−1C ∧ F0C.

Hence S ⊆ Fn−1C or S ⊆ F0C. By induction, S ⊆ F0C.
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Next, for a subcoalgebra D of C, we set

∧0D = 0, ∧1D = D, ∧n+1D = (∧nD) ∧D.

This defines an ascending separated coalgebra filtration ∧•D.

Given a subcoalgebra E of D, ∧nE ⊆ ∧nD for all n ∈ N0.

When D = C0, we set Cn = ∧n+1C0 and call this the coradical

filtration of C.

Lemma 3. ∧•D is an exhaustive filtration if and only if C0 ⊆ D.

Proof. If dimC < ∞, then the coradical filtration is exhaustive

since ∧n(C0)
⊥ = Jn+1 where J is the Jacobson radical of A = C∗.

By Lemma 1, we conclude that the coradical filtration is exhaus-

tive for arbitrary C.

Thus the filtration ∧•D is exhaustive for C0 ⊆ D.

The converse follows from Lemma 2.
17



i.iii Gradings.

Let V be a vector space and let X be a set. A family

G = (V (x))x∈X of subspaces of V is an X-grading of V if

V = ⊕x∈XV (x).

We say that (V,G), or simply V , is an X-graded vector space.

When X = N0, we simply say ‘graded vector space’. A graded

vector space is connected if dimV (0) = 1.
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Let V be an X-graded vector space. Its graded dual is

V # = ⊕x∈XV (x)∗.

We say that V is locally finite if dimV (x) < ∞ for all x ∈ X.

When this is the case, V # is locally finite too and V ## ' V .

Thus we have a contravariant functor V 7→ V # from the category

of locally finite X-graded vector spaces (with morphisms being

linear maps preserving the grading) onto itself; clearly it sends

injective maps to surjective maps and vice versa.
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Let F = (FnV )n∈N0
be an ascending filtration of V . Set

grn V := FnV/Fn−1V, gr V := ⊕n∈N0
grn V.

We say that gr V is the graded vector space associated to (V,F).

Notice that, for an exhaustive filtration, dimV = dimgr V .

Conversely, a graded vector space V has a canonical ascending

filtration

FnV = ⊕m≤nV (m).

The graded vector space associated to this filtration is isomor-

phic to V .
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Let now M be a monoid (with unit).

Let A be an algebra and let G = (A(m))m∈M be an M-grading
of A. We say that (A,G), or simply A, is an M-graded algebra if

A(p) ·A(q) ⊆ A(p · q), ∀p, q ∈ M.

Let C be a coalgebra and let G = (C(m))m∈M be an M-grading
of C. We say that (C,G), or simply C, is an M-graded coalgebra
if

∆(C(m)) ⊆
∑

p,q∈N0: p·q=m

C(p)⊗ C(q) ∀m ∈ M.
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If A is an N0-graded algebra, then the unit 1 ∈ A(0);

if C is an N0-graded coalgebra, then ε(A(n)) = 0 for n 6= 0.

If C is an M-graded coalgebra, then the graded dual C# is an

M-graded algebra.

If A is a locally finite M-graded algebra, then the graded dual

A# is an M-graded coalgebra.
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i.iv Coradically graded coalgebras.

Definition. We say that a graded coalgebra C is coradically

graded if the coradical filtration coincides with the canonical

filtration associated to the grading:

Cn = ⊕m≤nC(m).

Thus C(0) = C0.

If in addition dimC(0) = 1, then we say that C is strictly graded.

Lemma 4. Let C be a coalgebra. Then the graded coalgebra

grC associated to the coradical filtration is coradically graded.

Proof. See [Radford, 4.4.15].
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Let C = ⊕n∈N0
C(n) be a graded coalgebra with dimC(0) = 1.

Let us denote by 1 the group-like element in C(0) and set

P(C) = {c ∈ C : ∆(c) = c⊗ 1+ 1⊗ c},

the space of primitive elements of C. Notice that P(C) ⊆ C+.

Lemma 5. The following are equivalent:

(a) C is strictly graded.

(b) P(C) = C(1).

If in addition C is locally finite, then these are equivalent to

(c) The algebra A = C# is generated by A(1) = C(1)∗.
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Proof. Assume (a). Then C(1) ⊆ C1, thus if c ∈ C(1), then

∆(c) = c1 ⊗ 1+ 1⊗ c2,

where c1, c2 ∈ C(1) since C is a graded coalgebra. Then
c = (id⊗ε)∆(c) = c1, and similarly c = c2.

Assume (b). We have to prove that Cn = ⊕m≤nC(m) for all
n ∈ N0. If n = 0, then C0 ⊂ C(0) by Lemma 3 and the other
inclusion is clear. The case n = 1 follows from

C1 = C0 + P(C).

Indeed, ⊇ is clear, so let x ∈ C1 = C0∧C0. We may assume that
x ∈ C(d) for some d > 0. Then

∆(x) = x1 ⊗ 1+ 1⊗ x2,

where x1, x2 ∈ C(d); now x = (id⊗ε)∆(x) = x1 = x2, and ⊆
follows. The rest of the proof: see [Sweedler, Section 11.2].
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i.v Filtrations of Hopf algebras. Let B be a bialgebra and let

H be a Hopf algebra.

A bialgebra filtration of B is an ascending filtration F = (FnB)n≥0

of B which is an algebra and a coalgebra filtration at the same

time.

Graded bialgebras and graded Hopf algebras are defined similarly.

• If F is a bialgebra filtration, then grF B is a graded bialgebra.

• If F is a bialgebra filtration of H, and FnH is stable by the

antipode for all n (called a Hopf algebra filtration), then grF H

is a graded Hopf algebra.
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• If D is a sub-bialgebra of H, then ∧•D is a bialgebra filtration of

H. If D is a Hopf subalgebra, then ∧nD is stable by the antipode

for all n ∈ N0 and grF H is a graded Hopf algebra.

Example. Let H[0] := k〈H0〉 be the subalgebra of H generated

by the coradical H0. Since the coradical is stable by the antipode,

∧•H[0] is a Hopf algebra filtration called the standard filtration.
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ii. Hopf algebras whose coradical is a Hopf subalgebra

ii.i Yetter-Drinfeld modules. In the 1970’s, Yang and Baxter
discovered the so called Quantum Yang-Baxter equation which
is equivalent to the braid equation.

Definition. A braided vector space is a pair (V, c) where V is
a vector space and c : V ⊗ V → V ⊗ V is a linear automorphism
that satisfies the braid equation:

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

(Taking R = τc, R satisfies the QYBE iff c satisfies the braid equation).
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Why are they called braided vector spaces?

Recall that the braid group in n strands (Artin 1928) is

Bn = 〈σ1, . . . , σn−1 : σiσj = σjσi, |i− j| > 1,

σiσjσi = σjσiσj, |i− j| = 1〉.

There is a group epimorphism Bn // //Sn , σi 7→ si = (i, i+1).

If (V, c) is a braided vector space, then Bn acts on V ⊗n by

σi
� // id

V ⊗(i−1) ⊗c⊗ id
V ⊗(n−i−1)

Most applications of the qYBE arise from these representations.
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In 1986, Drinfeld found a method to construct braided vector

spaces. Let H be a Hopf algebra (with bijective antipode).

A Yetter-Drinfeld-module over H is a vector space V provided

with

• a structure of H-module · : H ⊗ V → V ,

• a structure of H-comodule δ : V → H ⊗ V , δ(v) = v(−1) ⊗ v(0);

such that δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0), ∀h ∈ H, v ∈ V .

Morphisms of Yetter-Drinfeld modules are linear maps preserving

the action and the coaction.
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The category of Yetter-Drinfeld-modules over H, denoted by
H
HYD, is a braided tensor category:

• If V,W ∈ H
HYD, then V ⊗W := V ⊗kW with the tensor product

module structure and the tensor product comodule structure.

• The braiding is given by

cV,W (v ⊗ w) = v(−1) · w ⊗ v(0), v ∈ V, w ∈ W.

Thus any V ∈ H
HYD is a braided vector space with braiding c = cV,V .
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Remark: The subcategory H
HYDfd of finite-dimensional objects

in H
HYD is rigid: thus any V ∈ H

HYDfd has a left dual ∗V and a

right dual V ∗.

Accordingly, if V = ⊕n∈N0
V (n) is a locally finite graded Yetter-

Drinfeld module, then we set

V # = ⊕n∈N0
V (n), #V = ⊕n∈N0

∗V (n).
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ii.iii Hopf algebras in H
HYD

Let C be a tensor category. Then we may define

• algebras, i.e., triples (A,µ, u) where A ∈ C , µ : A⊗ A → A and
u : 1 → A are morphisms in C that are associative and unital:

A⊗A⊗A
id⊗µ

//

µ⊗id
��

A⊗A
µ
��

A⊗A
µ

//A,

A⊗A
µ

//A,

1⊗A
u⊗id

ggNNNNNNNNNN lA

::uuuuuuuuu

A⊗A
µ

//A.

A⊗ 1
id⊗u

ggNNNNNNNNNN rA

::ttttttttt

• coalgebras, i.e., triples (C,∆, ε) where C ∈ C , ∆ : C → C ⊗ C

and ε : A → 1 are morphisms in C that are coassociative and
counital;
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If the tensor category C is braided, then we may also define:

• tensor products of associative algebras: if A and B are algebras

in C , then A⊗B is an algebra in C :

A⊗B ⊗A⊗B id⊗c⊗id //

µA⊗B **TTT
TTTT

TTTT
TTT

A⊗A⊗B ⊗B

µA⊗µBttjjjj
jjjj

jjjj
jj

A⊗B

• Bialgebras, i.e., collections (A,µ, u,∆, ε) such that

(A,µ, u) is an algebra in C ,

(A,∆, ε) is a coalgebra in C ,

∆ and ε are morphisms of algebras.

• Hopf algebras, i.e., bialgebras having an antipode.
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Example. Let H be a Hopf algebra. A Hopf algebra in H
HYD is

• an H-module R, with action · : H ⊗ R → R, which is also an

H-comodule with coaction δ : R → H ⊗ R, δ(r) = r(−1) ⊗ r(0);

such that

δ(h · r) = h(1)r(−1)S(h(3))⊗ h(2) · r(0), ∀h ∈ H, r ∈ R;

• which is also an (associative unital) algebra such that

h · (rs) = (h(1) · r)(h(2) · s),
δ(rs) = r(−1)s(−1) ⊗ r(0)s(0),

h · 1 = ε(h)1, δ(1) = 1⊗ 1;

∀h ∈ H, r, s ∈ R;
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• and a coalgebra with comultiplication ∆, ∆(r) = r(1) ⊗ r2, such that

∆(h · r) = (h(1) · r
(1))(h(2) · r

(2)), ∀h ∈ H, r ∈ R;

r(−1) ⊗ (r(0))
(1) ⊗ (r(0))

(2)

= (r(1))(−1) (r
(2))(−1) ⊗ (r(1))(0) ⊗ (r(2))(0);

εR(h · r) = εH(h)εR(r); εR(r) = r(−1)εR(r(0)).

• Furthermore, ∆ is an algebra map, i.e.,

∆(rs) = r(1)(r(2))(−1) · s
(1) ⊗ (r(2))(0)s

(2), ∀r, s ∈ R;

• there exists an antipode S : R → R (inverse of idR wrt the

convolution product).
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ii.iii (Pre- and Post-) Nichols algebras. The tensor algebra.
Let V ∈ H

HYD.

⇝ V ⊗ V ∈ H
HYD ⇝ Tn(V ) = V ⊗ Tn−1(V ) ∈ H

HYD

⇝ T (V ) = ⊕n∈N0
Tn(V ) ∈ H

HYD.

It is immediate that T (V ) is a (graded) algebra in H
HYD. Hence

T (V )⊗ T (V ) is an algebra in H
HYD

with the algebra structure twisted by the braiding c.

By the universal property of the tensor algebra, ∃ unique

∆ : T (V ) → T (V )⊗ T (V ) such that ∆(v) = v ⊗ 1+ 1⊗ v, ∀v ∈ V.

Lemma 6. With respect to ∆, T (V ) is a Hopf algebra in H
HYD.
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Definition. A graded Hopf algebra B = ⊕n∈N0
B(n) in H

HYD is a
pre-Nichols algebra of V if

• it is connected, i.e., B(0) = k;

• B(1) ' V in H
HYD;

• B(1) ' V generates the algebra B.

In other words, B is a pre-Nichols algebra of V if and only if there
exists an homogeneous ideal I of T (V ) such that B ' T (V )/I and
• I ∩ k⊕ V = 0;

• I is a Yetter-Drinfeld submodule of T (V );

• ∆(I) ⊆ I ⊗ T (V ) + T (V )⊗ I and S(I) ⊆ I.
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Let V ∈ H
HYDfd, so that T (V ) is a locally finite graded Hopf

algebra in H
HYD.

Definition. The quantum shuffle algebra of V is

T c(V ) := #T (V ∗)

That is, the homogeneous components of T c(V ) are the Tn(V ),
but the multiplication of T c(V ) is transpose to the comultiplica-
tion of T (V ) and vice versa.
Since the algebra T (V ) is generated by V , we have:

Lemma. (1) T c(V ) is strictly graded,
(2) there exists a map Ω : T (V ) → T c(V ) of Hopf algebras in
H
HYD which is the identity in V = T1(V ).

Definition. The Nichols algebra of V is the image of Ω.
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Definition. A graded Hopf algebra R = ⊕n∈N0
R(n) in H

HYD is a

post-Nichols algebra of V if

• it is connected, i.e., R(0) = k;

• R(1) ' V in H
HYD;

• R is strictly graded, or equivalently P(R) = R(1).

That is, R is a post-Nichols algebra of V if and only if there

exists an injective morphism R → T c(V ) of graded Hopf algebras

in H
HYD which is the identity on V .
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ii.iv Bosonization (Radford biproduct) Hopf algebras in K
KYD

appear in nature by the following results of Radford and Majid:

• Let H
π //

K
ι

oo be Hopf algebra maps such that πι = idK. Then

R = {x ∈ H : (id⊗π)∆(x) = x⊗ 1}

is a Hopf algebra in K
KYD.

• Conversely, let R be a Hopf algebra in K
KYD. Then R#K :=

R ⊗K with the semidirect multiplication and comultiplication is

a Hopf algebra (called the bosonization of R by K) provided

with Hopf algebra maps π := εR ⊗ id : R#K → K, ι := uR ⊗ id :

K → R#K.

• These constructions are reciprocal.
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ii.v Proof of Theorem 1. We are now ready to sketch it. Recall

Let H be a Hopf algebra whose coradical H0 is a Hopf subalgebra.

Then H is a deformation (lifting) of the bosonization of H0 by

a post-Nichols algebra R in H0
H0

YD:

grH ' R#H0.

Indeed, the coradical filtration is a Hopf algebra filtration, hence

grH is a graded Hopf algebra. The inclusion ι : H0 ↪→ grH and

the projection π : grH → H0, which annihilates the components

of positive degree, are Hopf algebra maps that satisfy πι = idH0
.

Hence grH ' R#H0. Since π is homogeneous, R inherits the

grading from grH and turns out to be strictly graded.

Finally, by general reasons H is a deformation of grH.
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iii. Applications. The lifting method.

Let H be a pointed Hopf algebra (or H0 is a Hopf subalgebra).
Recall that H is a deformation of grH ' R#kG(H). Method to
study when H has a property P:

Step 0: does property P propagate well? Restrict to kG(H), or
H0, with property P.

Step 1: Classify all V ∈ kG(H)
kG(H)YD (or V ∈ kH0

kH0
YD) such that B(V )

has property P.

Step 2: Classify all R post-Nichols algebra in kG(H)
kG(H)YD (or in

kH0
kH0

YD) such that R has property P.

Step 3: Compute all liftings (deformations) of R#kG(H) (or
R#H0).
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Finite dimension.

dimH < ∞ ⇐⇒ dimgrH < ∞ ⇐⇒ (dimR < ∞& |G(H)| < ∞).

Characteristic 0: Conjecture. R = B(V ).

Characteristic > 0: Conjecture does not hold.

Finite Gelfand-Kirillov dimension in characteristic 0:

GK-dimH < ∞ ⇐= GK-dim grH < ∞
=⇒ (GK-dimR < ∞&G(H) nilpotent-by-finite).
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Noetherian: H Noetherian ⇐= grH Noetherian
=⇒⇐= R Noetherian &G(H) polycyclic-by-finite???).

Finitely generated cohomology. dimH < ∞.

Ext•H(k, k) fin. gen.
?⇐⇒ Ext•grH(k, k) fin. gen.

?⇐⇒ Ext•R(k, k)
fin. gen.
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