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i. Classification / characterization

A classical theme in Mathematics is the classification (or at least

characterization) of certain kind of mathematical objects.

By classification of objects in a class C one usually means fo-

cusing on a significant equivalent relation ∼ on C and finding

invariants with respect to ∼, so that collecting them together

one gets a bijective correspondance

C/∼←→ D.

Example: Finite abelian simple groups, up to a group isomor-

phism, are in bijective correspondance with prime numbers.
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The expectations are

• the elements in D are easier to handle (or at least we think we
understand them better);

• we may solve problems on C by case-by-case considerations;

• or at least the process of classification provides some robust
invariants that help to abord some difficult questions;

• there is the possibility of discovering new examples of impor-
tance.
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The closer the equivalence relation ∼, the more difficult the

classification. Sometimes one starts by a more relaxed relation

as a first approximation.

Example: Connected Lie groups, up to local isomorphisms, are

in bijective correspondance with finite dimensional Lie algebras.

Example: Algebraic varieties over an algebraically closed field k,
up to birational transformations, are in bijective correspondance

with field extensions of k of finite trascendence degree.
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Then one goes on classifying the invariants in the first approxi-

mation, sometimes restricting to a subclass of C.

Example: Simple finite dimensional Lie algebras, up to isomor-

phisms, are classified by connected Dynkin diagrams.

Along the way, we encounter an important invariant: the Car-

tan subalgebra of a simple Lie algebra, instrumental in many

questions about simple Lie algebras and groups.

Sometimes we end having a full classification. . . :

Example: Simple complex Lie groups, up to isomorphisms, are-

classified by pairs formed by a connected Dynkin diagram and a

subgroup of P/Q (weight lattice modulo the root lattice).
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. . . but sometimes this is out of reach; then we have to content

ourselves with a characterization (or structure description).

Example: Finite dimensional Lie algebras, up to isomorphisms,

are determined as semidirect products of a solvable Lie algebra

and a semisimple one.

But solvable Lie algebras can not be classified in a profitable

way.
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Example: The classification of the finite groups (up to isomor-

phisms) is a wild problem. Indeed the classification of the 2-step

(nilpotent) p-groups with non-cyclic center is wild (Sergejchuk).

As a substitute, one may consider:

• any finite group is an iterated extension of simple groups

(Jordan-Hölder theorem);

• The classification of the finite simple groups (up to isomor-

phisms) is known.
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Theorem. Any finite simple group is isomorphic either to

• the alternating group An, n ≥ 5, or

• one of the 26 sporadic groups, or

• a finite simple group of Lie type.
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By several reasons, this is a remarkable achievement:

• it is a meta-theorem, not proved by a single mathematician

but by a large community of them (starting with Galois);

• its developing provoked a very large and substantial number

of developments in other areas of mathematics and computer

science;

• it has a very wide rank of applications.
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ii. Hopf algebras

These objects have origins in three different sources:

• A. Borel (1953) developped an abstract formalism towards

axiomatizing techniques introduced by H. Hopf to compute the

cohomology of Lie groups.

• P. Cartier (1955) introduced the notion of hyperalgebra to-

wards axiomatizing the algebra of distributions studied by J.

Dieudonné seeking to a positive characteristic version of the dic-

tionary Lie groups–Lie algebras.

• G. I. Kac (1958) started a remarkable program extending prop-

erties of the C∗-algebra of functions on a finite group to the

noncommutative setting.
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In the late 1950s and early 1960s, the theory developed indepen-
dently along the three paths mentioned above. Some notewhorty
achievements:
• In the topological side, Milnor and Moore obtained a classifi-
cation of cocommutative connected Hopf (super)algebras.

• Cartier (1962) obtained classifications of commutative, respec-
tively cocommutative, Hopf algebras (in char 0).

• Kostant (early 60’s, cf. Sweedler’s book) found independently the
classification of cocommutative Hopf algebras (in char 0). He gave
in the paper Groups over Z (whose goal was to give a uniform definition

of finite groups of Lie type) the definition of Hopf algebra used today.

• G. I. Kac got a series of remarkable results on semisimple Hopf
algebras neither commutative nor cocommutative.
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Let k be a field.

A Hopf algebra is a collection (H,m,∆) where

• (H,m) is an associative algebra with unit u : k→ H,

• (H,∆) is a coassociative coalgebra with counit ε : H → k,

• ∆ and ε are algebra maps,

• there exists an algebra map S : H → Hop satisfying suitable
axioms.
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First invariants of a Hopf algebra H:

• The group of group-like elements:

G(H) = {x ∈ H\0 : ∆(x) = x⊗ x}.

• The Lie algebra of primitive elements:

P(H) = {x ∈ H : ∆(x) = x⊗ 1+ 1⊗ x}.

• The coradical

H0 =
∑

C⊆H: simple subcoalgebra

C.
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Examples of Hopf algebras:

• Group algebras (cocommutative).

• Enveloping algebras (cocommutative).

• Algebras of polynomial functions on affine algebraic groups
(commutative).

Theorem. (Cartier-Kostant-Gabriel). k = k, char k = 0.
H cocommutative Hopf algebra =⇒ H ≃ U(g) ⋊ kG,
where g = Prim(H) and G = G(H) acts on g by conjugation.

14



Theorem. (Cartier). k = k, char k = 0.

H finitely generated commutative Hopf algebra =⇒ H ≃ k[G]

where G = Homalg(H, k).

The study of affine algebraic groups through their (Hopf) al-

gebras of functions was undertaken in the 60’s and 70’s by

Geothendieck and his school (Demazure, Gabriel; SGA3) and G.

Hochshild.
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The study of Hopf algebras neither commutative nor cocommu-

tative was started by M. Sweedler (student of Kostant) in the

late ’60 in his book Hopf algebras.

A number of basic fundamental results were obtained in the 70’s

and 80’s by several mathematicians, e.g.

Sweedler, Heynemann, Larson, Radford, Taft, Nichols, Wilson, Zöller, Takeuchi,

Schneider, etc.

In 1981, N. Reshetikhin, P. Kulish and V. Sklyanin discovered

quantum SL2.
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Shortly after, Drinfeld and Jimbo discovered independently quan-

tum versions of U(g) for g simple.

In his report presented (by P. Cartier!) at the ICM 1986, Drinfeld

wrote:

I believe that most of the examples of noncommutative nonco-

commutative Hopf algebras invented independently of integrable

quantum system theory are counterexamples rather than ”natu-

ral” examples (however there are remarkable exceptions ...)
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iii. (Finite-dimensional) (pointed) Hopf algebras. Assume
that k is algebraically closed and that char k = 0.
A Hopf algebra H is pointed if

• any simple subcoalgebra has dimension one, or equivalently,

• any simple comodule has dimension one, or equivalently,

• the coradical (the largest cosemisimple subcoalgebra) is iso-
morphic to the group algebra kG(H).

This talk is an introduction to the course on f.d. pointed Hopf
algebras. Let us first try to answer the questions:

• Why k = k? • Why char k = 0?
• why pointed? • why finite-dimensional?
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Generally speaking, even if the proposed method applies in a wider context,

these conditions facilitate the understanding of the main steps of the approach

without technical complications.

The case when ”k is not algebraically closed” follows from the ”k = k case”

(via Galois cohomology).

When ”char k > 0” there are specific features, e.g. the restricted universal

enveloping algebras or non-semisimplicity of finite group algebras, requiring

specific techniques.

The hypothesis pointed allows to use the vast knowledge of group theory;

less is known about general cosemisimple Hopf algebras.

There is work in progress about classification of pointed Hopf algebras either

Noetherian, or of finite GK-dim . Again, lack of semisimplicity makes things

harder . . . and more interesting.
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The coradical filtration.

Let H be a Hopf algebra. Recall the coradical

H0 =
∑

C⊆H: simple subcoalgebra

C.

Define H1 = H0 ∧H0 := {x ∈ H : ∆(x) ∈ H0 ⊗H +H ⊗H0};

recursively Hn+1 = Hn ∧H0 := {x ∈ H : ∆(x) ∈ Hn ⊗H +H ⊗H0}.

=⇒ 0 = H−1 ⊆ H0 ⊆ H1 ⊆ . . . Hn ⊆ Hn+1 . . . exhaustive coalgebra

filtration.

=⇒ grH = ⊕n≥0Hn/Hn−1 graded coalgebra.
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Now assume that H0 is a Hopf subalgebra (e.g., H pointed).

=⇒ 0 = H−1 ⊆ H0 ⊆ H1 ⊆ . . . Hn ⊆ Hn+1 . . .

is a Hopf algebra filtration;

=⇒ grH = ⊕n≥0 gr
nH, where grnH := Hn/Hn−1,

is a graded Hopf algebra.

Facts:

• There is an isomorphism of Hopf algebras grH ≃ R#H0, where

R is a Hopf algebra in the braided tensor category H0
H0
YD.

• R = ⊕n≥0Rn, where Rn = R ∩ grnH, is a coradically graded

algebra called the diagram of H.

• V = R1 ∈ H0
H0
YD is called the infinitesimal braiding of H.
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What is H0
H0
YD? This is the braided tensor category of Yetter-

Drinfeld modules over H0. Namely, V ∈ H0
H0
YD ⇐⇒

• V is a left H0-module.

• V is a left H0-comodule.

• Compatibility: δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0).

Example: If H0 = kG, G a group, then V ∈ kG
kGYD ⇐⇒

• · : G× V → V , • V = ⊕g∈GVg, γ · Vg = Vγgγ−1.
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Fact: The subalgebra of R generated by V = R1 is isomorphic

to the Nichols algebra of V .

What is the Nichols algebra of V ? This is a graded Hopf

algebra in H0
H0
YD: B(V ) = ⊕n≥0 Bn(V ) such that

• B0(V ) = k, •B1(V ) ≃ V .

• V generates B(V ), • P(B(V )) = V .
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Summarizing, given a Hopf algebra H with coradical being a Hopf

subalgebra (for instance, H pointed), we have several invariants:

◦ H0 (for instance G(H)),

◦ grH,

◦ the diagram R,

◦ the infinitesimal braiding V ,

◦ its Nichols algebra B(V ) ↪→ R. Notice:

dimH <∞ ⇐⇒ dimgrH <∞ ⇐⇒ (dimR <∞ &dimH0 <∞).

In the pointed case, dimH0 <∞ ≡ |G(H)| <∞.
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iv. The lifting method. [A-Schneider]).

The idea of the method is to recover all possible Hopf algebras
from the previous invariants. Here are the steps of the method:

Step I. Classify all V ∈ H
HYD s. t. dimB(V ) <∞; for them find

a presentation by generators and relations.

Step II. Is B(V ) = R?

Step III. Given V , classify all H s. t. grH ≃ B(V )#H0.

We focus on Step I.
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Let G be a finite group. Then kG
kGYD is a semisimple category

(since char k = 0). We have to compute / determine the dimen-

sion of B(V ) for any V ∈ kG
kGYD, fin.dim.

We distinguish two cases:

◦ V = V1 ⊕ · · · ⊕ Vθ, θ ≥ 2.

One deals with this case using the Weyl groupoid ([Heckenberger],

[A-Heckenberger-Schneider]).

Outcome: All V like this with dimB(V ) < ∞ are known ([Heck-

enberger], [Heckenberger-Vendramin]).

◦ V is simple. Difficult! Except when dimV = 1 . . .
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It is natural to consider classes of groups.

G abelian: Under this assumption all steps were solved ([A-

Schneider], [Heckenberger], [Angiono], [Angiono-Garćıa Iglesias]).

|G| odd, hence G solvable: Essentially solved by reduction
to the abelian case [Heckenberger-Meir-Vendramin], [A-Heckenberger-

Vendramin].

G solvable: the determination of the finite dimensional Nichols
algebras essentially follows from ([Heckenberger-Vendramin], [Heckenberger-

Meir-Vendramin], [A-Heckenberger-Vendramin]).
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G simple: In contrast with the abelian case, the Nichols algebras

of V ∈ kG
kGYD simple are very difficult to compute and essentially

no (genuine) example is known.

However, several criteria were found that, once certain conditions

are met, ensure that the Nichols algebra of a simple V has infinite

dimension.
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Definition. A finite group G collapses when the only finite di-

mensional pointed Hopf algebra H with G(H) ≃ G is the group

algebra kG.

Conjecture. A finite simple group collapses.

We address this conjecture by analyzing group by group and,

for each group, conjugacy class by conjugacy class, applying the

aforementioned techniques.
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State of the art.
The following (simple) groups collapse:
• (A-Fantino-Graña-Vendramin) the alternating groups An, n ≥ 5;

• (A-Fantino-Graña-Vendramin), (Fantino-Vendramin) the sporadic groups,
except for Fi22, B (the baby Monster), M (the Monster);

• (Carnovale-Costantini) Suzuki and Ree groups;

• (A-Carnovale-Garćıa) The groups PSLn(q) with n ≥ 4, PSL3(q)
with q > 2, and PSp2n(q), n ≥ 3.

For the remaining finite simple groups, there is a (short) list of
conjugacy classes still open; some are work in progress.
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Finally, there is a related, somehow parallel, viewpoint: to look
at Nichols associated to simple racks. Again, we may apply the
mentioned techniques to decide when a Nichols associated to a
simple rack is infinite dimensional.

Indeed, the classification of finite simple racks is known and
contains (properly) the list of conjugacy classes of finite simple
groups.

This viewpoint might be useful for the classification of finite-
dimensional Nichols algebras over arbitrary finite groups, a goal
that is still very far from us–today.
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